# BOUNDS FOR THE SPECTRAL RADIUS OF BLOCK H-MATRICES* 

WEI ZHANG ${ }^{\dagger}$ AND ZHENG-ZHI HAN ${ }^{\dagger}$


#### Abstract

Simple upper bounds for the spectral radius of an H-matrix and a block H-matrix are presented. They represent an improvement over the bounds in [T.Z. Huang, R.S. Ran, A simple estimation for the spectral radius of (block) H-matrices, Journal of Computational Applied Mathematics, 177 (2005), pp. 455-459].


Key words. Spectral radius, H-matrices, Block H-matrices.

AMS subject classifications. 65F10, 65F15.

1. Introduction. H-matrices have important applications in many fields, such as numerical analysis, control theory, and mathematical physics. Recently, Huang and Ran [5] have presented a simple upper bound for the spectral radius of (block) H -matrices. In this paper, we give some new upper bounds.

A square complex or real matrix $A$ is called an $H$-matrix if there exists a square positive diagonal matrix $X$ such that $A X$ is strictly diagonally dominant (SDD) [5]. Let $\mathbb{C}^{n, n}\left(\mathbb{R}^{n, n}\right)$ denote the set of $n \times n$ complex (real) matrices. If $A=\left[a_{i j}\right] \in \mathbb{C}^{n, n}$, we write $|A|=\left[\left|a_{i j}\right|\right]$, where $\left|a_{i j}\right|$ is the modulus of $a_{i j}$. We denote by $\rho(A)$ the spectral radius of $A$, which is just the radius of the smallest disc centered at the origin in the complex plane that includes all the eigenvalues of $A$ (see [4, Def. 1.1.4]).

Throughout the paper, we let $\|\cdot\|$ denote a consistent family of norms on matrices of all sizes, which satisfies the following four axioms:
(1) $\|A\| \geq 0$, and $\|A\|=0$ if and only if $A=0$;
(2) $\|c A\|=|c|\|A\|$ for all complex scalars $c$;
(3) $\|A+B\| \leq\|A\|+\|B\|$, where $A$ and $B$ are in the same size; and
(4) $\|A B\| \leq\|A\|\|B\|$ provided that $A B$ is defined.

Axioms (1) and (4) ensure that $\|I\| \geq 1$, where $I$ is the identity matrix. For example, the Frobenius norm $\|\cdot\|_{F}, 1$-norm $\|\cdot\|_{1}$, and $\infty$-norm $\|\cdot\|_{\infty}$ (see e.g., [4, Chap. 5]) are all consistent families of norms.

Let $A=\left[a_{i j}\right] \in \mathbb{C}^{n, n}$ be partitioned in the following form

$$
A=\left(\begin{array}{llll}
A_{11} & A_{12} & \cdots & A_{1 k}  \tag{1.1}\\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\cdots & \cdots & \cdots & \cdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right)
$$

[^0]in which $A_{i j} \in \mathbb{C}^{n_{i}, n_{j}}$ and $\sum_{i=1}^{k} n_{i}=n$. If each diagonal block $A_{i i}$ is nonsingular and
$$
\left\|A_{i i}^{-1}\right\|^{-1}>\sum_{j \neq i}\left\|A_{i j}\right\| \quad \text { for all } \quad i=1,2, \ldots, k
$$
then $A$ is said to be block strictly diagonally dominant with respect to $\|\cdot\|$ (BSDD) [3]; if there exist positive numbers $x_{1}, x_{2}, \ldots, x_{k}$ such that
$$
x_{i}\left\|A_{i i}^{-1}\right\|^{-1}>\sum_{j \neq i} x_{j}\left\|A_{i j}\right\| \quad \text { for all } i=1,2, \ldots, k
$$
then $A$ is said to be block $H$-matrix with respect to $\|\cdot\|[6]$.
Theorem 1.1. ([5]) Let $A=\left[a_{i j}\right] \in \mathbb{C}^{n, n}$. If $A$ is an H-matrix, then
\[

$$
\begin{equation*}
\rho(A)<2 \max _{i}\left|a_{i i}\right| . \tag{1.2}
\end{equation*}
$$

\]

Theorem 1.2. ([5]) Let $A \in \mathbb{C}^{n, n}$ be partitioned as in (1.1). Let $\|\cdot\|$ be a consistent family of norms. If $A$ is a block $H$-matrix with respect to $\|\cdot\|$, then

$$
\begin{equation*}
\rho(A)<\max _{i}\left\{\left\|A_{i i}\right\|+\left\|A_{i i}^{-1}\right\|^{-1}\right\} . \tag{1.3}
\end{equation*}
$$

2. Main results. In this section, we present some new bounds for the spectral radius of an H-matrix and a block H-matrix, respectively. We need the following two lemmas.

Lemma 2.1. ([4, Thm 8.1.18]) Let $A=\left[a_{i j}\right] \in \mathbb{C}^{n, n}$. Then $\rho(A) \leq \rho(|A|)$.
Lemma 2.2. ([1]) Let $A=\left[a_{i j}\right] \in \mathbb{R}^{n, n}$ be a nonnegative matrix. Then

$$
\rho(A) \leq \max _{i \neq j} \frac{1}{2}\left\{a_{i i}+a_{j j}+\left[\left(a_{i i}-a_{j j}\right)^{2}+4 \sum_{k \neq i} a_{i k} \sum_{k \neq j} a_{j k}\right]^{\frac{1}{2}}\right\}
$$

The following is one of the main results of this paper.
Theorem 2.3. Let $A=\left[a_{i j}\right] \in \mathbb{C}^{n, n}$ be an H-matrix. Then

$$
\begin{equation*}
\rho(A)<\max _{i \neq j}\left(\left|a_{i i}\right|+\left|a_{j j}\right|\right) \leq 2 \max _{i}\left|a_{i i}\right| . \tag{2.1}
\end{equation*}
$$

Proof. Let $X=\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a square positive diagonal matrix such that $A X$ is SDD . Then $X^{-1} A X$ is also SDD , i.e.,

$$
\left|a_{i i}\right|=\left|X^{-1} A X\right|_{i i}>\sum_{j \neq i}\left|X^{-1} A X\right|_{i j}=\sum_{j \neq i} \frac{\left|a_{i j}\right| x_{j}}{x_{i}} \quad \text { for all } \quad i=1,2, \ldots, n
$$

The spectral radii of $A$ and $X^{-1} A X$ are equal since the two matrices are similar. Lemma 2.1 and Lemma 2.2 ensure that

$$
\begin{aligned}
\rho(A) & =\rho\left(X^{-1} A X\right) \leq \rho\left(\left|X^{-1} A X\right|\right) \\
& \leq \max _{i \neq j} \frac{1}{2}\left\{\left|a_{i i}\right|+\left|a_{j j}\right|+\left[\left(\left|a_{i i}\right|-\left|a_{j j}\right|\right)^{2}+4 \sum_{k \neq i} \frac{\left|a_{i k}\right| x_{k}}{x_{i}} \sum_{k \neq j} \frac{\left|a_{j k}\right| x_{k}}{x_{j}}\right]^{\frac{1}{2}}\right\} \\
& <\max _{i \neq j} \frac{1}{2}\left\{\left|a_{i i}\right|+\left|a_{j j}\right|+\left[\left(\left|a_{i i}\right|-\left|a_{j j}\right|\right)^{2}+4\left|a_{i i}\right|\left|a_{j j}\right|\right]^{\frac{1}{2}}\right\} \\
& =\max _{i \neq j}\left(\left|a_{i i}\right|+\left|a_{j j}\right|\right) \leq 2 \max _{i}\left|a_{i i}\right| .
\end{aligned}
$$

We now consider block H-matrices. The following lemma was stated in [2] but the proof offered there is not correct.

Lemma 2.4. ([2]) Let $A=\left[A_{i j}\right] \in \mathbb{R}^{n, n}$ be a nonnegative block matrix of the form (1.1). Let $B=\left[\left\|A_{i j}\right\|\right]$, where $\|\cdot\|$ is a consistent family of norms. Then

$$
\begin{equation*}
\rho(A) \leq \rho(B) \tag{2.2}
\end{equation*}
$$

Proof. First we assume that $A$ is a positive matrix. By Perron's Theorem [4, Thm 8.2.11], $\rho(A)$ is an eigenvalue of $A$ corresponding to a positive eigenvector $x$, i.e.,

$$
A x=\rho(A) x, \quad x>0
$$

Partition $x^{T}=\left(x_{1}^{T}, \ldots, x_{k}^{T}\right)$, where each $x_{i} \in \mathbb{R}^{n_{i}}, i=1, \ldots, k$. Let $z_{i}=\left\|x_{i}\right\|$. Define $z:=\left(z_{1}, \ldots, z_{k}\right)^{T} \in \mathbb{R}^{k}$, so $z>0$ and for all $1 \leq i \leq k$,

$$
\sum_{j=1}^{k} A_{i j} x_{j}=\rho(A) x_{i}
$$

which implies

$$
\rho(A) z_{i}=\rho(A)\left\|x_{i}\right\|=\left\|\sum_{j=1}^{k} A_{i j} x_{j}\right\| \leq \sum_{j=1}^{k}\left\|A_{i j}\right\|\left\|x_{j}\right\|=\sum_{j=1}^{k}\left\|A_{i j}\right\| z_{j} .
$$

Since the inequality $\rho(A) z_{i} \leq \sum_{j=1}^{k}\left\|A_{i j}\right\| z_{j}$ holds for all $i=1, \ldots, k$, we have

$$
\rho(A) z \leq B z
$$

Since $B$ is nonnegative and $z>0$, we obtain $\rho(A) \leq \rho(B)$ [4, Cor. 8.1.29].
Next we show the inequality (2.2) holds for all nonnegative matrices $A$. For any given $\varepsilon>0$, define $A(\varepsilon):=\left[a_{i j}+\varepsilon\right]$ and let $B(\varepsilon):=\left[\left\|A_{i j}(\varepsilon)\right\|\right]$. Since every $A_{i j}(\varepsilon)$ is positive, therefore $\rho(A(\varepsilon)) \leq \rho(B(\varepsilon))$. By the continuity of $\rho(\cdot)$, we have

$$
\rho(A)=\lim _{\varepsilon \rightarrow 0} \rho(A(\varepsilon)) \leq \lim _{\varepsilon \rightarrow 0} \rho(B(\varepsilon))=\rho(B)
$$

Theorem 2.5. Let $A \in \mathbb{C}^{n, n}$ be partitioned as in (1.1). Suppose $A$ is a block $H$-matrix with respect to a consistent family of norms $\|\cdot\|$. Then

$$
\begin{align*}
\rho(A) & <\max _{i \neq j} \frac{1}{2}\left\{\left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left[\left(\left\|A_{i i}\right\|-\left\|A_{j j}\right\|\right)^{2}+4\left\|A_{i i}^{-1}\right\|^{-1}\left\|A_{j j}^{-1}\right\|^{-1}\right]^{\frac{1}{2}}\right\}  \tag{2.3}\\
& \leq \max _{i \neq j}\left(\left\|A_{i i}\right\|+\left\|A_{j j}\right\|\right)
\end{align*}
$$

Proof. Let $x_{1}, x_{2}, \ldots, x_{k}$ be positive numbers such that

$$
x_{i}\left\|A_{i i}^{-1}\right\|^{-1}>\sum_{j \neq i} x_{j}\left\|A_{i j}\right\| \text { for all } i=1,2, \ldots, k
$$

Let $X=\operatorname{diag}\left(x_{1} I_{n_{1}}, x_{2} I_{n_{2}}, \ldots, x_{k} I_{n_{k}}\right)$. Then $A X$ is BSDD. Let

$$
B=X^{-1} A X=\left(\begin{array}{cccc}
A_{11} & \frac{x_{2}}{x_{1}} A_{11} & \cdots & \frac{x_{n}}{x_{1}} A_{1 k} \\
\frac{x_{1}}{x_{2}} A_{21} & A_{22} & \cdots & \frac{x_{n}}{x_{2}} A_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{x_{1}}{x_{n}} A_{k 1} & \frac{x_{2}}{x_{n}} A_{k 2} & \cdots & A_{k k}
\end{array}\right)
$$

Then $B=\left[B_{i j}\right]$ is also BSDD. Let $C=\left[\left\|B_{i j}\right\|\right] \in \mathbb{R}^{k, k}$. Then Lemma 2.2 and Lemma 2.4 ensure that

$$
\begin{aligned}
& \rho(A)=\rho(B) \leq \rho(C) \\
& \leq \max _{i \neq j} \frac{1}{2}\left\{\left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left[\left(\left\|A_{i i}\right\|-\left\|A_{j j}\right\|\right)^{2}+4 \sum_{k \neq i} \frac{\left\|A_{i k}\right\| x_{k}}{x_{i}} \sum_{k \neq j} \frac{\left\|A_{j k}\right\| x_{k}}{x_{j}}\right]^{\frac{1}{2}}\right\} \\
& <\max _{i \neq j}^{2} \frac{1}{2}\left\{\left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left[\left(\left\|A_{i i}\right\|-\left\|A_{j j}\right\|\right)^{2}+4\left\|A_{i i}^{-1}\right\|^{-1}\left\|A_{j j}^{-1}\right\|^{-1}\right]^{\frac{1}{2}}\right\}
\end{aligned}
$$

Moreover, we have $1 \leq\|I\|=\left\|A_{i i} A_{i i}^{-1}\right\| \leq\left\|A_{i i}\right\|\left\|A_{i i}^{-1}\right\|$, so $\left\|A_{i i}^{-1}\right\|^{-1} \leq\left\|A_{i i}\right\|$ and

$$
\begin{aligned}
& \left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left[\left(\left\|A_{i i}\right\|-\left\|A_{j j}\right\|\right)^{2}+4\left\|A_{i i}^{-1}\right\|^{-1}\left\|A_{j j}^{-1}\right\|^{-1}\right]^{\frac{1}{2}} \\
& \leq\left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left[\left(\left\|A_{i i}\right\|-\left\|A_{j j}\right\|\right)^{2}+4\left\|A_{i i}\right\|\left\|A_{j j}\right\|\right]^{\frac{1}{2}} \\
& =2\left(\left\|A_{i i}\right\|+\left\|A_{j j}\right\|\right) .
\end{aligned}
$$

Remark 2.6. Without loss of generality, for given $i \neq j$, assume that

$$
\left\|A_{i i}\right\|+\left\|A_{i i}^{-1}\right\|^{-1} \geq\left\|A_{j j}\right\|+\left\|A_{j j}^{-1}\right\|^{-1}
$$

Then

$$
\begin{aligned}
& \left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left[\left(\left\|A_{i i}\right\|-\left\|A_{j j}\right\|\right)^{2}+4\left\|A_{i i}^{-1}\right\|^{-1}\left\|A_{j j}^{-1}\right\|^{-1}\right]^{\frac{1}{2}} \\
& \leq\left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left[\left(\left\|A_{i i}\right\|-\left\|A_{j j}\right\|\right)^{2}+4\left\|A_{i i}^{-1}\right\|^{-1}\left(\left\|A_{i i}\right\|+\left\|A_{i i}^{-1}\right\|^{-1}-\left\|A_{j j}\right\|\right)\right]^{\frac{1}{2}} \\
& =\left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left[\left(\left\|A_{i i}\right\|-\left\|A_{j j}\right\|+2\left\|A_{i i}^{-1}\right\|^{-1}\right)^{2}\right]^{\frac{1}{2}} \\
& =\left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left\|\left(\left\|A_{i i}\right\|+\left\|A_{i i}^{-1}\right\|^{-1}-\left\|A_{j j}\right\|\right)+\right\| A_{i i}^{-1} \|^{-1} \mid \\
& =\left\|A_{i i}\right\|+\left\|A_{j j}\right\|+\left(\left\|A_{i i}\right\|-\left\|A_{j j}\right\|+2\left\|A_{i i}^{-1}\right\|^{-1}\right) \\
& =2\left(\left\|A_{i i}\right\|+\left\|A_{i i}^{-1}\right\|^{-1}\right) \leq 2 \max _{i}\left(\left\|A_{i i}\right\|+\left\|A_{i i}^{-1}\right\|^{-1}\right)
\end{aligned}
$$

Hence, the first bound in (2.3) is at least as good as the bound (1.2).
Example. Consider the block matrix

$$
A=\left[\begin{array}{ccccc}
4 & -2 & \vdots & 1.5 & 0.5 \\
-2 & 6 & \vdots & 1 & -0.5 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & 0 & \vdots & 1 & 0 \\
0.5 & 0.5 & \vdots & 0 & 1
\end{array}\right]
$$

and the norms $\|\cdot\|_{\infty}$. Then $A$ is a block H-matrix with spectral radius 7.2152 . The bound in Theorem 1.2 is $\rho(A) \leq 10.5$. The bound in Theorem 2.5 is $\rho(A) \leq 8.34$.

Acknowledgment. The authors would like to thank the handling editor Roger A. Horn and an anonymous referee for their helpful suggestions.

## REFERENCES

[1] A. Brauer. Limits for the characteristic roots of a matrix, II. Duke Mathematical Journal, 14:21-26, 1947.
[2] M. Q. Chen and X. Z. Li. An estimation of the spectral radius of a product of block matrices. Linear Algebra and its Applications, 379:267-275, 2004.
[3] D. G. Feingold and R. S. Varga. Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem. Pacific Journal of Mathematics, 12:1241-1249, 1962.
[4] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[5] T. Z. Huang and R. S. Ran. A simple estimation for the spectral radius of (block) H-matrices. Journal of Computational Applied Mathematics, 177:455-459, 2005.
[6] B. Polman. Incomplete blockwise factorizations of (block) H-matrices. Linear Algebra and Its Applications, 90:119-132, 1987.


[^0]:    *Received by the editors 24 August 2006. Accepted for publication 12 October 2006. Handling Editor: Roger A. Horn
    ${ }^{\dagger}$ Department of Automation, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China (avee@sjtu.edu.cn).

