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SCHATTEN NORMS OF TOEPLITZ MATRICES WITH
FISHER-HARTWIG SINGULARITIES∗
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Abstract. The asymptotics of the Schatten norms of finite Toeplitz matrices generated by
functions with a Fisher-Hartwig singularity are described as the matrix dimension n goes to infinity.
The message of the paper is to reveal some kind of a kink: the pth Schatten norm increases as n to
the power 1/p before the singularity reaches a critical point and as n to an exponent depending on
the singularity beyond the critical point.
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1. Introduction. Let a be a function in L1(−π, π) and let {an}n∈Z be the
sequence of the Fourier coefficients of a,

an =
∫ π

−π

a(x) e−inx dx

2π
.

We denote by Tn(a) the n × n Toeplitz matrix (aj−k)n
j,k=1. For 1 ≤ p ≤ ∞, the

Schatten norm ‖Tn(a)‖p is defined by

‖Tn(a)‖p :=

{ ( ∑n
j=1 s

p
j (Tn(a))

)1/p for 1 ≤ p <∞,

sn(Tn(a)) for p = ∞,

where s1(Tn(a)) ≤ . . . ≤ sn(Tn(a)) are the singular values of Tn(a). This paper
addresses the behavior of the Schatten norms ‖Tn(a)‖p as n → ∞ in the case where
a is a function with a singularity of the Fisher-Hartwig type. An archetypal example
of such a function is

ω+
α (x) =

{
0 for x ∈ (−π, 0),
1/xα for x ∈ (0, π),

where 0 < α < 1. One can show that there exist constants C1(α), C∞(α) ∈ (0,∞)
depending only on α such that

‖Tn(ω+
α )‖1 ∼ C1(α)n, ‖Tn(ω+

α )‖∞ ∼ C∞(α)nα.

Here and in what follows xn ∼ yn means that xn/yn → 1 as n→ ∞. Thus, the expo-
nent of n in the asymptotics of the trace norm ‖Tn(ω+

α )‖1 is independent of α, while
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this exponent depends heavily on α for the spectral norm ‖Tn(ω+
α )‖∞. Computing

Frobenius norms we get

‖Tn(ω+
α )‖2 ∼




C2(α)n1/2 for α < 1/2,
C2(α) (n log n)1/2 for α = 1/2,
C2(α)nα for α > 1/2

with constants C2(α) ∈ (0,∞). This time we observe a kind of a kink at α = 1/2:
for α < 1/2 the exponent of n is independent of α and for α > 1/2 the asymptotics
of ‖Tn(ω+

α )‖2 is governed by α.

Theorems of the Szegö-Avram-Parter type state that

lim
n→∞

1
n

n∑
j=1

F (sj(Tn(a))) =
∫ π

−π

F (|a(x)|) dx
2π

(1.1)

for appropriate functions F : [0,∞) → R. The functions F are usually referred
to as test functions. The Avram-Parter theorem says that (1.1) is true for every
F ∈ C[0,∞) if a belongs to L∞(−π, π) (see [1], [4]; a full proof is also in [2]). Under
the sole assumption that a be in L1(−π, π), Tyrtyshnikov and Zamarashkin [8], [9]
proved (1.1) for all bounded and uniformly continuous functions F . A textbook
proof of the Tyrtyshnikov-Zamarashkin theorem is in Tilli’s paper [7]. The quotient
‖Tn(a)‖p

p/n is just the left-hand side of (1.1) for F (s) = sp. This function is neither
bounded nor uniformly continuous, but Serra Capizzano [5] showed that nevertheless
(1.1) is valid in this case, that is, after abbreviating Lp(−π, π) to Lp and letting

‖a‖p :=
( ∫ π

−π

|a(x)|p dx
2π

)1/p

,

we have

lim
n→∞

‖Tn(a)‖p

n1/p
=

{ ‖a‖p if a ∈ Lp,
∞ if a /∈ Lp.

(1.2)

Since ω+
α is in Lp if and only if p < 1/α, we deduce that

lim
n→∞

‖Tn(ω+
α )‖p

n1/p
=

{ ‖ω+
α ‖p if p < 1/α,

∞ if p ≥ 1/α.

This is the explanation of the kink.

Formula (1.2) does not describe the order of the growth of ‖Tn(a)‖p for a ∈ L1\Lp.
We here tackle this question for a special but sufficiently interesting class of functions
a ∈ L1. For 0 < α < 1, define ω+

α (x) as above and put ω−
α (x) = ω+

α (−x). We consider
functions of the form

a(x) = ω−
β (x) b(x) + ω+

γ (x) c(x)(1.3)
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where 0 < β < 1, 0 < γ < 1, b ∈ L∞, c ∈ L∞. For example, our analysis includes the
function

a(x) =
1

|x|α = ω−
α (x) + ω+

α (x),

the function

a(x) = |eix − 1|−α =
(

2
∣∣∣ sin

x

2

∣∣∣)−α

= [ω−
α (x) + ω+

α (x)]
|x|α

(2| sin(x/2)|)α
,

and also such functions as

a(x) =
{ |eix − 1|−β exp(iδ(x− π)) for x < 0,

|eix − 1|−γ exp(iη(π − x)) for x > 0,
(1.4)

where α, β, γ ∈ (0, 1) and δ, η ∈ C. The class (1.3) includes in particular all functions
with a single Fisher-Hartwig singularity, that is, all functions of the form (1.4) with
β = γ (see, e.g., [2]). The following result provides us with upper bounds.

Theorem 1.1. Let a be of the form (1.3) with 0 < β < 1, 0 < γ < 1, b ∈ L∞,
c ∈ L∞ and put α = max(β, γ). If 1/α ≤ p ≤ ∞, then there exists a constant
Cp(a) ∈ (0,∞) such that

‖Tn(a)‖p ≤



Cp(a)nα (logn)1+α if p = 1/α,
Cp(a)nα logn if 1/α < p <∞,
Cp(a)nα if p = ∞

for all n ≥ 1.

To get lower bounds, we need some technical assumptions. Here is our result.

Theorem 1.2. Let a be of the form (1.3) with 0 < β < 1, 0 < γ < 1, b ∈ L∞,
c ∈ L∞. Suppose b and c are one-sided Lipschitz continuous at 0, that is, the one-sided
limits b(0 − 0) and c(0 + 0) exist and

|b(x) − b(0 − 0)| = O(|x|) as x→ 0 − 0,
|c(x) − c(0 + 0)| = O(|x|) as x→ 0 + 0.

Put α = max(β, γ) and assume

b(0 − 0) �= 0 if α = β > γ,

c(0 + 0) �= 0 if α = γ > β,

|b(0 − 0)| + |c(0 + 0)| > 0 if α = β = γ.

If 1/α < p ≤ ∞, then there exists a constant K(a) ∈ (0,∞) depending only on a such
that

K(a)nα ≤ ‖Tn(a)‖p for all n ≥ 1.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 251-259, September 2006



ELA

254 A. Böttcher

If p = 1/α and b and c are in C1[−π, π], then there is a constant K(a) ∈ (0,∞)
depending only on a such that

K(a)nα ≤ ‖Tn(a)‖p for all n ≥ 1.

We will prove these two theorems in Sections 2 and 3. The idea of the proof is
very simple. The lower bounds follow from the inequality ‖Tn(a)‖p ≥ ‖Tn(a)‖∞ and
the result of [3] for the norm ‖ ·‖∞. To obtain the upper bounds we take into account
that Tn(a) = Tn(sna), where sna is the (n− 1)st partial sum of the Fourier series of
a, we use the inequality

‖Tn(a)‖p ≤ n1/p ‖a‖p,(1.5)

which was shown by Serra Capizzano and Tilli [6] to be true for all a ∈ Lp, 1 ≤ p <∞,
n ≥ 1 to get ‖Tn(a)‖p ≤ n1/p‖sna‖p, and we finally employ the representation of sna
via the Dirichlet kernel to estimate ‖sna‖p.

We conjecture that for 1/α ≤ p <∞ the stronger estimates

Kp(a)nα (logn)α ≤ ‖Tn(a)‖p ≤ Cp(a)nα (log n)α if p = 1/α,
Kp(a)nα ≤ ‖Tn(a)‖p ≤ Cp(a)nα if p > 1/α

hold and that one can remove the hypothesis that b and c be in C1[−π, π] in the case
p = 1/α, but this is still unresolved.

Clearly, combining the inequality

‖Tn(f)‖p − ‖Tn(g)‖p ≤ ‖Tn(f + g)‖p ≤ ‖Tn(f)‖p + ‖Tn(g)‖p

with Theorems 1.1 and 1.2 we obtain estimates for ‖Tn(a)‖p if a is of the more general
form

a(x) =
R∑

r=1

[
ωβr(x− xr)br(x − xr) + ωγr(x− xr)cr(x− xr)

]

where βr, γr, br, cr are as above.

2. The pure singularity. Let a = ω−
α b+ω

+
α c with 0 < α < 1 and with constants

b, c ∈ C. We exclude the uninteresting case b = c = 0. Put

U(α) =
∫ ∞

0

cos y
yα

dy

2π
=

1
4 Γ(α) cos(πα/2)

,

V (α) =
∫ ∞

0

sin y
yα

dy

2π
=

1
4 Γ(α) sin(πα/2)

.

For n ≥ 1, the Fourier coefficients of ω+
α are

(ω+
α )n =

∫ π

0

e−inx

xα

dx

2π
= nα−1

∫ nπ

0

e−iy

yα

dy

2π
= nα−1 (U(α) − iV (α) + o(1)),
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and analogously,

(ω+
α )−n = nα−1 (U(α) + iV (α) + o(1)), (ω−

α )±n = (ω+
α )∓n.

Thus,

(ω−
α b+ ω+

α c)±n = Q± nα−1 (1 + o(1)) with Q± = (b + c)U(α) ± i(b− c)V (α).

Let Kα,b,c be the integral operator on L2(0, 1) given by

(Kα,b,cf)(x) =
∫ 1

0

k(x, y) f(y) dy, x ∈ (0, 1)(2.1)

with

k(x, y) =
{
Q+(x− y)α−1 for x > y,
Q−(y − x)α−1 for x < y.

(2.2)

This operator is bounded and we denote its norm by ‖Kα,b,c‖. It is clear that
‖Kα,b,c‖ > 0 unless b = c = 0.

Theorem 2.1. We have

‖Tn(ω−
α b+ ω+

α c)‖∞ ∼ ‖Kα,b,c‖nα.

Proof. This follows from Theorem 2.4 of [3]. �

Corollary 2.2. Let β, γ ∈ (0, 1) and suppose β �= γ. Then

‖Tn(ω−
β b+ ω+

γ c)‖∞ ∼
{ ‖Kβ,b,0‖nβ if β > γ and b �= 0,

‖Kγ,0,c‖nβ if γ > β and c �= 0.

Proof. Straightforward from Theorem 2.1. �

Theorem 2.3. If 1 ≤ p <∞ and 0 < α < 1, then

‖Tn(ω+
α )‖p =




O(n1/p logn) for p < 1/α,
O(nα (logn)1+α ) for p = 1/α,
O(nα logn) for p > 1/α.

Proof. Let snω
+
α be the (n− 1)st partial sum of the Fourier series of ω+

α ,

(snω
+
α )(x) =

n−1∑
k=−(n−1)

(ω+
α )ke

ikx.

Obviously, Tn(ω+
α ) = Tn(snω

+
α ). From (1.5) we therefore deduce that

‖Tn(ω+
α )‖p ≤ n1/p ‖snω

+
α ‖p.
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Put N = n− 1/2. Then in terms of the Dirichlet kernel,

(snω
+
α )(x) =

∫ π

−π

ω+
α (t)

sinN(x− t)
sin((x− t)/2)

dt

2π
=

∫ π

0

1
tα

sinN(x− t)
sin((x− t)/2)

dt

2π
.

Consequently,

|(snω
+
α )(x)| ≤ C1

∫ π

0

1
tα

| sinN(x− t)|
|x− t| dt.

Here and in what follows Cj denotes a constant in (0,∞) that is independent of N .
Substituting Nx = y and Nt = τ we get

|(snω
+
α )(y/N)| ≤ C1N

α

∫ Nπ

0

| sin(y − τ)|
τα |y − τ | dτ.(2.3)

If −2 ≤ y < 0, the integral in (2.3) is∫ Nπ

0

| sin(τ + |y|)|
τ + |y|

dτ

τα
=

∫ 1

0

| sin(τ + |y|)|
τ + |y|

dτ

τα
+

∫ Nπ

1

| sin(τ + |y|)|
τ + |y|

dτ

τα
(2.4)

≤
∫ 1

0

dτ

τα
+

∫ ∞

1

dτ

τα+1
= C2,

and for y < −2 the same integral is∫ Nπ

0

| sin(τ + |y|)|
τ + |y|

dτ

τα
=

∫ |y|

0

| sin(τ + |y|)|
τ + |y|

dτ

τα
+

∫ Nπ

|y|

| sin(τ + |y|)|
τ + |y|

dτ

τα
(2.5)

≤
∫ |y|

0

dτ

|y| τα
+

∫ ∞

|y|

dτ

τα+1
=

1
(1 − α) |y|α +

1
α |y|α =

C3

|y|α .

So let y > 0. We split the integral in (2.3) into
∫ y

0 and
∫ Nπ

y . The substitution τ = yξ
yields∫ y

0

| sin(y − τ)|
τα |y − τ | dτ =

1
yα

∫ 1

0

| sin y(1 − ξ)|
1 − ξ

dξ

ξα
=

1
yα

∫ 1

0

| sin yξ|
ξ

dξ

(1 − ξ)α
.(2.6)

If y ≤ 2, then ∫ 1

0

| sin yξ|
ξ

dξ

(1 − ξ)α
≤

∫ 1

0

2
dξ

(1 − ξ)α
= C4,(2.7)

and if y > 2, we have∫ 1

1/2

| sin yξ|
ξ

dξ

(1 − ξ)α
≤

∫ 1

1/2

dξ

ξ(1 − ξ)α
= C5,

∫ 1/y

0

| sin yξ|
ξ

dξ

(1 − ξ)α
≤ 2α

∫ 1/y

0

| sin yξ|
ξ

dξ ≤ 2α y

∫ 1/y

0

dξ = 2α = C6,∫ 1/2

1/y

| sin yξ|
ξ

dξ

(1 − ξ)α
≤ 2α

∫ 1/2

1/y

dξ

ξ
= 2α(log y − log 2) ≤ C7 log y.
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Inserting this into (2.6) we obtain∫ y

0

| sin(y − τ)|
τα |y − τ | dτ ≤ C8

log y
yα

(2.8)

for y > 2. To estimate the remaining integral we substitute τ − y = yξ and get∫ Nπ

y

| sin(y − τ)|
τα |y − τ | dτ =

∫ (Nπ−y)/y

0

| sin yξ|
yξ(1 + y)α

dξ

ξα
≤

∫ ∞

0

| sin yξ|
yξ(1 + y)α

dξ

ξα
(2.9)

≤ 1
(1 + y)α

∫ 1

0

dξ

ξ
+

1
y(1 + y)α

∫ ∞

1

dξ

ξα+1
≤ C9

yα
.

In summary, (2.3) combined with (2.4), (2.7) on the one hand and (2.5), (2.8), (2.9)
on the other gives

|(snω
+
α )(y/N)| ≤

{
C10N

α for |y| ≤ 2,
C11N

α (log |y|)/|y|α for 2 < |y| < Nπ.

It follows that

‖snω
+
α ‖p

p =
∫ π

−π

|(snω
+
α )(x)|p dx

2π
=

1
N

∫ Nπ

−Nπ

|(snω
+
α )(y/N)|p dy

2π

≤ Nαp−1
(

2Cp
10

∫ 2

0

dy

2π
+ 2Cp

11

∫ Nπ

2

(log y)p

yαp

dy

2π

)
.

Since

∫ Nπ

2

(log y)p

yαp
dy =




O(N1−αp(logN)p) for αp < 1,
O((logN)1+p) for αp = 1,
O((logN)p) for αp > 1,

we arrive at the desired estimates for ‖snω
+
α ‖p. �

Corollary 2.4. If 1 ≤ p <∞ and 0 < α < 1, then

‖Tn(ω+
α )‖p ∼ ‖ω+

α ‖p n
1/p for p < 1/α,

K(α)nα ≤ ‖Tn(ω+
α )‖p ≤ Cp(α)nα(log n)1+α for p = 1/α,

K(α)nα ≤ ‖Tn(ω+
α )‖p ≤ Cp(α, p)nα(logn) for p > 1/α.

Proof. The result for p < 1/α follows from (1.2). In the case p ≥ 1/α, the upper
bounds are a consequence of Theorem 2.3, while the lower bounds result from the
inequality ‖Tn(ω+

α )‖p ≥ ‖Tn(ω+
α )‖∞ and Theorem 2.1. �

Note that (1.2) implies that the O(n1/p logn) for p < 1/α in Theorem 2.3 may
actually be replaced by O(n1/p); we used this in the proof of Corollary 2.4. If α > 1/2
and p ≥ 2, we have

‖Tn(ω+
α )‖p ≤ ‖Tn(ω+

α )‖2 = O(nα),
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which provides a better estimate than Theorem 1.1 or Corollary 2.4. Finally, since
ω+

α ∈ L1/(α+ε) for each ε > 0, we obtain from (1.2) that if p > 1/α, then

‖Tn(ω+
α )‖p ≤ ‖Tn(ω+

α )‖1/(α+ε) ≤ Cp(a, ε)nα+ε

for all sufficiently large n. This is weaker than Theorem 1.1 and Corollary 2.4 but
can be derived without the Dirichlet kernel estimates of the proof of Theorem 2.3.

3. Proof of the main result. We are now in a position to prove Theorems 1.1
and 1.2.

Serra Capizzano and Tilli [6] proved that if f ∈ L∞ and g ∈ L1, then

‖Tn(fg)‖p ≤ ‖f‖∞ ‖Tn(|g|)‖p.(3.1)

Consequently,

‖Tn(ω−
β b+ ω+

γ c)‖p ≤ ‖b‖∞ ‖Tn(ω−
β )‖p + ‖c‖∞ ‖Tn(ω+

γ )‖p,

and Corollary 2.2 and Theorem 2.3 therefore yield Theorem 1.1.

We turn to the proof of Theorem 1.2. So let 1/α ≤ p ≤ ∞. We have

a = ω−
β b(0 − 0) + ω+

γ c(0 + 0) + ω−
β (b− b(0 − 0)) + ω+

γ (c− c(0 + 0)).

Since

ω+
γ (x)(c(x) − c(0 + 0)) =

1
xγ

O(x) = O(x1−γ),

the function ω+
γ (c− c(0 + 0)) is in L∞ and hence, by the Avram-Parter theorem (or

by (3.1) combined with (1.5)),

‖Tn(ω+
γ (c− c(0 + 0)))‖p = O(n1/p).

Analogously, ‖Tn(ω−
β (b− b(0 − 0)))‖p = O(n1/p), which implies

‖Tn(a)‖p = ‖Tn(ω−
β b(0 − 0) + ω+

γ c(0 + 0))‖p +O(n1/p).

Theorem 2.1 and Corollary 2.2 in conjunction with the inequality ‖Tn‖p ≥ ‖Tn‖∞
now yield the assertion for 1/α < p ≤ ∞.

We are left with the case p = 1/α. If the two functions ω−
β (b − b(0 − 0)) and

ω+
γ (c− c(0 + 0)) are in C1[−π, π], then their Fourier coefficients are O(1/n) because∫ π

−π

f(x)e−inxdx =
f(x)e−inx

−in
∣∣∣π
−π

+
1
in

∫ π

−π

f ′(x)e−inxdx.

Consequently, from the computation at the beginning of Section 3 we obtain

a±n = b(0 − 0) (ω−
β )n + c(0 + 0) (ω+

γ )n +O(1/n)

= Q± nα−1(1 + o(1)) +O(1/n)
= Q± nα−1(1 + o(1)) + o(nα−1)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 251-259, September 2006



ELA

Schatten Norms of Toeplitz Matrices 259

with

Q± =




(b(0 − 0) + c(0 + 0))U(α) ± i(b(0 − 0) − c(0 + 0))V (α) for β = γ = α,

b(0 − 0)U(α) ± ib(0 − 0)V (α) for β = α > γ,

c(0 + 0)U(α) ∓ ic(0 + 0)V (α) for γ = α > β.

In either case Q± �= 0. Thus, if we define Kα,b,c by (2.1), (2.2), then ‖Kα,b,c‖ > 0.
Since a±n = Q± nα−1(1 + o(1)), Theorem 2.4 of [3] yields ‖Tn(a)‖∞ ∼ ‖Kα,b,c‖nα.
This gives ‖Tn(a)‖p ≥ ‖Tn(a)‖∞ ≥ K(a)nα with some constant K(a) > 0 and
completes the proof of Theorem 1.2.
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