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AN EIGENVALUE INEQUALITY AND SPECTRUM LOCALIZATION
FOR COMPLEX MATRICES∗
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Abstract. Using the notions of the numerical range, Schur complement and unitary equivalence,
an eigenvalue inequality is obtained for a general complex matrix, giving rise to a region in the
complex plane that contains its spectrum. This region is determined by a curve, generalizing and
improving classical eigenvalue bounds obtained by the Hermitian and skew-Hermitian parts, as well
as the numerical range of a matrix.
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1. Introduction. In this article, we consider complex matrices A ∈ Mn(C),
n ≥ 2, and obtain an inequality satisfied by the real and imaginary part of every
eigenvalue of A (Section 3). In turn, this inequality gives rise to a region in the
complex plane that contains the spectrum of A (Section 4). We examine when an
eigenvalue lies on the boundary of such a region. The proof of the main inequality in
Theorem 3.1 is an adaptation to general matrices of the proof of [7, Theorem 3.1] for
almost skew-symmetric matrices. As a consequence, the spectrum localization results
for almost skew-symmetric matrices and (hyper)tournaments obtained in [2, 3, 6, 7]
follow as special cases. Furthermore, the fact that Theorem 3.1 holds for general
matrices allows its application to rotations ei θA, giving rise to improved localization
results for the spectrum. Our concluding remarks outline some related research goals
(Section 5).

2. Notation and preliminaries. We begin by settling on the notation to be
used. For A ∈ Mn(C), its spectrum is denoted by σ(A) and its spectral radius by
ρ(A) = max{|λ | : λ ∈ σ(A)}. We write A = H(A) + S(A), where

H(A) =
A + A∗

2
and S(A) =

A−A∗

2

are the Hermitian part and the skew-Hermitian part of A, respectively. The numerical
range is the set

F (A) = {v∗Av ∈ C : v ∈ C
n with v∗v = 1},

which is a compact and convex subset of C that contains the spectrum of A (see [5]).
Recall that A is Hermitian if and only if F (A) ⊂ R, and that if A is normal, then
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F (A) coincides with the convex hull of σ(A). It is also well known that

ReF (A) = F (H(A)) and i ImF (A) = F (S(A)).

When A ∈ Mn(R), then F (A) is symmetric with respect to the real axis. Also, any
eigenvalue λ ∈ σ(A) that belongs to the boundary of the numerical range, ∂F (A),
is a normal eigenvalue of A; namely, there exists a unitary matrix U ∈ Mn(C) such
that

U∗AU = λ Ik ⊕B,

where k is the algebraic multiplicity of λ and λ 
∈ σ(B); see [5, Theorem 1.6.6].
Given A ∈ Mn(C), let y1 be a unit eigenvector corresponding to the largest

eigenvalue δ1 of its Hermitian part H(A). We define two quantities to be used in the
sequel:

v(A) = ‖S(A)y1‖2
2 and u(A) = Im(y∗1S(A)y1).(2.1)

Notice that u(A) = 0 when A is real. Also if v(A) = 0, then (δ1, y1) is an eigenpair
for both A and A∗. That is, v(A) can be thought of as a measure of how close δ1 is
to being a normal eigenvalue of A.

3. The main eigenvalue inequality. Consider a matrix A ∈ Mn(C) and let
δ1 be the largest eigenvalue of its Hermitian part H(A). It is well known that all the
eigenvalues of A lie in the closed half-plane {z ∈ C : Re z ≤ δ1}. In this section, we
obtain a new localization of σ(A) by replacing the line Re z = δ1 with an appropriate
curve. We proceed immediately with the inequality satisfied by every eigenvalue of
A ∈ Mn(C).

Theorem 3.1. Let A ∈ Mn(C) and let λ be an eigenvalue of A. Let also δ1 ≥ δ2
be the two largest eigenvalues of the Hermitian part of A. Then

(Reλ − δ2) (Im λ − u(A))2 ≤(3.1)
(δ1 − Reλ )

[
v(A) − u(A)2 + (Reλ − δ2) (Reλ − δ1)

]
.

Proof. Let y1 ∈ Cn be a unit eigenvector of H(A) corresponding to the eigenvalue
δ1. Then, there exists a unitary U ∈ Mn(C), whose first column is y1, such that

U∗H(A)U =
[

δ1 0
0 H1

]
, where H1 = diag(δ2, δ3, . . . , δn), δj ∈ σ(H(A)).

Moreover, as U∗S(A)U is skew-Hermitian, we have

U∗S(A)U =
[

iα u∗

−u S1

]
,(3.2)

where S1 ∈ Mn−1(C) is skew-Hermitian, u ∈ Cn−1 and α ∈ R. Consequently, when
λ ∈ σ(A),

U∗(A− λ I)U =
[

δ1 + iα− λ u∗

−u H1 + S1 − λ I

]
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is a singular matrix. Note that by assumption,

iα = y∗1S(A)y1, i.e., α = u(A).(3.3)

At this stage, consider the case where

λ 
= δ1 + iα = y∗1(H(A) + S(A))y1 = y∗1Ay1;

otherwise (3.1) holds trivially and λ = δ1 + i u(A) is a normal eigenvalue of A on the
boundary of the numerical range F (A). Then the Schur complement of the leading
entry in U∗(A− λ I)U is

E = (H1 + S1 − λ I) +
1

δ1 + iα− λ
uu∗,

which must be singular since A − λI is singular [4, p. 21]. The Hermitian and skew-
Hermitian parts of E can be readily computed to be

H(E) = H1 − Reλ I +
δ1 − Reλ

(δ1 − Reλ )2 + (α− Imλ )2
uu∗,(3.4)

and

S(E) = S1 − i Imλ I +
i (Imλ − α)

(δ1 − Reλ )2 + (α − Imλ )2
uu∗.(3.5)

Since 0 ∈ σ(E) ⊆ F (E) and F (H(E)) = ReF (E) (see [5, Properties 1.2.5, 1.2.6]), it
follows that 0 ∈ F (H(E)), which in turn implies that there exists unit x ∈ Cn such
that x∗H(E)x = 0; that is,

0 = x∗H1x− x∗xReλ +
δ1 − Reλ

(δ1 − Reλ )2 + (α − Imλ )2
x∗uu∗x, x∗x = 1.(3.6)

Notice that since F (H1) = [ δn, δ2] and since F (uu∗) = [0, u∗u], we respectively have
that

x∗H1x ≤ δ2 and x∗uu∗x ≤ u∗u.

Hence from (3.6) we obtain

0 ≤ δ2 − Reλ +
δ1 − Reλ

(δ1 − Reλ )2 + (α− Imλ )2
u∗u.(3.7)

Denoting by e1 the first standard basis vector in Cn, and since unitary matrices
preserve the Euclidean norm, it follows that

α2 + u∗u =
∥∥∥∥
[

iα
−u

]∥∥∥∥
2

2

=
∥∥∥∥U

[
iα u∗

−u S1

]
e1

∥∥∥∥
2

2

=
∥∥∥∥U

[
iα u∗

−u S1

]
U∗Ue1

∥∥∥∥
2

2

= ‖S(A)y1‖2
2 = v(A).(3.8)
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Equality (3.8) implies that

u∗u = v(A) − α2.(3.9)

The validity of (3.1) now follows from (3.3), (3.7) and (3.9).
Corollary 3.2. Let A ∈ Mn(C) and let δ1 > δ2 be the two largest eigenvalues

of the Hermitian part H(A). If 4(v(A)−u(A)2) < (δ1−δ2)2, then for every λ ∈ σ(A)
with Reλ > δ2, we have that Reλ 
∈ (s, t), where

s =
δ1 + δ2 −

√
(δ1 − δ2)2 − 4(v(A) − u(A)2)

2
,

t =
δ1 + δ2 +

√
(δ1 − δ2)2 − 4(v(A) − u(A)2)

2
.

Proof. Consider λ ∈ σ(A) such that δ2 < Reλ < δ1. Then by (3.1),

(δ1 − Reλ )
(

v(A) − u(A)2

Reλ − δ2
+ Reλ − δ1

)
≥ 0.

The latter inequality and the assumption (v(A)−u(A)2) < (δ1−δ2)2/4 imply directly
that either

Reλ ≤ δ1 + δ2 −
√

(δ1 − δ2)2 − 4(v(A) − u(A)2)
2

or

Reλ ≥ δ1 + δ2 +
√

(δ1 − δ2)2 − 4(v(A) − u(A)2)
2

.

4. Localization of the spectrum. We will use our results in the previous
section to obtain an inclusion region for σ(A) determined by a curve Γ(A). This
curve comprises the points s + i t ∈ C that satisfy (3.1) as an equality.

In order to define and plot Γ(A), as well as study its position relative to the
eigenvalues, it is useful to first rewrite inequality (3.1) by separating the imaginary
part from the real part of λ.

Recalling the proof and notation used in Theorem 3.1, notice that (3.1) takes a
trivial form when Reλ = δ1 or Reλ ≤ δ2. Therefore, let us consider λ ∈ σ(A) with
δ2 < Reλ < δ1 . Then (3.1) implies that

(Imλ − u(A))2 ≤ (δ1 − Reλ )
(

v(A) − u(A)2

Reλ − δ2
+ Reλ − δ1

)
.(4.1)

Definition 4.1. Prompted by the latter inequality, we define a curve Γ(A) in
the complex plane associated with the matrix A ∈ Mn(C) given by

{
s + i t ∈ C : s, t ∈ R and (t− u(A))2 = (δ1 − s)

(
v(A) − u(A)2

s− δ2
+ s− δ1

)}
.
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Recalling the notation and definitions in (2.1), by Cauchy-Schwarz, we have

|y∗1S(A)y1| ≤ ‖S(A)y1‖2 ‖y1‖2.

As ‖y1‖2 = 1, the following implications ensue:

Re2(y∗1S(A)y1) + Im2(y∗1S(A)y1) = |y∗1S(A)y1|2 ≤ ‖S(A)y1‖2
2 = v(A) =⇒

Im2(y∗1S(A)y1) ≤ v(A) − Re2(y∗1S(A)y1) ≤ v(A) =⇒

u(A)2 ≤ v(A).(4.2)

We can now make the following observations regarding Γ(A).

Observation 4.2.
1. If δ1 = δ2, the defining equation of Γ(A) becomes

(t− u(A))2 + (s− δ1)2 = −v(A) + u(A)2 = 0;

that is, by (4.2), Γ(A) is degenerate, consisting of only one point. Henceforth
we assume that δ1 > δ2.

2. The line {z ∈ C : Re z = δ2} is a vertical asymptote of Γ(A).

3. Γ(A) is symmetric with respect to the horizontal line {z ∈ C : Im z = u(A)}
which it intercepts at δ1.

4. As the defining equation of Γ(A) for any fixed t is a cubic equation in s, Γ(A)
may intercept the line L = {z ∈ C : Im z = u(A)} in up to three distinct
points. Specifically, the defining equation of Γ(A) for t = u(A), s 
= δ2, is

(δ1 − s)
(
s2 − (δ1 + δ2)s + δ1δ2 + v(A) − u(A)2

)
= 0.(4.3)

Consider then the discriminant of the quadratic factor

∆ = (δ1 − δ2)2 − 4
(
v(A) − u(A)2

)
.

� If ∆ < 0, then (4.3) has only one real root, δ1. Consequently, Γ(A)
intercepts L only once, at the point (δ1, u(A)) and Γ(A) is a simple open
curve; see Examples 4.3 and 4.4.

� If ∆ > 0, then (4.3) has distinct roots

s1 =
δ1 + δ2 −

√
∆

2
, s2 =

δ1 + δ2 +
√

∆
2

and δ1.
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In this case Γ(A) comprises two branches one of which is a Jordan curve
(closed and simple); see the matrix A in Example 4.5. Note that s1, s2

coincide with the endpoints of the interval (s, t) in Corollary 3.2.

� If ∆ = 0, then (4.3) has a double root
δ1 + δ2

2
and a simple root δ1. In

this case Γ(A) is a folium of Descartes; see the matrix B in Example 4.5.

5. By (4.2) and since for points s + i t ∈ Γ(A) we have

(δ1 − s)
(

v(A) − u(A)2

s− δ2
+ s− δ1

)
≥ 0,

Γ(A) must lie in the complex region {z ∈ C : δ2 < Re z ≤ δ1}.

Based on the above observations and inequality (4.1), Γ(A) yields a localization
for the spectrum of A justified as follows:

• First of all, by items (2) and (5) of Observation 4.2, every eigenvalue λ of
A with Reλ ≤ δ2 lies to the left of Γ(A).

• When Γ(A) is a simple open curve, any λ ∈ σ(A) with δ2 < Reλ < δ1 must lie
in a region W bounded by Γ(A) with the following property: By items (2), (3) and
(5) of Observation 4.2, as well as the orientation of the inequality in (4.1), for every
w ∈ W , Rew ≤ δ1 and Rew + i t ∈ Γ(A) for some t ≥ 0. In other words, when Γ(A)
is a simple open curve (∆ < 0), all eigenvalues of A lie to the left of Γ(A);
this situation is illustrated in Examples 4.3 and 4.4.

• Finally, when Γ(A) is not a simple open curve (∆ ≥ 0), some eigenvalues λ with
δ2 < Reλ < δ1 may lie to the right of the point s2 in regions formed by Γ(A) that
satisfy (4.1). When ∆ > 0, by Corollary 3.2, no eigenvalue has real part in ( s1, s2).
See the two instances in Example 4.5, as well as our discussion in Section 5.

Example 4.3. Let

A =




−2 1 −1 1
1 0 −1 −1
2 0 −3 0
1 1 −1 2




for which

v(A) = 1.7051, u(A) = 0, δ1 = 2.2944 and δ2 = 0.3536.

Here ∆ < 0 and so Γ(A) is a simple open curve. In Figure 4.1, Γ(A), the numerical
range (shaded) and the Geršgorin disks of A are displayed. Eigenvalues of A are
marked with +’s.
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Fig. 4.1. Γ(A) when ∆ < 0, the numerical range and the Geršgorin disks of A.

Example 4.4. We have constructed a matrix A ∈ M4(C) with

v(A) = 17.0173, u(A) = 3.3800 and δ1 = 3.5708, δ2 = −0.2342.

As ∆ < 0, Γ(A) in Figure 4.2 is a simple open curve. A is a non-real matrix and
Γ(A) is symmetric with respect to the horizontal line {z ∈ C : Im z = u(A) 
= 0}.
Eigenvalues of A are marked with +’s.
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Fig. 4.2. The curve Γ(A) for non-real A and ∆ < 0.
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Example 4.5. We have constructed matrices A and B with the following data:

A ∈ M3(R) with v(A) = 0.1063, u(A) = 0, δ1 = 0.2621, δ2 = −0.8082;

B ∈ M5(C) with v(B) = 1, u(B) = 0, δ1 = 2, δ2 = 0.

In Figure 4.3, the eigenvalues of each matrix are marked with +’s.
Γ(A) comprises two branches∗, one of which is open and the other a Jordan curve

(∆ > 0). The closed branch of Γ(A) surrounds a real eigenvalue of A and the other
branch isolates the rest of the spectrum to its left (since all eigenvalues whose real
parts are less than δ2 must lie to the left of Γ(A)).

Γ(B) intersects itself like a folium of Descartes (∆ = 0) whose loop encloses an
eigenvalue λ with Reλ > δ1+δ2+

√
∆

2 = s2. All other eigenvalues lie to the left of Γ(B)
for the same reason as above.
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Fig. 4.3. Γ(A) has a simple closed branch and Γ(B) is not simple.

Note that when A is a normal matrix, by the definitions and the fact that left and
right eigenvectors of A coincide, it follows that there exists λ ∈ σ(A) with Reλ = δ1
and v(A) = Im2λ, u(A) = Imλ. In particular, if Imλ = 0 (e.g., when A is Hermitian),
then δ1 ∈ σ(A), namely, an eigenvalue of A lies on Γ(A).

Our next goal is to identify eigenvalues on Γ(A). For that purpose, denote the
circle centered at α ∈ C with radius r ≥ 0 by

C(α, r) = {s + i t : s, t ∈ R and (s− Reα)2 + (y − Imα)2 = r2}.
∗Some gaps appearing in the graphs are due to resolution issues.
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Theorem 4.6. Let A ∈ Mn(C) and λ be an eigenvalue of A such that λ ∈ Γ(A) .
Let also δ1 > δ2 be the two largest eigenvalues of the Hermitian part of A. Then either
λ is a real root of the equation

λ 3 − (2δ1 + δ2)λ 2 + (δ2
1 + 2δ1δ2 + v(A))λ + u(A)2(δ1 − δ2) − δ1(v(A) + δ1δ2) = 0,

or λ = x + i y /∈ C(δ1, u(A)) satisfies the equation

2x3 − (5δ1 + δ2)x2 + [2δ1δ2 + 4δ2
1 + 2y2 + 2u(A)y]x − (δ1 + δ2)y2 − 2δ1u(A)y

= (δ1 − δ2)u(A)2 + δ2
1(δ1 + δ2).

Proof. Let λ 
= δ1 be an eigenvalue of A with Reλ 
= δ2, and u,E,H(E), S(E)
be as defined in the proof of Theorem 3.1. Equality in (3.1), namely

(Imλ − u(A))2 = (δ1 − Reλ )
(

v(A) − u(A)2

Reλ − δ2
+ Reλ − δ1

)

holds if and only if

Reλ − δ2 =
(δ1 − Reλ )u∗u

(δ1 − Reλ )2 + (Imλ − u(A))2
.(4.4)

In this case, the eigenvalue 0 ∈ σ(H(E)) is simple and corresponds to the eigenvector
u that appears in (3.2). Moreover, the matrix E is singular and 0 ∈ ∂F (E) because
ReF (E) = F (H(E)). Thus 0 must be a normal eigenvalue of E (see [5]) and every
corresponding eigenvector belongs to Nul(H(E)) ∩ Nul(S(E)) = span {u}. Hence,
u is an eigenvector of S(E) in (3.5) corresponding to the eigenvalue 0 and so

u∗S1u

u∗u
= i Imλ − i (Imλ − u(A))

(δ1 − Reλ )2 + (Imλ − u(A))2
u∗u.(4.5)

The same arguments applied to λ ∈ σ(A) yields

u∗S1u

u∗u
= i Imλ − i (Imλ − u(A))

(δ1 − Reλ )2 + (Imλ − u(A))2
u∗u.(4.6)

We set λ = x + i y and by (4.5), (4.6) we obtain

2y =
2y[(x− δ1)2 + y2 − u(A)2]

[(δ1 − x)2 + (y − u(A))2 ] [(δ1 − x)2 + (y + u(A))2]
u∗u.(4.7)

From (4.7) we now have two cases: Either
(a) y = Imλ = 0, in which case since λ ∈ Γ(A) , we have

u(A)2 = (δ1 − λ )
(

v(A) − u(A)2

λ − δ2
+ λ − δ1

)
,
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that is, equivalently, λ coincides with the (triple) real root of

λ 3 − (2δ1 + δ2)λ 2 + [δ2
1 + 2δ1δ2 + v(A)]λ − δ2

1δ2 − δ2u(A)2 − δ1(v(A) − u(A)2) = 0;

or
(b) y 
= 0 and thus (x− δ1)2 + y2 
= u(A)2 ; in this case (4.7) can be written as

(x− δ1)2 + (y + u(A))2

(x− δ1)2 + y2 − u(A)2
=

u∗u
(δ1 − x)2 + (y − u(A))2

and so by (4.4) we have

x− δ2 =
(δ1 − x) [(x− δ1)2 + (y + u(A))2]

(x− δ1)2 + y2 − u(A)2
,

completing the proof.

We can apply the results in the previous section to rotations of A ∈ Mn(C) in
order to obtain localizations of its spectrum that are complementary to the one ob-
tained by Γ(A). For example, we can consider three additional curves, Γ(−A), Γ(iA)
and Γ(−iA). The spectrum inclusion region resulting from these curves is illustrated
in the next example.

Example 4.7. Let A =




4 0 −1 0 0
0 5 −1 2 3
1 1 2 + i −1 0
0 −2 1 −1 3 − i
0 1 0 −3 − i 5


 . In Figure 4.4, the

numerical range and the curves Γ(A), Γ(−A), Γ(iA) and Γ(−iA) are superimposed
on the left; on the right the region carved out of the numerical by the four curves is
isolated. The eigenvalues of A are marked with •’s.

Fig. 4.4. Left: the numerical range and Γ(A), Γ(−A),Γ(i A),Γ(−i A) superimposed. Right:
spectrum localization provided by Γ(A),Γ(−A),Γ(i A),Γ(−i A) and the numerical range.
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5. Conclusions. We have provided an inequality satisfied by each eigenvalue λ
of A ∈ Mn(C). Upon rotation of A by π/2, π and 3π/2, it generalizes the classical
fact generally attributed to Bendixson [1, Theorem II] that

min{µ : µ ∈ σ(H(A))} ≤ Reλ ≤ max{µ : µ ∈ σ(H(A))}

and

min{ν : ν ∈ σ(S(A)/i )} ≤ Imλ ≤ max{ν : ν ∈ σ(S(A)/i )}

by replacing the lines represented by these lower and upper bounds with cubic curves.
We note that there have been other improvements of Bendixson’s results by replacing
the bounding box with circular and hyperbolic regions that depend on all the eigen-
values of the Hermitian and skew-Hermitian parts; see Wielandt [8] and references
therein.

In our results, the curve Γ(A) depends only on the quantities v(A) and u(A)
defined in (2.1), as well as on the two largest eigenvalues of H(A), δ1 and δ2. As a
consequence, the additional computational effort for Γ(A) over Bendixson’s results
is reasonably small and with the help of a graphing device, Γ(A) can provide a new
efficient localization for the eigenvalues of A.

We conclude with possible directions for future research:

(1) Consider arbitrary rotations ei θA of A in order to obtain a family of localizing
curves and thus sharper localization results. Specifically, determine the intersection
of all the localization regions arising from Theorem 3.1 applied to ei θA as θ ranges in
[0, 2π). This effort appears to be analogous to the characterization of the numerical
range as an intersection of half-planes [5, Theorem 1.5.12]. As the computational effort
is likely to be substantial for matrices of large order, it may instead be interesting
to determine a minimal number of localizing curves so that the intersection of the
corresponding regions is contained entirely in the numerical range of A.

(2) Referring to Observation 4.2 item (4), the notation thereby and the case when
Γ(A) is not a simple open curve (∆ ≥ 0), investigate the number of eigenvalues of A
that can lie to the right of the point s2 on the line L = {z ∈ C : Im z = u(A)}.

(3) Recall that when δ1 = δ2, Γ(A) degenerates to a single point. Pursue non-trivial
generalizations of Γ(A) when the largest eigenvalue of H(A) is not simple. Referring
to the proof of Theorem 3.1, this may be possible by orthogonally reducing H(A)
relative to the entire eigenspace corresponding to its largest eigenvalue.
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