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A POLYNOMIAL TIME SPECTRAL DECOMPOSITION TEST FOR

CERTAIN CLASSES OF INVERSE M-MATRICES�

JEFFREY L. STUARTy

Dedicated to Hans Schneider on the occasion of his seventieth birthday

Abstract. The primary result in this paper is a set of O(n3) time algorithms to determine
whether a speci�ed real, symmetric matrix is a member of any of several closely related classes: the
MMA-matrices; the inverse MMA-matrices; the strictly positive, positive de�nite matrices whose
eigenvectors form a Soules basis; and the strictly ultrametric matrices. When the class membership
question is answered in the a�rmative for anMMA-matrix or an inverseMMA-matrix, the algorithms
also yield the complete spectral decomposition of the matrix in question. Additional results in this
paper include an algorithmic test for when a matrix is a Soules matrix, and a construction for Soules
bases.

AMS subject classi�cations. 15A48, 15A18
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1. Background. In [3], Friedland, Hershkowitz and Schneider introduced a new
matrix construction process, which they called in
ation, and a new subclass of the
M-matrices, which they called the MMA-matrices. Using the process of in
ation, they
characterized the MMA-matrices in terms of an in
ation sequence. In [2], Fiedler de-
veloped an alternative characterization of the MMA-matrices in terms of the sums of
their spectral projectors. In [10] and [14], Schneider and Stuart developed a combina-
torial relationship between the spectral projectors of an MMA-matrix, and produced a
graph-theoretic interpretation of that relationship. In several further papers [11],[12],
[13], Stuart elucidated the internal structure of spectral projectors produced via in-

ation, and provided a polynomial time algorithm for detecting when a matrix is an
MMA-matrix.

In [9], Soules presented a class of real, symmetric matrices with nonnegative
spectra and a strictly positive eigenvector. In [1], Elsner, Nabben and Neumann
produced a construction for all matrices of the type that Soules had investigated, and
presented a graph-theoretic structure for that construction.

Mart��nez, Michon and San Mart��n introduced a class of matrices that they called
the strictly ultrametric matrices in [5]. These matrices were later investigated in
several other papers [6],[7],[8]. In [1], Elsner, Nabben and Neumann proved that
there was a simple bijection between the class of strictly ultrametric matrices and the
class of inverse MMA-matrices.

2. The Matrix Classes And Their Interrelationships. Throughout this
paper, all matrices will be n � n, real matrices unless otherwise speci�ed. A matrix
or a vector is called strictly positive if all of its entries are positive. Although some
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authors allow M-matrices to include the singular case, M-matrices will always be
nonsingular unless otherwise speci�ed.

The matrix A is called an MMA-matrix if each positive integer power of A is an
irreducible M-matrix. In [3], it was proven that if A is a nonsingular MMA-matrix,
then A is diagonalizable with real spectrum f�1; �2; : : : ; �ng satisfying 0 < �1 <
�2 � � � � � �n; and that there are strictly positive row and column eigenvectors
corresponding to the simple eigenvalue �1: It was also proven that if A is an MMA-
matrix, then there exists a diagonal matrixD with strictly positive diagonal such that
D�1AD is a symmetric MMA-matrix. Indeed, in [4], one choice of D is explicitly

determined as D = diag(x
1=2
1 y

�1=2
1 ; x

1=2
2 y

�1=2
2 ; : : : ; x

1=2
n y

�1=2
n ), where x and y are,

respectively, the normalized, strictly positive, right and left eigenvectors of A:
The matrix B is called an inverse MMA-matrix if B�1 is an MMA-matrix. (In

[2], the inverse MMA-matrices were called M�1MA-matrices.) Note that since the
inverse of an irreducible M-matrix is strictly positive, it follows that every positive
integer power of an inverse MMA-matrix must be strictly positive.

The real, orthogonal matrix R is called a Soules matrix (so named in [1]) if the
�rst column of R is strictly positive and if R�RT is a nonnegative matrix for every
matrix �, where � = diag(�1; �2; : : : ; �n) with �1 � �2 � � � � � �n � 0: When R is
a Soules matrix, the set of columns of R is called a Soules basis for Rn: In remarks
following Observation 2.1 in [1], it was argued that if A = R�RT , where R is a
Soules matrix and � has the indicated properties, then A is irreducible if and only
if �1 > �2; in which case, A is strictly positive. In light of Observation 2.1 in [1],
Fiedler's Theorem 1 in [2] can be interpreted as stating that an orthonormal set of
eigenvectors of an inverse MMA-matrix form a Soules basis. Elsner, Nabben and
Neumann observe that the converse holds [1, end of Section 2]. Thus:

Theorem 2.1. Let A be a nonsingular, symmetric, n � n real matrix. The
following are equivalent:
1. A is an MMA-matrix;
2. A�1 is an inverse MMA-matrix;
3. A�1 = R�RT , where R is a Soules matrix and � = diag(�1; �2; : : : ; �n) with
�1 > �2 � � � � � �n > 0:

The symmetric, nonnegative matrix A is called a strictly ultrametric matrix if
A = [aij] satis�es a pair of \metric" properties:

(i) aij � minfaik; akjg for all i; j; k 2 hni ;
(ii) aii > maxfaikj k 2 hni nfigg for all i 2 hni ;

where hni = f1; 2; : : :; ng:
Mart��nez, Michon and San Mart��n proved in [5] that the inverse of a strictly

ultrametric matrix is a symmetric, diagonally dominant M-matrix. Consequently, if
e is the n� 1 vector of ones, and if A is a strictly ultrametric matrix, then p = A�1e
must be strictly positive.

The �nal results of this section relate the class of symmetric, inverse MMA-
matrices and the class of irreducible, strictly ultrametric matrices. These are theorems
3.1 and 3.2 of [1], and together they give a bijection between the two classes.

Theorem 2.2. Let A be a symmetric, inverse MMA-matrix. Let x be the nor-
malized, strictly positive eigenvector of A. Let D = diag(x1; x2; : : : ; xn): Then DAD
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is a strictly ultrametric matrix.
Theorem 2.3. Let A be an irreducible, strictly ultrametric matrix. Let p = A�1e;

where e is the vector of ones. Let F = diag(p
1=2
1 ; p

1=2
2 ; : : : ; p

1=2
n ): Then FAF is a

symmetric, inverse MMA-matrix.

3. In
ation and MMA-Matrices. Throughout this section and in all follow-
ing sections we will employ the notation and de�nitions related to in
ation that were
introduced for matrices in [3] and extended to vectors in [12]. In particular, �� will

denote the in
ation product (with respect to some partition �), fUigki=1 will denote
a sequence of strictly positive in
ators, and G(U ) will denote the idempotent matrix
associated with the in
ator U: Note that every in
ator is a rank one matrix, but an
in
ator U is called a rank one in
ator precisely when G(U ) has rank one. Finally,
when it exists, A==U will denote the unique matrix B such that A = B � �U:

One of the principal results of [3] concerned expressing an MMA-matrix in terms
of a smaller order MMA-matrix via the process of in
ation using some strictly positive
in
ator. That result was re�ned in [12], where it was shown that the in
ator could
be chosen to be a rank one in
ator. Summarizing:

Theorem 3.1. Let A be an n � n real matrix for some n � 2. The matrix A
is an MMA-matrix if and only if there exists a strictly positive, rank one in
ator U
such that A = B � �U + �G(U ), where B is an (n� 1) � (n� 1) MMA-matrix and
� is the spectral radius of A: Furthermore, spec(A) = spec(B) [ f�g as a multiset.
Finally, the matrix A is symmetric if and only if both B and U are symmetric.

Friedland, Hershkowitz and Schneider also derived a spectral decomposition result
for MMA-matrices in terms of in
ation; see [3]. That decomposition was re�ned in
terms of rank one in
ators in [12], and the following result is a special case of the
\Weak Slide Around Theorem" (Theorem 7.2) of [10]:

Theorem 3.2. Let A be an n � n MMA-matrix with spectrum f�1; �2; : : : ; �ng
satisfying 0 < �1 < �2 � � � � � �n: Then there is an in
ation sequence fUkgnk=1 of
strictly positive, rank one in
ators such that

A =
nX

k=1

�kEk

where the Ek are pairwise orthogonal, rank one, idempotent matrices determined by

Ek = G(Uk)��Uk+1 �� � � � � �Un

for 1 � k < n; and

En = G(Un):

Finally, we close this section with some basic properties of in
ation from [3] that
will prove useful.

Lemma 3.3. Let U be a strictly positive in
ator. Let B be a square matrix such
that B ��U is de�ned. Let � be a nonzero scalar. Then,
i: (B � �U )G(U ) = G(U )(B � �U ) = 0;
ii: G(U ) is an idempotent, singular M-matrix;
iii: If B is invertible, and if A = B��U+�G(U ), then A�1 = B�1��U+��1G(U ):
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4. Sparse Eigenvectors for MMA-matrices. In theorems 12.1 and 13.1 of
[13], it was proven that if A is an MMA-matrix, then �(A); the spectral radius of A;
was actually an eigenvalue not just of A, but also of some 2�2 principal submatrix of
A; and that the row and column eigenvectors of some such principal submatrix of A
extended to eigenvectors of A by being embedded in zero vectors of the appropriate
size. Here we prove a stronger result.

Theorem 4.1. Let A be an n� n MMA-matrix for some n � 2: Then

�(A) = max
1�i<j�n

�(A[fi; jg])

= max
1�i<j�n

1

2

h
aii + ajj +

�
(aii � ajj)

2 + 4aijaji
� 1
2

i
and furthermore, if fi; jg is any pair of indices for which the maximum occurs, then
there exist row and column eigenvectors of A for �(A) for which the only nonzero
entries are exactly the i and j entries, and those vectors are unique up to scalar
multiples.

Proof. The equivalence of the two expressions for �(A) is from Theorem 13.1 of
[13].

As noted previously, if A is an MMA-matrix, then A is diagonally symmetrizable.
Since diagonal symmetrizability carries over to principal submatrices and preserves
the spectra of principal submatrices, it su�ces to consider the case where A is sym-
metric.

By Theorem 6.18 of [3], A = B � �U + �G(U ), where B is a symmetric MMA-
matrix, � is the spectral radius of A; �(B) < �; and U is a symmetric, strictly positive
in
ator. Since B is a real, symmetric matrix, the Cauchy interlacing inequalities
apply to its spectrum. In particular, for all distinct indices � and �;

�(B) � �max

��
b�� b��
b�� b��

��
:

Since � > �(B); it follows that �2 � (b�� + b��)� + (b��b�� � b2��) > 0: Equivalently,

(� � b��)(� � b��) > b2��: And hence, for any nonzero constants c and d;�
(� � b��)c

2 � (�� b��)d
2
�2

+ 4b2��c
2d2 <

�
(�� b��)c

2 + (� � b��)d
2
�2
:

Also by the Cauchy interlacing inequalities, � > b�� and � > b��:
Now suppose that fi; jg is any pair of indices for which the maximum occurs.

That is, � = �(A[fi; jg]): Since U is a symmetric in
ator, U = uut for some strictly
positive vector u; and since A = B � �U + �G(U ); there are indices � and � such
that aii = b��Uii + �(1 � Uii) = � � (� � b��)u

2
i ; ajj = � � (� � b��)u

2
j ; and aij =

aji = (b�� � ��)uiuj , where � = 1 when � = �; and � = 0 otherwise.
Suppose that � 6= �: Then

� =
1

2

h
aii + ajj +

�
(aii � ajj)

2 + 4a2ij
� 1
2

i
= �� 1

2

�
(� � b��)u

2
i + (�� b��)u

2
j

�
+

1

2

h�
(�� b��)u

2
i � (� � b��)u

2
j

�2
+ 4b2��u

2
iu

2
j

i1
2
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Setting c = ui and d = uj, and using the positivity of (� � b��)c2 + (� � b��)d2; the
previously derived inequality yields:

� < � � 1

2

�
(� � b��)u

2
i + (� � b��)u

2
j

�
+

1

2

�
(� � b��)u

2
i + (� � b��)u

2
j

�
= �;

a contradiction. Thus � = �: That is, ui and uj are both from the �th partition
block of u: Let the vector w be obtained from the n�1 zero vector by replacing the ith

entry with uj and the jth entry with �ui: Clearly wtu = 0; and hence, by theorems
5.1 and 6.6 of [11], it follows that w is a column eigenvector of A for � with the
desired properties. Also, from Theorem 5.1 of [11], w is, up to scalar multiplication,
the unique eigenvector with precisely the ith and jth entries nonzero.

5. Testing for MMA-matrices. In this section, we do not require the matrix
A to be symmetric.

Theorem 5.1. The following algorithm determines whether the given n�n, real
matrix A is an MMA-matrix. The algorithm requires at most O(n3) multiplications
and divisions, and when A is an MMA-matrix, the algorithm produces the spectral
decomposition of A:

Algorithm 5.2.

Step 0. Let M = A: Let k = n: Let � = +1:
Step 1. If M is not a Z-matrix, stop; A cannot be an MMA-matrix.
Step 2. For each of the

�
k
2

�
2� 2 principal submatrices M [fi; jg] of M (without loss,

i < j), compute

�ij =
1

2

h
mii +mjj +

�
(mii �mjj)

2 + 4mijmji

�1=2i
:

Step 3. Let �max = maxf�ijj 1 � i < j � kg : If �max > �; stop; A cannot be an
MMA-matrix.
Step 4. Select a pair fi; jg such that �ij = �max, and compute row and column
eigenvectors vt and u; respectively, of M [i; j]:
Step 5. If either M [(< k > nfi; jg) jfi; jg]u 6= 0 or vtM [fi; jgj (< k > nfi; jg)] 6= 0,
then A cannot be an MMA-matrix. (If < k > nfi; jg is the empty set, then the
equalities are trivially true.)
Step 6. Let �k = �ij : If necessary, scale u and v so that vtu = 1: Let eu be the k � 1
vector obtained from the k� 1 vector of ones by replacing the ith and jth entries with
ju2j and ju1j ; respectively. Let ev be the k� 1 vector obtained from the k� 1 vector of
ones by replacing the ith and jth entries with jv2j and jv1j ; respectively. Let Uk be the
k� k matrix Uk = eveut: Let � be the (k� 1)-partition of k whose unique nonsingleton
partition subset is S1 = fi; jg:
Step 7. Let M = [A� �kG(U )]==Uk: Let � = �k: Assign k = k � 1: If k � 2; go to
Step 1:
Step 8. If M = [m11] has 0 < m11 < �, then A is an MMA-matrix; let �k =
m11. Otherwise, A is not an MMA-matrix. When A is an MMA-matrix, the spectral
decomposition is given by Theorem 3.2.
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Proof. Note that A = M ��U + �(A)G(U ) is an MMA-matrix if and only if M
is an MMA-matrix, �(A) � �(M ) and U is a strictly positive in
ator. Note that if
either A or M is an MMA-matrix, then it is necessarily a Z-matrix, hence Step 1.
Steps 2 through 5 follow from Theorem 4.1. Steps 6 and 7 are the result of Theorem
8.1 of [13]. Step 8 follows from the observation that A is an MMA-matrix only if M
is an M-matrix, and from the nature of 1� 1 M-matrices.

Now we consider the operation count. The (n� k + 1)st iteration requires O(k2)
multiplications and square roots during the production of the �ij : For one value of
�ij = �max; a pair of 2� 2 linear systems must be solved to obtain the corresponding
row and column eigenvectors, resulting in roughly sixteen multiplications. Testing the
pair of eigenvectors to see if it extends to eigenvectors of the k� k matrix M , results
in further O(k) multiplications. If the pair of eigenvectors is extensible, then Uk must
be constructed, which requires O(k2) multiplications. Construction of A � �kG(U )
requires four multiplications. The construction of M as [A � �kG(U )]==Uk requires
k2 divisions. Summing over k, it follows that there are O(n3) multiplications and
O(n3) square roots required by the algorithm when A is an MMA-matrix. Assuming
that each square root requires at most O(1) multiplications and divisions, the stated
count is obtained. In addition to the multiplications and square roots, the algorithm
requires a total ofO(n3) comparisons. Finally, explicitly constructing each Ek requires

at most O((n� k)2) multiplications, so construction of the spectral decomposition
requires O(n3) multiplications.

When A is an MMA-matrix, the vectors u and v constructed during Step 6 of
the algorithm are actually known to be unique subject to the following additional
constraints: utu = vtv; and the �rst entry of each of u and v are positive. Also, when
A is symmetric, it is always possible to choose v = u; see [13].

It was noted in [3] that every irreducible, 2 � 2 M-matrix is an MMA-matrix.
Consequently, it often su�ces to continue a decomposition based on the previous
theorem until the matrix M obtained is 2� 2, and then simply note whether or not
M is an M-matrix with negative o�-diagonal entries.

It is worth noting that when exact arithmetic is employed, the algorithms in this
section and the next produce the true spectral decompositions, not approximations,
for (inverse) MMA-matrices of arbitrarily large size in a �nite number of steps.

6. Testing for Inverse MMA-matrices. The following results naturally mir-
ror those of the previous section.

Theorem 6.1. The following algorithm determines whether the given n � n,
real matrix A is an inverse MMA-matrix. The algorithm requires at most O(n3)
multiplications and divisions, and at most O(n3) comparisons, and when A is an
inverse MMA-matrix, the algorithm produces the spectral decomposition of A:

Algorithm 6.2.

Step 0. Let M = A: Let k = n: Let � = 0:
Step 1. If M is not a strictly positive matrix, stop; A cannot be an inverse MMA-
matrix.
Step 2. For each of the

�
k
2

�
2� 2 principal submatrices M [fi; jg] of M (without loss,
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i < j), compute

�ij =
1

2

h
mii +mjj �

�
(mii �mjj)

2 + 4mijmji

�1=2i
:

Step 3. Let �min = minf�ijj 1 � i < j � kg : If �min < �; stop; A cannot be an
inverse MMA-matrix.
Step 4. Select a pair fi; jg such that �ij = �min, and compute row and column
eigenvectors vt and u; respectively, of M [i; j]:
Step 5. If either M [< k > nfi; jgjfi; jg]u 6= 0 or vtM [fi; jgj < k > nfi; jg] 6= 0,
then A cannot be an inverse MMA-matrix. (If < k > nfi; jg is the empty set, then
the equalities are trivially true.)
Step 6. Let �k = �ij : If necessary, scale u and v so that vtu = 1: Let eu be the k � 1
vector obtained from the k� 1 vector of ones by replacing the ith and jth entries with
ju2j and ju1j ; respectively. Let ev be the k� 1 vector obtained from the k� 1 vector of
ones by replacing the ith and jth entries with jv2j and jv1j ; respectively. Let Uk be the
k� k matrix Uk = eveut: Let � be the (k� 1)-partition of k whose unique nonsingleton
partition subset is S1 = fi; jg:
Step 7. Let M = [A� �kG(U )]==Uk: Let � = �k: Assign k = k � 1: If k � 2; go to
Step 1:
Step 8. If M = [m11] has m11 > �, then A is an inverse MMA-matrix; let �k = m11.
Otherwise, A is not an inverse MMA-matrix. When A is an inverse MMA-matrix,
the spectral decomposition of A is given by

A =
nX

k=1

�kEk;

where the Ek are given by Theorem 3.2.
Proof. This result follows from applying Theorem 2.1 and part (iii) of Lemma

3.3 to the theorem in the previous section, and noting that A is an MMA-matrix with
maximal eigenvalue � exactly when A�1 is an inverse MMA-matrix with minimal
eigenvalue ��1: Note that Step 1 is simply the requirement that M be the inverse of
an irreducible M-matrix.

7. Testing for Soules Bases. In this section, A is required to be symmetric.
Elsner, Nabben and Neumann prove in Observation 2.1 of [1] that the n�n; real

matrixR is a Soules matrix if and only if the following three conditions on its columns

hold: (i) r1 is strictly positive; (ii) for 1 � h < n;
hP

k=1

rkr
t
k is entrywise nonnegative;

and (iii)
nP

k=1

rkr
t
k = In: Fielder proves in Theorem 5 of [2] that if the real matrix A

with spectrum satisfying 0 < �1 < �2 � � � � � �n has spectral decomposition

A =
nX

k=1

�kEk;
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where E1 is strictly positive,
hP

k=1

Ek is entrywise nonnegative for 1 � h < n; and

nP
k=1

Ek = In; then A must be an MMA-matrix. Theorem 3.2 in turn implies that the

sequence fEkgnk=1 of spectral projections must be in
ation-generated by a sequence
of strictly positive, rank one in
ators fUkgnk=1; and when each Ek is symmetric, then
so is each Uk: Finally, set Ek = rkr

t
k for each k: Thus:

Theorem 7.1. Let R be an n � n real matrix with columns r1; r2; : : : ; rn: Then
R is a Soules matrix if and only if frkrtkgnk=1 is in
ation-generated by a sequence of
strictly positive, rank one in
ators fUkgnk=1:

Rather than forming each of the matrices rkr
t
k; selecting a set of eigenvalues �k,

building the MMA-matrix A; and then applying Algorithm 5.2 in order to recover
the in
ation sequence, it is possible to test the columns of R directly using in
ation
products of vectors. This provides the following alternative test to that given by
Theorem 2.2 of [1].

Theorem 7.2. Let R be an n � n real, orthogonal matrix with columns r1; r2;
: : : ; rn: Suppose that r1 is strictly positive and that n � 2: The following algorithm
determines whether R is a Soules matrix. The algorithm requires O(n2) divisions, no
multiplications, and no square roots.

Algorithm 7.3.

Step 0. Set P = R: Label the columns of P as p1; p2; : : : ; pn: Let k = n:
Step 1. If pk does not have exactly one positive and exactly one negative entry, then
R is not a Soules matrix.
Step 2. Let i and j; with i < j, be the indices of the nonzero entries of pk, and label
those entries �k and �k; respectively.
Step 3. Let euk be the k � 1 vector obtained from the vector of all ones by replacing
the ith entry by j�kj and the jth entry by j�kj :
Step 4. Let �k be the (k�1)-partition of k whose unique nonsingleton partition subset
is fi; jg:
Step 5. Let P be the (k� 1)� (k � 1) matrix whose columns are p1==euk; p2==euk; : : : ;
pk�1==euk:
Step 6. Assign k = k � 1: If k � 2; go to Step 1.
Step 7. If k = 1, then R is a Soules matrix.

Proof. Suppose P is a k � k Soules matrix. Then pkp
t
k = G(Uk) for a strictly

positive, rank one in
ator Uk by Theorem 7.1, and hence pk must have exactly one
positive and exactly one negative entry. Since pk is orthogonal to every other column
of P; it follows that the i; j subvector of every other column must be a scalar multiple
of (j�kj ; j�kj)t ; and hence, ph==euk is a well-de�ned, normal vector for 1 � h < k: Fur-
thermore, orthogonality is preserved among the ph==euk since �2k+�2k = 1: Finally, no-
tice that if P is a Soules matrix, then each phpth = Eh; which is an in
ation-generated
spectral projection, and hence Eh==Uh is also an in
ation-generated spectral projec-
tion, where Uk = eukeutk: It is easy to check that Eh==Uh = (ph==euk) (ph==euk)t : If R
is a Soules matrix, it follows that each P must be a Soules matrix.

It follows from the decomposition of R in the preceding algorithm that if R is a
Soules matrix, then the columns of R are (1)��eu2��eu3�� � � ���eun; p2��eu3�
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� � � ���eun; : : : ; pn�1��eun; rn: Note that the decomposition in Algorithms 5.2 and
6.2 actually provide the vectors needed to generate the corresponding Soules matrix.
Also note that the algorithm uses no multiplications, and that divisions occur only in
Step 5. Each computation of a vector ph==euk requires exactly two divisions since all
but two entries of the vector euk are ones. Thus the (n� k + 1)st iteration requires
2 (k � 1) divisions.

8. Testing for Strictly Ultrametric Matrices. In this section, A is required
to be symmetric.

Observe that testing whether the n � n matrix A is strictly ultrametric can be
done using only comparisions, and requires at most O(n3) comparisons. In light of
Theorem 2.3, it would be possible to test whether A is a strictly ultrametric matrix
by applying Algorithm 6.2 to FAF: Note, however that the spectral decomposition of
FAF will not generally be closely related to that of A: One case in which the spectral
decomposition of FAF would be useful is when all row sums of A are equal, with
common sum r. In this case, p = re; F = 1p

r
In, and the spectral decomposition of A

is given by

A =
nX

k=1

r�kEk;

where the �k and the Ek are those produced as the �nal output of Algorithm 6.2
applied to FAF .

9. An Example of Spectral Decomposition. Let A be the following 3 � 3,
real, symmetric matrix:

A =

2
4 601

338
90
169

12
13

90
169

122
169

5
13

12
13

5
13

2

3
5 :

Is A an inverse MMA-matrix? Apply Algorithm 6.2. Let M = A: Let k = 3: Let
� = 0: Computing, �12 = 0:5000; �13 = 0:6151; �23 = 0:9523 : �min = 0:5000 > �:

Then u = v =
�
5
13
;�12

13

�t
. Testing, M [f3gjf1; 2g]u =

�
12
13

5
13

�
u = (0; 0)t: Theneu =

�
12
13
; 5
13
; 1
�t

and �3 = ff1; 2g; f3gg : Hence,

U3 =

2
4 144

169
60
169

12
13

60
169

25
169

5
13

12
13

5
13

1

3
5 ; and G(U3) =

2
4 25

169
� 60

169
0

� 60
169

144
169

0
0 0 0

3
5 :

With �3 = 0:5000;

M � �3G(U3) =

2
4 288

169
120
169

12
13

120
169

50
169

5
13

12
13

5
13

2

3
5 =

�
2 1
1 2

�
� �U3:
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Set M =

�
2 1
1 2

�
; k = 2; and � = 0:5000 : Then �min = �12 = 1 � �; and

u = v = 1p
2
(1;�1)t: Then eu = 1p

2
(1; 1)t; and �2 = ff1; 2gg : Hence,

U2 =
1

2

�
1 1
1 1

�
and G(U2) =

1

2

�
1 �1
�1 1

�
:

With �2 = 1;

M � �2G(U2) =
1

2

�
3 3
3 3

�
= [3]��U2:

Set k = 1 and � = 1: Since m11 = 3 > �; it follows that A is an inverse MMA-matrix.
Set �1 = 3:

Finally, the spectral decomposition of A is A =
3P

k=1

�kEk, where E3 = G(U3);

E2 = G(U2) ��U3 = 1

2

2
4 144

169
60
169

�12
13

60
169

25
169

� 5
13

�12
13

� 5
13

1

3
5 ;

and

E1 = G(U1) ��U2 ��U3 = 1

2

2
4 144

169
60
169

12
13

60
169

25
169

5
13

12
13

5
13

1

3
5

since G(U1) is the identity matrix by de�nition. Notice that it is possible to re-
cover the Soules basis fr1; r2; r3g ; since Ek = rkr

t
k: Thus the Soules basis here isn

1p
2

�
12
13
; 5
13
; 1
�t
; 1p

2

�
12
13
; 5
13
;�1�t ; � 5

13
;�12

13
; 0
�to

: If the vectors u produced during

the algorithm are labelled as u3 =
�
5
13
;�12

13

�t
and u2 = 1p

2
(1;�1)t; their embed-

dings into the all zeros vectors are labelled p3 =
�
5
13
;�12

13
; 0
�t

and p2 = 1p
2
(1;�1)t

and the vectors eu produced by the algorithm are labelled as eu3 =
�
12
13
; 5
13
; 1
�t

andeu2 = 1p
2
(1; 1)t, then the Soules basis is obtained as the following set:

f(1)� �eu2 � �eu3; p2 ��eu3; p3g.
10. A Cautionary Example. Let B be the matrix

B =
1

3

2
4 5 6 4

6 9 6
4 6 5

3
5 :

Then

B =

�
3 2

p
2

2
p
2 3

�
� �U3 + �13G(U3);
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where

U3 =
1

2

2
4 1

p
2 1p

2 2
p
2

1
p
2 1

3
5

is a strictly positive, rank one in
ator with ordered partition � = ff1; 3g; f2gg ;

G(U3) =
1

2

2
4 1 0 �1

0 0 0
�1 0 1

3
5 ;

and �13 =
1
3
comes from B[f1; 3g]. Furthermore,�

3 2
p
2

2
p
2 3

�

is an inverse MMA-matrix. Computing,

B�1 =

2
4 3 �2 0
�2 3 �2
0 �2 3

3
5 ;

which is an M-matrix; however,

(B�1)2 =

2
4 13 �12 4
�12 17 �12
4 �12 13

3
5 ;

which is not an M-matrix. Thus, B is not an inverse MMA-matrix even though it
appears to have the in
ation-based decomposition. The reason is that �13 6= �min in
Step 3 of Algorithm 6.2. Indeed, �13 = 1=3 is not the minimum eigenvalue of B since
spec(B) = f0:1716; 0:3333; 5:8284g: In fact, �12 = �23 = �min = 0:2251 < �13; and
neither of the vectors u = v constructed for �12 nor for �23 pass the test in Step 5 of
the algorithm; thus the algorithm detects that B is not an inverse MMA-matrix.

11. Extending Soules Bases. It is possible to use in
ation and the graph the-
oretic structures in [10] and [14] to give both an alternative construction to the one
given by Elsner, Nabben and Neumann in [1] for all possible Soules matrices that arise
from a given strictly positive vector r of unit length and to give an alternative combi-
natorial analysis of the zero nonzero patterns involved. We give here the fundamental
extension result.

Theorem 11.1. Let R be an n � n Soules matrix with columns r1;r2; : : : ; rn:
Choose an index i with 1 � i � n; choose indices j1 and j2 with 1 � j1 < j2 � n+ 1;
and choose an � with 0 < � < 1: Let u be obtained from the (n + 1) � 1 vector
of ones by replacing the j1 entry with

p
� and the j2 entry with

p
1� �. Let � be

the n-partition of (n + 1) whose only nonsingleton block is Bi = fj1; j2g; and whose
singleton blocks are the entries of f1; 2; : : :; n + 1gnfj1; j2g in increasing order. For
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1 � h � n; de�ne th = rh � �u; and let tn+1 be the (n + 1) � 1 vector obtained from
the zero vector by replacing the j1 entry with

p
1� � and the j2 entry with �p�:

Then the matrix T whose columns are the vectors th is an (n + 1) � (n + 1) Soules
matrix.

Proof. Clearly, one iteration of Algorithm 7.3 applied to T will yield R, which is
known to be a Soules matrix.

Note that the choice of the signs in the entries of tn+1 can be reversed. Fur-
thermore, it can be shown that up to the choice of signs and up to the permutation
of the singleton blocks, these are the only extensions of R in the sense of recovering
R from the decomposition given in Algorithm 7.3. Intuitively, what the algorithm
does is replace the ith entry of the hth column of R with a pair of entries: (rh)i

p
�

and (rh)i
p
1� �; placing them in positions j1 and j2; and distributing the remaining

entries of hth column of R in the remaining positions. It should be obvious that this
preserves orthonormality of the columns. The �nal column is just the embedding of�p

1� �;�p��t into the vector of zeros. Clearly it is normal and also orthogonal to
the �rst n columns.

Example 11.2. Let R be the matrix whose columns are 1p
2

�
12
13
; 5
13
; 1
�t
;

1p
2

�
12
13
; 5
13
;�1�t ; and � 5

13
;�12

13
; 0
�t

from Section 9. Let i = 2; let j1 = 1; let j2 = 3;

and let � = 9
25
: Let � be the 3-partition of 4 given by B1 = f2g; B2 = f1; 3g; and B3 =

f4g: Then u =
�
3
5
; 1; 4

5
; 1
�t
: Furthermore, T has columns 1p

2

�
5
13
� 3
5
; 12
13
; 5
13
� 4
5
; 1
�t
;

1p
2

�
5
13
� 3
5
; 12
13
; 5
13
� 4
5
;�1�t ; ��12

13
� 3
5
; 5
13
;�12

13
� 4
5
; 0
�t

and
�
4
5
; 0;�3

5
; 0
�t
:
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