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REGIONS CONTAINING EIGENVALUES OF A MATRIX∗

TING-ZHU HUANG† , WEI ZHANG‡ , AND SHU-QIAN SHEN†

Abstract. In this paper, regions containing eigenvalues of a matrix are obtained in terms of
partial absolute deleted row sums and column sums. Furthermore, some sufficient and necessary
conditions for H-matrices are derived. Finally, an upper bound for the Perron root of nonnegative
matrices is presented. The comparison of the new upper bound with the known ones is supplemented
with some examples.
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1. Introduction. The Gerschgorin circle theorem gives a region in the complex
plane which contains all the eigenvalues of a square complex matrix. It is one of
those rare instances of a theorem which is elegant and useful and which has a short,
elegant proof (see e.g., [1] or [5]). Moreover, we have Brauer’s theorem, Ostrowski’s
theorem and Brauldi’s theorem etc., by which we can estimate the inclusion regions
of eigenvalues of a matrix in terms of its entries (see [5]).

Let Mn(C) denote the set of all n× n complex matrices and 〈n〉 = {1, 2, . . . , n}.
Let A = (aij) ∈ Mn(C). The comparison matrix m(A) = (mij) of A is defined by

mij =
{ |aij |, if i = j,

−|aij |, if i 	= j.

Recall that A is an H-matrix if its comparison matrix m(A) is an M-matrix. It is well
known that a square matrix A is an M-matrix if it can be written in the form

A = ωI − P, P is nonnegative, ω > ρ(P ),

ρ(P ) is the spectral radius of P . Criteria for judging M-matrices can be found in
[2, 4, 5, 8].

In Section 2, in terms of partial absolute deleted row sums and column sums, new
results are provided to estimate eigenvalues. Some sufficient and necessary conditions
for H-matrices are derived from the new eigenvalues inclusion regions. Moreover, in
Section 3, the results obtained will be applied to estimate the upper bound of the
Perron root of a nonnegative matrix. Some examples are presented in Section 4.

2. Regions containing eigenvalues. Let A = (aij) be an n×n complex matrix
with n ≥ 2. Let α and β be nonempty index sets satisfying α∪β = 〈n〉 and α∩β = φ.
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Define partial absolute deleted row sums and column sums as follows:

r
(α)
i (A) =

∑
j �=i,j∈α

|aij |, c
(α)
i (A) =

∑
j �=i,j∈α

|aji|;

r
(β)
i (A) =

∑
j �=i,j∈β

|aij |, c
(β)
i (A) =

∑
j �=i,j∈β

|aji|.

If α contains a single element, say α = {i0}, then we assume, by convention, that
r
(α)
i0

(A) = 0. Similarly r
(β)
i0

(A) = 0 if β = {i0}. We will sometimes use r(α)
i (c(α)

i , r(β)
i ,

c
(β)
i ) to denote r

(α)
i (A) (c(α)

i (A), r(β)
i (A), c(β)

i (A), respectively) unless a confusion is
caused. Clearly, we have

ri(A) =
∑
j �=i

|aij | = r
(α)
i (A) + r

(β)
i (A),

ci(A) =
∑
j �=i

|aji| = c
(α)
i (A) + c

(β)
i (A).

Define, for all i ∈ α and j ∈ β,

G
(α)
i =

{
z ∈ C : |z − aii| ≤ r

(α)
i (A)

}
,

G
(β)
j =

{
z ∈ C : |z − ajj | ≤ r

(β)
j (A)

}
,

G
(αβ)
ij =

{
z ∈ C : z /∈ G

(α)
i ∪G

(β)
j ,

(
|z − aii| − r

(α)
i

)(
|z − ajj | − r

(β)
j

)
≤ r

(β)
i r

(α)
j

}
.

Theorem 2.1. Each eigenvalue of matrix A of order n is contained in the region

Gαβ

⋃
G(αβ),

where

Gαβ :=

(⋃
i∈α

G
(α)
i

)⋃
⋃

j∈β

G
(β)
j


 and G(αβ) :=

⋃
i∈α,j∈β

G
(αβ)
ij .

Proof. Suppose λ is an eigenvalue of A, then there exists a nonzero vector x =
(x1, . . . , xn)T such that

(2.1) Ax = λx.
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Denote |xp| = max
i∈α

{|xi|}, |xq| = max
j∈β

{|xj |}. Obviously, at least one of xp and xq is
nonzero.

i) Suppose xpxq 	= 0, then the p-th equation in (2.1) implies

(λ− app)xp =
∑

j∈α,j �=p

apjxj +
∑
j∈β

apjxj ,

|λ− app||xp| ≤
∑

j∈α,j �=p

|apj ||xj | +
∑
j∈β

|apj ||xj |

(2.2) ≤
∑

j∈α,j �=p

|apj ||xp|+
∑
j∈β

|apj ||xq|,

i.e.,

(2.3) |λ− app| ≤ r(α)
p + r(β)

p

|xq|
|xp| .

Similarly, the q-th equation in (2.1) implies

(λ− aqq)xq =
∑
j∈α

aqjxj +
∑

j∈β,j �=q

aqjxj .

By the same method we have

(2.4) |λ− aqq | ≤ r(α)
q

|xp|
|xq| + r(β)

q .

If the following condition

|λ− app| ≤ r(α)
p or |λ− aqq| ≤ r(β)

q

holds, then λ ∈ Gαβ . Otherwise, if

|λ− app| − r(α)
p > 0 and |λ− aqq| − r(β)

q > 0,

then inequalities (2.3) and (2.4) imply that(
|λ− app| − r(α)

p

)(
|λ− aqq| − r(β)

q

)
≤ r(β)

p r(α)
q .

That is λ ∈ G(αβ).
ii) Suppose xq = 0 (xp 	= 0), then inequality (2.3) implies that

|λ− app| ≤ r(α)
p .

Hence λ ∈ Gαβ .
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The argument is analogous when xp = 0 (xq 	= 0).
Since A and AT have the same eigenvalues, one can obtain a theorem for columns

by applying Theorem 2.1 to AT . Define, for all i ∈ α and j ∈ β,

V
(α)
i =

{
z ∈ C : |z − aii| ≤ c

(α)
i (A)

}
,

V
(β)
j =

{
z ∈ C : |z − ajj | ≤ c

(β)
j (A)

}
,

V
(αβ)
ij =

{
z ∈ C : z /∈ V

(α)
i ∪ V

(β)
j ,

(
|z − aii| − c

(α)
i

)(
|z − ajj | − c

(β)
j

)
≤ c

(β)
i c

(α)
j

}
.

Corollary 2.2. Each eigenvalue of the matrix A of order n is contained in the
region

Vαβ

⋃
V (αβ),

where

Vαβ :=

(⋃
i∈α

V
(α)
i

)⋃
⋃

j∈β

V
(β)
j


 and V (αβ) :=

⋃
i∈α,j∈β

V
(αβ)
ij .

Corollary 2.3. Let A = (aij) ∈ Mn(C). Suppose for all i ∈ α and j ∈ β,
a) |aii| − r

(α)
i > 0 and |ajj | − r

(β)
j > 0;

b)
(
|aii| − r

(α)
i

)(
|ajj | − r

(β)
j

)
> r

(β)
i r

(α)
j .

Then A is nonsingular.
Proof. If A is singular, i.e., λ = 0 is an eigenvalue of A, by applying Theorem 2.1,

at least one of conditions a) and b) is invalid. Hence A is nonsingular.
Corollary 2.4. Let A = (aij) ∈ Mn(C). Suppose for all i ∈ α and j ∈ β,
a) |aii| − r

(α)
i > 0 and |ajj | − r

(β)
j > 0;

b)
(
|aii| − r

(α)
i

)(
|ajj | − r

(β)
j

)
> r

(β)
i r

(α)
j .

Then A is an H-matrix.
Proof. Obviously, the comparison matrix m(A) satisfies conditions a) and b) as

well as A. Hence m(A) is nonsingular from Corollary 2.3.
For any ε ≥ 0, define B = (bij) := m(A) + εI, then we have

|bii| − r
(α)
i (B) = (|aii| + ε)− r

(α)
i (A) > 0,

|bjj | − r
(β)
j (B) = (|ajj | + ε)− r

(β)
j (A) > 0,
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and(
|bii| − r

(α)
i (B)

)(
|bjj | − r

(β)
j (B)

)
=

(
|aii|+ ε− r

(α)
i (A)

) (
|ajj | + ε− r

(β)
j (A)

)
≥

(
|aii| − r

(α)
i (A)

)(
|ajj | − r

(β)
j (A)

)
> r

(β)
i (A)r(α)

j (A)
= r

(β)
i (B)r(α)

j (B).

By Corollary 2.3, we know that B is nonsingular. Hence m(A) is an M-matrix (see
e.g., [4]), which implies that A is an H-matrix.

Lemma 2.5. Let A = (aij) ∈ Mn(C), and for all i ∈ α, j ∈ β,

(2.5)
(
|aii| − r

(α)
i (A)

) (
|ajj | − r

(β)
j (A)

)
> r

(β)
i (A)r(α)

j (A).

Then the following two conditions are equivalent:
1) For all i ∈ α, |aii| − r

(α)
i (A) > 0;

2) J(A) :=

{
i : |aii| >

∑
j �=i

|aij |, i ∈ 〈n〉
}

	= φ.

Proof. 1)⇒2): Note that condition 1) and (2.5) imply, for all i ∈ α and j ∈ β,
that

|aii| − r
(α)
i (A) > 0 and |ajj | − r

(β)
j (A) > 0.

If J(A) = φ, then for all i ∈ 〈n〉, |aii| ≤
∑
j �=i

|aij |, i.e.,

0 < |aii| − r
(α)
i (A) ≤ r

(β)
i (A) and 0 < |ajj | − r

(β)
j (A) ≤ r

(a)
j (A).

Thus, we have (
|aii| − r

(α)
i (A)

) (
|ajj | − r

(β)
j (A)

)
≤ r

(β)
i (A)r(α)

j (A),

which contradicts (2.5). So J(A) 	= φ.
2) ⇒ 1): Since J(A) 	= φ, there exists at least one i0 ∈ 〈n〉 such that |ai0i0 | >∑

j �=i0

|ai0j |. Without loss of generality, we assume that i0 ∈ α, then

|ai0i0 | >
∑
j �=i0

|ai0j | ≥ r
(α)
i0

(A).

Hence, from (2.5), for all j ∈ β, we can derive

|ajj | − r
(β)
j (A) > 0,

and then, for all i ∈ α, |aii| − r
(α)
i (A) > 0.

Immediately we have the following consequence from Lemma 2.5 and Corollary
2.4.
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Corollary 2.6. Let A be an n×n complex matrix. Suppose J(A) = {i : |aii| >∑
j �=i

|aij | , i ∈ 〈n〉} 	= φ and for all i ∈ α, j ∈ β,

(
|aii| − r

(α)
i (A)

)(
|ajj | − r

(β)
j (A)

)
> r

(β)
i (A)r(α)

j (A).

Then A is an H-matrix.
Remark 2.7. Corollary 2.6 is one of the main results in [2] (see Th. 1), which

was used as a criterion for generalized diagonally dominant matrices and M-matrices.
We call A a generalized doubly diagonally dominant matrix if J(A) 	= φ and

(2.6)
(
|aii| − r

(α)
i (A)

)(
|ajj | − r

(β)
j (A)

)
≥ r

(β)
i (A)r(α)

j (A)

for all i ∈ α and j ∈ β. See [[3], p. 233] for detail. A is further said to be a strictly
generalized doubly diagonally dominant matrix if all the strict inequalities in (2.6)
hold, and is denoted by A ∈ D

(αβ)
n . It was shown by the authors in [3] that the Schur

complement of a generalized doubly diagonally dominant matrix is also a generalized
doubly diagonally dominant matrix. Moreover, Gao and Wang [2] showed that a
strictly generalized doubly diagonally dominant matrix is an H-matrix.

Here we denote D̃(αβ)
n by the set

D̃(αβ)
n :=

{
A
∣∣∣AX ∈ D(αβ)

n , X is a positive diagonal matrix
}
.

Clearly we have D(αβ)
n ⊂ D̃

(αβ)
n .

Now, we present a sufficient and necessary condition for H-matrices.
Corollary 2.8. A is an H-matrix if and only if A ∈ D̃

(αβ)
n .

Proof. ⇒: If A is an H-matrix, then there exists a positive diagonal matrix X1

such that AX1 is a strictly diagonally dominant matrix, thus we can easily derive
AX1 ∈ D

(αβ)
n , and then A ∈ D̃

(αβ)
n .

⇐: If A ∈ D̃
(αβ)
n , then, by definition, there exists a positive diagonal matrix X2

such that AX2 ∈ D
(αβ)
n . By Corollary 2.6 we know that AX2 is an H-matrix, and

then there exists a positive diagonal matrix X3 such that AX2X3 is a strictly diagonal
dominant matrix. Since X2X3 is also a positive diagonal matrix, A is an H-matrix.

Lemma 2.9. ([8]) Let A = (aij) be an n× n H-matrix. Then J(A) = {i : |aii| >∑
j �=i

|aij |, i ∈ 〈n〉} 	= φ.

Corollary 2.10. Let A = (aij) be an n × n H-matrix. Then for nonempty
index sets α and β satisfying α∪β = 〈n〉 and α∩β = φ, there exists at least one pair
(i0, j0), i0 ∈ α and j0 ∈ β, such that(

|ai0i0 | − r
(α)
i0

(A)
)(

|aj0j0 | − r
(β)
j0

(A)
)
> r

(β)
i0

(A)r(α)
j0

(A).

Proof. From Lemma 2.9, we have J(A) 	= φ. Suppose for all i ∈ α and j ∈ β,(
|aii| − r

(α)
i (A)

)(
|ajj | − r

(β)
j (A)

)
≤ r

(β)
i (A)r(α)

j (A).

Then A is not an H-matrix by Theorem 3 of [2], contradicting the assumptions.
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3. Upper bounds for the Perron root. In this section we shall discuss the
upper bound for the Perron root of nonnegative matrices by using the eigenvalues
inclusion region obtained in Section 2.

Let A = (aij) be an n × n nonnegative matrix with n ≥ 2. It is known that for
the Perron root ρ(A), i.e., the spectral radius of A, the following inequality holds (see
e.g., [4] or [7]):

(3.1) min
1≤i≤n

n∑
j=1

aij ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

aij .

Another known bound of ρ(A) belongs to Brauer and Gentry (see [6]):

(3.2) min
i�=j

MA(i, j) ≤ ρ(A) ≤ max
i�=j

MA(i, j),

where

MA(i, j) =
1
2


aii + ajj +


(aii − ajj)2 + 4

∑
k �=i

|aik|
∑
k �=j

|ajk|



1
2


 .

For simplicity, (3.1) and (3.2) are called Frobenius’ bound and Brauer-Gentry’s bound,
respectively.

Theorem 3.1. Let A be an n× n nonnegative matrix. Then we have

ρ(A) ≤ max
i∈α,j∈β

QA(i, j),

where

QA(i, j) =
1
2

{
aii + r

(α)
i + ajj + r

(β)
j +

[(
aii + r

(α)
i − ajj − r

(β)
j

)2

+ 4r(β)
i r

(α)
j

] 1
2
}
.

Proof. Note that ρ(A) is an eigenvalue of A by the well known Perron-Frobenius
theory of nonnegative matrices (see e.g., [4]). So if we define

B := ρ(A)I −A,

then B is singular.
For all i ∈ α and j ∈ β, if |bii| − r

(α)
i (B) > 0 and(

|bii| − r
(α)
i (B)

)(
|bjj | − r

(β)
j (B)

)
> r

(β)
i (B)r(α)

j (B),

i.e., {
|ρ(A) − aii| − r

(α)
i (A) > 0,(

|ρ(A) − aii| − r
(α)
i (A)

)(
|ρ(A) − ajj | − r

(β)
j (A)

)
> r

(β)
i (A)r(α)

j (A).
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Then, by Corollary 2.3, we can derive B is nonsingular. So if B is singular, there
exists at least one pair (i0, j0), i0 ∈ α and j0 ∈ β, such that

|ρ(A) − ai0i0 | − r
(α)
i0

(A) ≤ 0

or (
|ρ(A) − ai0i0 | − r

(α)
i0

(A)
)(

|ρ(A) − aj0j0 | − r
(β)
j0

(A)
)
≤ r

(β)
i0

(A)r(α)
j0

(A).

Moreover, by the fact that

ρ(A) ≥ max
i∈〈n〉

aii

(see e.g., [4] or [5]), we have

(3.3) ρ(A) − ai0i0 − r
(α)
i0

(A) ≤ 0

or

(3.4)
(
ρ(A) − ai0i0 − r

(α)
i0

(A)
) (

ρ(A) − aj0j0 − r
(β)
j0

(A)
)
≤ r

(β)
i0

(A)r(α)
j0

(A).

From (3.3) and (3.4), we can easily derive

ρ(A) ≤ QA(i0, j0).

Thus,

ρ(A) ≤ max
i∈α,j∈β

QA(i, j).

For a complex square matrix A, it follows that ρ(A) ≤ ρ(|A|) (see e.g., [4] or [5]),
where |A| = (|aij |) is a nonnegative matrix. Immediately we obtain the following
result:

Corollary 3.2. Let A = (aij) ∈ Mn(C). Then,

ρ(A) ≤ max
i∈α,j∈β

1
2

{
|aii|+ r

(α)
i + |ajj | + r

(β)
j

+
[(

|aii| + r
(α)
i − |ajj | − r

(β)
j

)2

+ 4r(β)
i r

(α)
j

] 1
2
}
.

4. Examples. In this section, some numerical examples are provided to compare
our bounds with some known ones.

Example 1. Consider the nonnegative matrix

A =




6 1 2 1
3 5 1 1
0 3 3 1
0 0 3 3


 , ρ(A) = 8.6716.
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Using the upper bounds of Frobenius and Brauer-Gentry, we can obtain the same
result ρ(A) ≤ 10.0000. For α = {1, 2} and β = {3, 4}, by Theorem 3.1, we have
ρ(A) ≤ 9.1623.

Example 2 ([7]). Consider the nonnegative matrix

A =




1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4 4
1 2 3 4 5 5
1 2 3 4 5 6



, ρ(A) = 17.2069.

By Frobenius’ bound (3.1), Brauer-Gentry’s bound (3.2), Ledermann’s bound [[9],
Chapter 2, Theorem 1.3], Ostrowski’s bound [[9], Chapter 2, Theorem 1.4] and
Brauer’s bound [[9], Chapter 2, Theorem 1.5], we have

ρ(A) ≤ 21.0000 (by Frobenius’ bound),
ρ(A) ≤ 20.5083 (by Brauer-Gentry’s bound),
ρ(A) ≤ 20.9759 (by Ledermann’s bound),
ρ(A) ≤ 20.5000 (by Ostrowski’s bound),
ρ(A) ≤ 20.2596 (by Brauer’s bound).

For α = {1, 2, 3} and β = {4, 5, 6}, by Theorem 3.1, we have ρ(A) ≤ 19.1168.

Example 3. Consider the complex matrix

A =




4 + 3i 2 3i 0
2 4 1 2i
2 0 3 1
2 1 3 3


 , ρ(A) = 7.3783.

Let α = {1, 2} and β = {3, 4}. By Corollary 3.2, we have ρ(A) ≤ 9.5414.
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