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ON MINIMAL RANK OVER FINITE FIELDS∗

GUOLI DING† AND ANDREĬ KOTLOV‡

Abstract. Let F be a field. Given a simple graph G on n vertices, its minimal rank (with
respect to F ) is the minimum rank of a symmetric n× n F -valued matrix whose off-diagonal zeroes
are the same as in the adjacency matrix of G. If F is finite, then for every k, it is shown that the set
of graphs of minimal rank at most k is characterized by finitely many forbidden induced subgraphs,

each on at most ( |F |k
2

+ 1)2 vertices. These findings also hold in a more general context.
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1. Introduction. Let F be a field. Given a simple graph G on n vertices, we
say that a symmetric n × n F -valued matrix represents G if its off-diagonal zeroes
are the same as in the adjacency matrix of G. The min rank [w.r.t. F ] of G is the
minimum rank [over F ] of the matrices representing G. The reader is referred to [1]
for motivation and importance of min rank.

For a fixed integer k, denote Gk the class of all graphs of min rank at most k.
It is obvious that Gk is closed under vertex deletion. Call a graph k-critical if it is
minimal (w.r.t. vertex deletion) of rank larger than k. Clearly, Gk is characterized by
the k-critical graphs as forbidden induced subgraphs.

It is a celebrated result of Robertson and Seymour [3] that any class of graphs
closed under taking minors is characterized by a finite set of forbidden minors. At
the 2005 Oberwolfach graph theory workshop, Hein van der Holst asked if there are
only finitely many k-critical graphs for any k and F . (Barrett, van der Holst, and
Loewy [2, 1] had recently confirmed this for k ≤ 2 and any F .) When F is finite,
we answer this question affirmatively, by providing an upper bound on the size of a
k-critical graph. In fact, our arguments hold in a more general context. In the next
section, we define k-critical graphs w.r.t. an arbitrary collection Mk of matrices of
rank at most k and show that the number of such graphs is finite as long as there is
c ∈ N such that each matrix in Mk uses at most c distinct elements from its field. If,
in addition, Mk is closed under row-and-column-duplication, the number of k-critical
graphs can be bounded in terms of c and k. We derive such bounds in Section 3.

2. Definitions and Main Result. For a fixed k ∈ N ∪ {0}, let Sk denote the
set of all pairs (M , F ) where F ranges over all fields and M is an F -valued symmetric
matrix with rkF (M) ≤ k. Fix some non-empty Mk ⊆ Sk. Denote by Gk the set
of graphs represented by matrices in Mk. As before, call a graph G k-critical if
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G /∈ Gk while every proper induced subgraph of G is in Gk. It is easy to see that Gk

is characterized by [k-critical] graphs as forbidden induced subgraphs iff it is closed
under vertex deletion.

For a matrix A, denote by c(A) the number of distinct entries in A, and for any
non-empty A ⊆ Sk, set c(A) := sup{c(A) : (A, F ) ∈ A}.

Observation 2.1. A matrix A of rank r has at most c(A)r distinct rows.

Proof. W.l.o.g. assume that the first r columns of A are linearly independent.
Then two rows of A are identical iff they agree on the first r coordinates.

Given disjoint graphs G and H , by replacing a vertex v of G with H we mean, as
is common, the disjoint union of G − v and H plus the edges {uw : uv ∈ G, w ∈ H}.
If a matrix M represents G and the last t ≥ 2 rows of M are identical then G can
be obtained from the graph G− {n− t+ 2, . . . , n} by replacing vertex n− t+ 1 with
either the clique Kt (if Mnn 
= 0) or the independent set Kt (if Mnn = 0). For m ∈ N,
call a graph m-sprawling if it can be obtained from a graph on at most m vertices by
replacing each vertex with either a clique or an independent set.

Corollary 2.2. Let c := c(Mk) < ∞. Then every graph in Gk is ck-sprawling.
Consequently, every k-critical graph is (ck + 1)-sprawling.

Lemma 2.3. Given m ∈ N, an infinite sequence of distinct m-sprawling graphs
has an infinite subsequence ascending w.r.t. induced-subgraph inclusion.1

Proof. Fix an infinite sequence, s, of [distinct] m-sprawling graphs. As there
are finitely many graphs on at most m vertices, s has an infinite subsequence, s′,
of graphs which can be sprawled from the same graph, G, on some n ≤ m vertices.
Further, as there are finitely many (namely, 2n) choices of whether to use a clique or an
independent set at each vertex of G, s′ contains an infinite subsequence s′′ of graphs
Hi (i ∈ N) for which such choices coincide. Now, each Hi can be described by a string
of n natural numbers (ai1, ..., ain) where aij is the number of vertices by which vertex j
of G was replaced in obtainingHi. Notice that an infinite sequence of natural numbers
contains a monotone non-decreasing infinite subsequence. By sequentially applying
this argument n times, we find that s′′ has an infinite subsequence, {Hit : t ∈ N},
such that, for each j = 1, ..., n, the sequence {aitj} is monotone non-decreasing. But
then, the sequence {Hit} itself is monotone non-decreasing under induced-subgraph
inclusion.

Corollary 2.4. If c := c(Mk) < ∞, then there are finitely many k-critical
graphs.

Proof. An infinite sequence of distinct k-critical (and thus, (ck + 1)-sprawling)
graphs would contain an ascending [infinite] subsequence, contrary to the definition
of k-criticality.

1A partially ordered set whose every infinite sequence of distinct elements has an increasing
subsequence is called well-partially-ordered, cf. e.g. [4]. In this terminology, the lemma becomes: the
set of m-sprawling graphs is well-partially-ordered w.r.t. induced-subgraph inclusion.
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We summarize our findings as follows.

Theorem 2.5. If c(Mk) < ∞ and Gk is closed under vertex deletion, then Gk

is characterized by finitely many k-critical graphs as forbidden induced subgraphs.

3. Upper Bound. In the previous section, we saw that once c(Mk) < ∞, the
number of k-critical graphs is finite. However, in the absence of other requirements,
this number need not be bounded by any function of c and k. Indeed, fix some N ∈ N

and let M1 consist of all the rank-at-most-1 symmetric 0-1 matrices of size less than
N × N . Then the N graphs {Ka∪̇KN−a : a = 1, ..., N} (the disjoint unions of the
a-clique and N − a independent vertices) are 1-critical.

In this section, we bound the number of k-critical graphs in terms of c and k
under the following additional constraint on Mk:

(∗) If (M, F ) ∈ Mk then also (M ′, F ) ∈ Mk where M ′ has two identical rows
i and j and M can be obtained by deleting row j and column j in M ′.

Theorem 3.1. If (∗) holds and c := c(Mk) < ∞, then |G| ≤ ( ck

2 + 1)2 for a
k-critical G.

We precede the proof of Theorem 3.1 by the following discussion. Two vertices
of a graph G are twins if they have the same neighbors in the rest of G (the two
vertices themselves can be either adjacent or independent). It is easy to see that a
twin relationship is transitive: if u and v are twins, and v and w are twins, then
u and w are also twins and, moreover, the triple {u, v, w} spans either a clique or
an independent set. (We will call such a triple of pairwise-twin vertices a triplet.)
Thus, the twin relationship induces a partition, T (G), of the vertex set of G into twin
classes.

Fix a vertex v ∈ G and consider a partition T ′ := T (G) − v of the vertex set of
G− v. It is easy to see that: (a) T ′ is a refinement of T (G− v); (b) more specifically,
every set in T (G− v) is a [disjoint] union of one or two sets in T ′; (c) in particular, if
G has no twins then G− v has no triplet; (d) if v has exactly one twin, v′, in G then
T ′ and T (G− v) coincide except perhaps on the twin class of v′ in G− v; (e) if v has
at least two twins in G then T ′ = T (G − v). In addition, (f) if G has no triplet then
v can be chosen so that G− v has no triplet either. Indeed, if G is twin-free then (f)
is trivially true by (c). Thus, assume G is not, and let v and v′ be twins in G. Then,
by (d), the only triplet G − v may have is of the form {v′, u, u′}, where u and u′ are
twins in G. Further, the subgraph induced by v, v′, u, u′ has either no edge except vv′

or all edges except vv′, and v, v′, u, u′ have the same neighbors in the rest of G. But
then, T (G)− u = T (G − u), as required.

Proof of Theorem 3.1: Clearly, we may assume that rkF (M) = k for some (M, F ) ∈
Mk. Suppose first that k ≥ 2. Then necessarily c ≥ 2. If G has no triplet then, by
(f) and Observation 2.1, n−1 ≤ 2ck ≤ (1+ ck

4 )c
k = ( ck

2 +1)
2−1, as required. Hence,

we can assume w.l.o.g. that the last t ≥ 3 vertices of G form its largest twin class, C.
By criticality of G, there is (M, F ) ∈ Mk such that M represents G − n. Consider
the diagonal entry Mii of M for some i > n − t. If C is an independent set in G
and Mii = 0 or if C is a clique and Mii 
= 0 then the symmetric n × n matrix M ′
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whose rows i and n are identical and whose upper-left (n− 1)× (n − 1) corner is M ,
represents G and, by (∗), (M ′, F ) ∈ Mk. This is a contradiction. Denoting by D the
lower-right (t − 1)× (t − 1) corner of M , we thus have:

(†) either D has no off-diagonal zero and its diagonal is all-zero, or D is all-zero
except its diagonal has no zero.

In particular, no two among the last t − 1 rows of M are identical. Hence, by Ob-
servation 2.1, among the first n − t rows of M , at most ck − (t − 1) are distinct,
whence at least n−t

ck−(t−1)
are identical. The latter is a lower bound on the size of

a twin class in G − n and thus, by (e), also on t. We have n−t
ck−(t−1)

≤ t whence

n ≤ t(ck + 2− t) ≤ ( ck+2
2 )

2
, as required.

It remains to consider the case k ≤ 1. If k = 0 then G = K2, and if k = 1 and
c = 1 then G = K2, both in accord with what claimed. Thus assume that k = 1 and
c ≥ 2 but, contrary to the claim, |G| ≥ 5. Notice that G contains neither the path
P3 nor K2∪̇K2 as an induced subgraph as neither is in G1. Hence, the non-isolated
vertices of G, if any, form a clique. But then, in the above notation, t ≥ 3 and, by
(†), the lower-right 2× 2 corner of M is of F -rank 2. This is a contradiction. �

We can improve the bound of Theorem 3.1 by a more diligent accounting. For
the sake of brevity, we only establish the asymptotic version of such an improvement.

Theorem 3.2. Under the assumptions of Theorem 3.1, |G| = O(2k + (c− 1)2k).

Proof. We utilize the notation of the proof of Theorem 3.1. As remarked in that
proof, n = O(ck) if t ≤ 2, in accord with our claim. Thus, assume t ≥ 3.

Set r := rkF (D) and let, w.l.o.g., the last r columns of D be linearly independent.
As in Observation 2.1, we can bound the number of distinct rows in M by considering
its last r columns. Namely, among the first n − t rows of M , the distinct ones come
from at most ck−r distinct rows whose last r components are all-zero and at most
ck−r(c − 1)r distinct rows whose last r components have no zero. Proceeding as in
the proof of Theorem 3.1, we find that n ≤ t(ck−r((c − 1)r + 1) + 1). Further, the
number t − 1 of [distinct] rows of D is, again by (†), at most (c − 1)r + r, whence

(‡) n ≤ ((c − 1)r + r + 1)(ck−r((c − 1)r + 1) + 1).
If c ≥ 3 then (‡) implies n = O(ck−r(c−1)2r) which, in turn, implies n = O((c−1)2k),
and if c = 2, (‡) becomes n ≤ (r + 2)(2k−r+1 + 1) = O(2k)—all in accord with the
claim.

4. Concluding Remarks. The following improvements can be made to the ar-
gument for Theorem 3.2 should one desire to derive an exact (rather than asymptotic)
bound there. Below, we assume that (∗) holds and G is a k-critical graph.
1. If a twin-class C of G is an independent set then, by (†), |C| ≤ k+1. Moreover,

|C| = k+1 may hold only if the non-neighbors of C form an independent set
themselves: this is because the direct sum A⊕B of matrices A and B satisfies
rk(A⊕B) = rk(A)+rk(B). In particular, G has at most k−1 isolated vertices
unless G = Kk∪̇Km for some m ∈ N.
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2. Similarly, if a twin-class C of G is a clique and c = 2 then, in the notation of
the proof of Theorem 3.2, r ≤ |C| − 1 ≤ r + (c − 1)r = r + 1 and it is easy
to see that |C| − 1 = r + 1 (equivalently, that the first row of D is a linear
combination of the rest) iff char(F ) divides r; further, r ≤ k and the equality
may hold only if the non-neighbors of C form an independent set.

3. More generally, let f(r, c) denote an upper bound on the size of an F -valued
symmetric matrix D described by (†) such that c(D) ≤ c and rkF (D) = r. In
the proof of Theorem 3.2, we implicitly set f(r, c) := (c−1)r+r and concluded
that n = O(f(r, c)ck−r(c − 1)r). Thus, a tighter f , should one exist, would
lead to a tighter bound in Theorem 3.2. (In the previous remark then, we
showed how to improve f(r, 2) in particular cases.)

4. Finally, in the notation of the proof of Theorem 3.2, the upper bound on the
number of distinct rows among the first n − t rows of M can be reduced by
t − 1− r, the number of those distinct rows with no zero (or no non-zero) in
the last r positions which are already used among the last t − 1 rows of M .
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