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Abstract. This paper concerns the Fibonacci-Horner decomposition of the matrix powers An

and the matrix exponential etA (A ∈ M(r;C), t ∈ R), which is derived from the combinatorial
properties of the generalized Fibonacci sequences in the algebra of square matrices. More precisely,
etA is expressed in a natural way in the so–called Fibonacci-Horner basis with the aid of the dynamical
solution of the associated ordinary differential equation. Two simple processes for computing the
dynamical solution and the fundamental system of solutions are given. The connection to Verde-
Star’s approach is discussed. Moreover, an extension to the computation of f(A), where f is an
analytic function is initiated. Finally, some illustrative examples are presented.
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1. Introduction. It is well known that the computation of etA, where A ∈
M(r;C) (the algebra of square r × r matrices) plays a central role in many fields of
mathematics and applied sciences. There is a large variety of methods for computing
the exponential of a matrix and the differential equation method is among them; see
[4, 6, 7, 9, 12, 13] and references therein. As a consequence, diverse decompositions
of etA have been considered in the literature, associated with various kinds of bases
for the vector space of polynomials; see, e.g., [4, 6, 7, 9, 12, 13, 14]. An approach
for the decomposition of etA related to the combinatorial expression of generalized
Fibonacci sequences (see [8, 10]) is studied in the recent papers [1, 2, 11]. Indeed,
many important results in [1, 2, 11] are derived from combinatorial expressions of
these scalar recursive sequences that have been extended to linear recursive relations
in the algebra of square matrices.

In this paper we provide two elementary methods for computing the exponential
etA (A ∈M(r;C), t ∈ R) in the Fibonacci-Horner basis and give their applications in
some simple situations. Our approach is based on the connection between the linear
recurrence relations inM(r;C) and a combinatorial method for computing the powers
An and etA (see [1, 2, 11]). More precisely, the aforementioned decomposition of etA

is derived from two simple practical processes for computing the dynamical solution
of a specific scalar r-th order homogeneous linear differential equation. Moreover, the
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V - B.P. 1014, Rabat - Morocco (mouline@fsr.ac.ma).

§Mathematics Section, LEGT-F. Arago - Académie de Reims. 1, Rue F. Arago, 51100 Reims -
France (mu.rachidi@wanadoo.fr).

178

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 178-190, May 2006



ELA

Fibonacci-Horner Decomposition of the Matrix Exponential 179

usual polynomial decomposition of etA can be recovered. Finally, an application of
the preceding methods to the computation of f(A), where f is an analytic function,
is also initiated.

This paper is organized as follows. In Section 2, using a standard computation,
we give the basic Fibonacci-Horner basis, as well as the relationship between the
matrix exponential and the system of fundamental solutions of an associated scalar
linear differential equation of order r. We also state our main problem of computing
explicitly the dynamical solution and the fundamental system of solutions of this
differential equation. In Section 3, we illustrate our first method, called elimination
process, providing the dynamical solution of the preceding differential equation. The
decomposition of etA in some important situations is also studied. In Section 4, we
give a functional process which permits us to establish an explicit expression of the
dynamical solution and obtain the Fibonacci-Horner decomposition of etA. Also,
a connection between our approach and the one by Verde-Star is established. In
Section 5, we improve the Fibonacci-Horner decomposition of f(A), when f is an
analytic function. Finally, Section 6 is devoted to some illustrative examples.

2. Fibonacci-Horner decomposition of the matrix exponential and dy-
namical solution. Let A ∈ M(r;C) and let P (z) = zr − a0zr−1 − · · · − ar−1

be its characteristic polynomial. Following the Cayley-Hamilton Theorem we have
P (A) = Θr (the zero r×r matrix). Therefore, the sequence of matrices {An}n≥0 is an
r-generalized Fibonacci sequence in M(r;C), whose coefficients and initial conditions
are a0, · · · , ar−1 and A0 = Ir (the identity matrix), A, · · · , Ar−1, respectively. When
A is invertible, we consider for reasons of convenience the r- generalized Fibonacci
sequence {An}n≥−r+1, whose coefficients and initial conditions are a0, · · · , ar−1 and
A−r+1, · · · , A−1, A0 = Ir, respectively. Following results of [1, 10, 11], we have

An = unA0 + un−1A1 + · · ·+ un−r+1Ar−1, for every n ≥ r,(2.1)

such that

A0 = Ir ; Ai = Ai − a0Ai−1 − · · · − ai−1Ir, for every i = 1, · · · , r − 1(2.2)

and the sequence {un}n≥−r+1 defined by,

un =
∑

k0+2k1+···+rkr−1=n

(k0 + k1 + · · ·+ kr−1)!
k0!k1! · · ·kr−1!

ak0
0 a

k1
1 · · · akr−1

r−1(2.3)

for every n ≥ 1, with u0 = 1 and un = 0 for −r + 1 ≤ n ≤ −1. It was established in
[8, 10] that the sequence {un}n≥−r+1 satisfies the following linear recurrence relation:

un+1 = a0un + a1un−1 + · · ·+ ar−1un−r+1, for every n ≥ 0.(2.4)

In other words, {un}n≥−r+1 is an r-generalized Fibonacci sequence.

In fact, a simple induction shows that the decomposition (2.1) of the powers An

(n ≥ r) is still valid for every r× r complex matrix A (invertible or not), with the Aj

(0 ≤ j ≤ r − 1) given by (2.2) and the sequence {un}n≥−r+1 by (2.3).
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The set of matrices {A0 , A1 , · · · , Ar−1} is called the Fibonacci-Horner basis of
the power decomposition (2.1) of A. Indeed, this basis is derived from the Fibonacci
combinatorial process and we show that each matrix Aj (0 ≤ j ≤ r−1) given by (2.2)
satisfies Aj = hj(A), where h0(z) = 1, h1(z) = z − a0, · · ·, hj(z) = zhj−1(z)− aj−1,
· · ·, hr−1(z) = zhr−2(z) − aj−2 and hr(z) = zhr−1(z)− ar−1 = P (z) are the Horner
polynomials associated with the characteristic polynomial P (z).

For the computation of etA we consider the expression etA =
∑

n≥0
tn

n!A
n. A

straightforward computation using (2.1)-(2.3) allows us to derive the following result.

Proposition 2.1. Let A ∈ M(r ; C) with characteristic polynomial P (z) =
zr − a0zr−1 − · · · − ar−1. Then,

etA = ϕ(r−1)(t)A0 + ϕ(r−2)(t)A1 + · · ·+ ϕ(t)Ar−1,(2.5)

where ϕ(k)(t) is the k-th derivative of function,

ϕ(t) =
+∞∑
n=0

un
tn+r−1

(n+ r − 1)!
.(2.6)

Expression (2.4) shows that ϕ(t) satisfies the following ordinary differential equa-
tion y(r)(t) = a0y

(r−1)(t) + a1y(r−2)(t) + · · · + ar−1y(t). Moreover, using (2.6), we
establish easily that the k-th derivative of the function ϕ(t) satisfies ϕ(k)(0) = 0 for
k = 0, 1, · · · , r− 2 and ϕ(r−1)(0) = 1. Hence, the function ϕ(t) given by (2.6) is noth-
ing else but the dynamical solution of the preceding differential equations (see [7, 13]).
Also (2.5) shows that the coefficients of etA in the Fibonacci-Horner basis are the ele-
ments of the fundamental system of solutions {ϕ(t), ϕ′(t), · · · , ϕ(r−2)(t), ϕ(r−1)(t)} of
the preceding differential equation.

By Proposition 2.1 the decomposition of etA in the Fibonacci-Horner basis, de-
pends on the knowledge of the dynamical solution ϕ(t) given by (2.6). The goal of the
next section is to study the question of computing explicit formulas for this function.

Remark 2.2. Expressions (9)-(10) of [1] give the closed relation between the
Fibonacci decomposition and the polynomial decomposition of the powers and the
exponential of matrices. Expressions (2.1)-(2.2) give An = ρ0(n)Ir + ρ1(n)A + · · ·+
ρr−1(n)Ar−1, where ρk(n) = un−k−1 −

∑k
j=1 ar−k+j−1un−j. Therefore, (2.5) implies

that we have the polynomial decomposition etA =
∑r−1

j=0 Ωj(t)Aj , where Ωk(t) =
tk

k! +
∑

n≥r
tn

n! ρk(n) (see [1]).

Remark 2.3. In [13] improved expressions for An and etA are obtained with the
aid of the dynamical solution. In the latter case, this is done in various forms, using
a specific technique of the theory of divided differences. In Verde-Star’s approach
Horner polynomials play an important role. Moreover, this approach is also consid-
ered in [14] for the study of functions of matrices in connection with partial fraction
decompositions (see [5]). We shall discuss this aspect in Subsection 4.2 below.
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Remark 2.4. Regarding expression (2.6) of the dynamical solution and its
derivatives, knowledge of the eigenvalues of the matrix A is not necessary. ¿From
a computational point of view it seems more convenient to consider (2.6). However,
the problem with this expression is that the coefficients un may grow fast and some-
what irregularly. This occurs when approximations in (2.6) are considered. For this
problem it seems natural to take into account properties of the asymptotic behavior of
r-generalized Fibonacci sequences that have been studied in the literature (see, e.g.,
[3]). Indeed, this may help to control asymptotically the growth and the irregularity
of un for large n, and to study approximations of (2.6).

3. Fibonacci-Horner decomposition of etA : elimination process. Let
A ∈ M(r ; C) and suppose that λ1, λ2, · · · , λp are the distinct roots of its character-
istic polynomial P (z) = zr − a0zr−1 − · · · − ar−1, having multiplicities m1, · · · ,mp,
respectively. It is well known that the dynamical solution ϕ(t) given by (2.6) can be
expressed in the following form:

ϕ(t) = R1(t)etλ1 +R2(t)etλ2 + · · ·+Rp(t)etλp ,(3.1)

where Rj(t) (1 ≤ j ≤ p) are polynomial functions of degree mj − 1. More precisely,
the polynomials Rj(t) (1 ≤ j ≤ p) are derived from the initial conditions

ϕ(0) = ϕ′(0) = · · · = ϕ(r−2)(0) = 0 , and ϕ(r−1)(0) = 1.(3.2)

For a matrix A of large order r, computing the polynomials Rj(t) (1 ≤ j ≤ p)
by (3.2) is not a very simple task in general. Meanwhile, recently Verde-Star’s theory
permits to obtain the polynomials Rj(t) (1 ≤ j ≤ s) using the method of divided
difference (see [13]). In Subsection 4.2 we bring focus to this observation.

The aim of this section is to disassociate the value of the polynomials Rj(t)
(1 ≤ j ≤ p) from the linear systems that we construct, using only a direct computation
and without resorting to existing techniques in the literature. Thus, we derive the
explicit Fibonacci-Horner decomposition of etA with the aid of (2.5)-(2.6) and (3.2).
For reasons of clarity, we shall first illustrate our method in the three cases p = 1, 2
and 3.

Suppose that the characteristic polynomial P (z) = zr − a0zr−1 − · · · − ar−1 of
the matrix A has a unique root λ; that is, P (z) = (z − λ)r. Therefore, expression
(3.1) of the dynamical solution can be written as ϕ(t) = R(t)eλt, where R(t) is
a polynomial of degree r − 1. If we consider the Taylor expansion of R(t) we have
R(t) =

∑r−1
k=0

R(k)(0)
k! tk = ϕ(t)e−λt. The initial conditions (3.2) imply that R(k)(0) = 0

for 0 ≤ k ≤ r − 2 and R(r−1)(0) = 1. Hence, we have the following result.

Proposition 3.1. Let A ∈ M(r ; C) with characteristic polynomial P (z) =
(z − λ)r. Then, etA = ϕ(r−1)(t)A0 + ϕ(r−2)(t)A1 + · · · + ϕ(t)Ar−1, where ϕ(k)(t) is
the k-th derivative of the function ϕ(t) = tr−1

(r−1)!e
tλ.
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Suppose that the characteristic polynomial P (z) = zr−a0zr−1−· · ·−ar−1 of the
matrix A has two distinct roots λ1 and λ2, of multiplicities m1 and m2, respectively,
where m1 + m2 = r. Hence, we have P (z) = (z − λ1)m1(z − λ2)m2 and expression
(3.1) of the dynamical solution can be written as ϕ(t) = R1(t)eλ1t +R2(t)eλ2t, where
Rj(t) (j = 1, 2) is a polynomial of degree mj −1. The main task here is to determine
the explicit formulas of the polynomials Rj(t) (j = 1, 2). Starting from the Taylor

expansions Rj(t) =
∑mj−1

k=0

R
(k)
j (0)

k! tk of Rj(t) (j = 1, 2), we determine first the poly-
nomial R1(t). Since R2(t) is of degree m2−1 and ϕ(t)e−λ2t = R1(t)e(λ1−λ2)t +R2(t),
we can eliminate R2(t) after the derivative of order m2 of both sides of this later
expression. Indeed, we have

ψ(t) = ϕ1(t)e−λ2t =
m2∑
l=0

(lm2
)R(l)

1 (t)(λ1 − λ2)m2−l,

where (jn) = n!
j!(n−j)! and ϕ1(t) =

∑m2
s=0(

s
m2

)(−λ2)m2−sϕ(s)(t). If we set Cl =

(lm2
)(λ1 − λ2)m2−l, we have ψ(k)(t) =

∑m2
l=0 ClR

(l+k)
1 (t), with 0 ≤ l + k ≤ m1 − 1.

Since ϕ(k)(0) = 0 for 0 ≤ k ≤ r − 2 and ϕ(r−1)(0) = 1, we derive that ϕ(k)
1 (0) = 0 for

0 ≤ k ≤ m1 − 2 and ϕ(m1−1)
1 (0) = 1. Hence, for k = m1 − 1 we have ψ(m1−1)(0) = 1

and ψ(k)(0) = 0 for k = 0, · · ·, m1 − 2. These equations imply that the Taylor coeffi-
cients R(k)

1 (0) (0 ≤ k ≤ m1 − 1) of the polynomial R1(t) satisfy the following system
of linear equations:

C0R
(m1−1)
1 (0) = 1 and

s−1∑
j=0

CjR
(m1−s+j)
1 (0) = 0 for 2 ≤ s ≤ m1 − 1.(3.3)

The same argumentation shows that the Taylor coefficients of the polynomial R2(t)
satisfy the following system of linear equations:

K0R
(m2−1)
2 (0) = 1 and

s−1∑
j=0

KjR
(m2−s+j)
2 (0) = 0 for 2 ≤ s ≤ m2 ,(3.4)

where Kl = (lm2
)(λ2 − λ1)m2−l. Since λ1 	= λ2, a simple iterative process shows that

each one of the two systems (3.3) and (3.4) has a unique solution.

Proposition 3.2. Let A ∈ M(r ; C) with characteristic polynomial P (z) =
(z − λ1)m1(z − λ2)m2 (m1 +m2 = r). Then, etA = ϕ(r−1)(t)A0 +ϕ(r−2)(t)A1 + · · ·+
ϕ(t)Ar−1, where ϕ(t) = R1(t)etλ1 + R2(t)etλ2 is the associated dynamical solution;
R1(t), R2(t) are polynomials of degree m1 − 1, m2 − 1, respectively, whose Taylor
coefficients R(k)

j (0) (j = 1, 2 and 0 ≤ k ≤ mj −1) are solutions of the two elementary
linear systems of equations (3.3)-(3.4).

The preceding method can be extended to the case of distinct roots λ1, · · · , λp

(p ≥ 3) of P (z). For reason of clarity, let us suppose that P (z) = zr − a0zr−1 −
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· · · − ar−1 has three distinct roots λ1, λ2 and λ3 of multiplicities m1, m2 and m3,
respectively, where m1+m2+m3 = r ; that is P (z) = (z−λ1)m1(z−λ2)m2(z−λ3)m3 .
Therefore, (3.1) can be written as ϕ(t) = R1(t)eλ1t + R2(t)eλ2t + R3(t)eλ3t, where
Rj(t) (j = 1, 2, 3) is a polynomial of degree mj − 1. The main task here is to
determine the explicit expressions of each polynomial Rj(t) (j = 1, 2, 3). As in the
preceding case, we are going to exhibit the polynomial R1(t). To this aim, we consider

the Taylor expansions Rj(t) =
∑mj−1

k=0

R
(k)
j (0)

k! tk of Rj(t) (j = 1, 2, 3). Since R3(t) is
of degree m3 − 1 and ϕ(t)e−λ3t = R1(t)e(λ1−λ3)t + R2(t)e(λ2−λ3)t + R3(t), we derive
that

ϕ3(t)e−λ3t =


 m3∑

j=0

(jm3
)R(j)

1 (t)(λ1 − λ3)m3−j


 e(λ1−λ3)t +R2,3(t)e(λ2−λ3),(3.5)

where ϕ3(t) =
∑m3

j=0(
j
m3

)(−λ3)m3−jϕ(j)(t) and R2,3(t) is a polynomial of degreem2−
1. We show that the polynomial R3(t) is eliminated after m3 derivations of both sides
of (3.5). In the same way, after some simplifications and m2 derivations of both sides
of Expression (3.5), we also eliminate the polynomial R2,3(t). More precisely, we have

dm2

dtm2

[
ϕ3(t))e−λ2t

]
=


 ∑

0≤i≤m2; 0≤j≤m3

Ci , jR
(i+j)
1 (t)


 e(λ1−λ2)t,(3.6)

where Ci , j = (im2
)(jm3

)(λ1 − λ2)m2−i(λ1 − λ3)m3−j . On the other hand, the left side
of (3.6) can be written as

dm2

dtm2
[ϕ3(t)e−λ3t] = ϕ2(t)e−λ2t,

where ϕ2(t) =
∑m2

j=0(
j
m2

)(−λ2)m2−jϕ
(j)
3 (t). Therefore, we have

Ψ(t) = ϕ2(t)e−λ1t =
∑

0≤i≤m2; 0≤j≤m3

Ci , jR
(i+j)
1 (t),(3.7)

where Ci , j = (im2
)(jm3

)(λ1 − λ2)m2−i(λ1 − λ3)m3−j . More precisely, (3.7) can be
written as

Ψ(t) =
m2+m3∑

s=0

CsR
(s)
1 (t),(3.8)

where

Cs =
∑

i+j=s; 0≤i≤m2; 0≤j≤m3

(im2
)(jm3

)(λ1 − λ2)m2−i(λ1 − λ3)m3−j .(3.9)
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Since ϕ(t) is the dynamical solution given by (2.6), we have ϕ(k)(0) = 0 for
0 ≤ k ≤ r − 2 and ϕ(r−1)(0) = 1. Therefore, (3.5) shows that ϕ(k)

3 (0) = 0 for
0 ≤ k ≤ m1 +m2 − 2 and ϕ(m1+m2−1)

3 (0) = 1. Hence, (3.7) implies that Ψ(k)(0) = 0,
for 0 ≤ k ≤ m1 − 2 and Ψ(m1−1)(0) = 1. Since

Ψ(k)(t) =
m2+m3∑

s=0

CsR
(s+k)
1 (t),

we deduce that for k = m1 − 1, m1 − 2, · · · , 2, 1, 0, respectively, the Taylor
coefficients R(k)

1 (0) (0 ≤ k ≤ m1 − 1) of the polynomial R1(t) satisfy the following
system of equations:

C0R
(m1−1)
1 (0) = 1 and

s−1∑
j=0

CjR
(m1−s+j)
1 (0) = 0 for 2 ≤ s ≤ m1,(3.10)

where the Cj are given by Expression (3.9). In the same way, the computation of the
Taylor coefficients R(k)

p (0) of the polynomial Rp(t) (p = 2, 3), are derived from the
following systems of equations:

D0R
(m2−1)
2 (0) = 1,

s−1∑
j=0

DjR
(m2−s+j)
2 (0) = 0 for 2 ≤ s ≤ m2(3.11)

and

E0R
(m3−1)
3 (0) = 1,

s−1∑
j=0

EjR
(m3−s+j)
3 (0) = 0 for 2 ≤ s ≤ m3.(3.12)

Therefore, for p = 3 the exponential etA is given as follows.

Proposition 3.3. Let A ∈ M(r ; C) with characteristic polynomial P (z) =
(z − λ1)m1(z − λ2)m2(z − λ3)m3 (m1 +m2 +m3 = r). Then, etA = ϕ(r−1)(t)A0 +
ϕ(r−2)(t)A1 + · · · + ϕ(t)Ar−1, where ϕ(t) = R1(t)etλ1 + R2(t)etλ2 + R3(t)etλ3 is the
associated dynamical solution such that R1(t), R2(t), R3(t) are polynomials of degree
m1 − 1, m2 − 1, m3 − 1, respectively, whose Taylor coefficients R(k)

j (0) (j = 1 2, 3,
0 ≤ k ≤ mj − 1) are solutions of the three elementary linear system of equations
(3.10), (3.11) and (3.12).

Following the same method, the process of elimination given in Propositions 3.1,
3.2 and 3.3 can be extended recursively to the general case. Indeed, we have the
following general result.

Theorem 3.4. Let A ∈ M(r ; C) (r ≥ 2) with characteristic polynomial P (z) =∏p
j=1(z − λj)mj , where p ≥ 3, m1 + · · ·+mp = r and λi 	= λj for i 	= j. For every j
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(1 ≤ j ≤ p), set

C
[j]
l =

∑
P

1≤s �=j≤p ks=l


 p∏

s=1, s�=j

(ks
ms

)(λj − λs)ms−ks


 .(3.13)

Then, etA = ϕ(r−1)(t)A0+ϕ(r−2)(t)A1+ · · ·+ϕ(t)Ar−1, where ϕ(t) =
∑p

j=1 Rj(t)eλj t

is the dynamical solution whose associated polynomials Rj(t) (0 ≤ j ≤ p) are solutions
of the following system of linear equations:

C
[j]
0 R

(mj−1)
j (0) = 1 and

s−1∑
l=0

C
[j]
l R

(mj−s+l)
j (0) = 0 for 2 ≤ s ≤ mj ,(3.14)

where the coefficients C[j]
l (0 ≤ l ≤ ∑

i=1, i�=jmi) are given by (3.13).

As shown in Theorem 3.4 the process of elimination is simple and the technique
seems to be more appropriate (from a computational point of view) for deriving the
explicit formulas of the coefficients of the polynomials Rj(t) (0 ≤ j ≤ p).

In the next Section we supply another process for the explicit expression of the
dynamical solution and obtain the Fibonacci-Horner decomposition of etA.

4. Fibonacci-Horner decomposition of etA : functional process.

4.1. Explicit formula of the dynamical solution. Let A ∈M(r ; C) (r ≥ 2),
whose characteristic polynomial is P (z) =

∏p
j=1(z − λj)mj (λi 	= λj for i 	= j). Let

ϕ(t) = R1(t)eλ1t + · · ·+Rp(t)eλp , where Rj(t) (1 ≤ j ≤ s) is a polynomial of degree
mj − 1, be the dynamical solution associated with the matrix A. In this subsection
we give a functional method for computing explicit formulas of the polynomials Rj(t)
(1 ≤ j ≤ p) and derive the Fibonacci-Horner decomposition of the exponential etA.

For reasons of clarity, let us first illustrate our method in the case p = 3. Suppose
that P (z) =

∏3
j=1(z − λj)mj , where λi 	= λj for 1 ≤ i 	= j ≤ 3 and m1 ≥ 1, m2 ≥ 1

andm3 ≥ 1. Let ϕ(t) = R1(t)etλ1+R2(t)etλ2 +R3(t)etλ3 be the associated dynamical
solution, where R1(t), R2(t), R3(t) are polynomials of degree m1 − 1, m2 − 1, m3 − 1
(respectively). We project to determine the polynomial R1(t) by computing its Taylor
coefficients R(k)

1 (0) (0 ≤ k ≤ m1 − 1). To this aim, consider the polynomial function,

Q1(z) = (z + λ1 − λ2)m2(z + λ1 − λ3)m3 .

A direct verification shows that expression (3.9) of Cs is given by Cs = 1
s!

dsQ1
dzs (0).

Therefore, the solution of the linear system of equations (3.10) is

R
(k)
1 (0) =

1
(m1 − k − 1)!

d(m1−k−1)( 1
Q1

)

dz(m1−k−1)
(0).(4.1)

To avoid confusion, in the rest of this subsection it is convenient to denote R(k)
1 (0)

by γ[1]
k (λ1, λ2, λ3). A straightforward computation, using the derivation Leibniz rule,
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allows us to establish that (4.1) can be written as

γ
[1]
k (λ1, λ2, λ3) = (−1)m1+k−1

X

n2+n3=m1−k−1

(n2
n2+m2−1)(

n3
n3+m3−1)

(λ1 − λ2)n2+m2(λ1 − λ3)n3+m3
.(4.2)

Thus the Taylor expansion of the polynomial R1(t) is given by

R1(t) =
m1−1∑
k=0

γ
[1]
k (λ1, λ2, λ3)

k!
tk,(4.3)

where γ[1]
k (λ1, λ2, λ3) is given by (4.2). In the same way, an identical computation

implies that the polynomials R2(t) and R3(t) are given by

R2(t) =
m2−1∑
k=0

γ
[2]
k (λ1, λ2, λ3)

k!
tk and R3(t) =

m3−1∑
k=0

γ
[3]
k (λ1, λ2, λ3)

k!
tk,(4.4)

where γ[2]
k (λ1, λ2, λ3) = γ

[1]
k (λ2, λ1, λ3) and γ

[3]
k (λ1, λ2, λ3) = γ

[1]
k (λ3, λ1, λ2). Thus we

have the following proposition.

Proposition 4.1. Let A ∈ M(r ; C) with characteristic polynomial P (z) =
(z − λ1)m1(z − λ2)m2(z − λ3)m3 (m1 + m2 + m3 = r), where λi 	= λj for i 	= j.
Then, etA = ϕ(r−1)(t)A0 + ϕ(r−2)(t)A1 + · · · + ϕ(t)Ar−1, where ϕ(t) = R1(t)etλ1 +
R2(t)etλ2 + R3(t)etλ3 is the associated dynamical solution such that the polynomials
R1(t), R2(t) and R3(t) are given by (4.3) and (4.4).

Now let A ∈ M(r;C) and suppose that its characteristic polynomial is P (z) =∏p
j=0(z − λj)mj , where λi 	= λj for i 	= j. In the aim to generalize the preceding

method, let us consider the polynomial function

Qi(z) =
p∏

j=1,i�=j

(z + λi − λj)mj .

Following the same method, as in the case p = 3, we obtain,

γ
[i]
k (λ1, · · · , λp) =

1
(mi − k − 1)!

d(mi−k−1)( 1
Qi

)

dz(mi−k−1)
(0).(4.5)

And a long hard computation established by induction with purpose of obtaining
d(mi−k−1)( 1

Qi
)

dz(mi−k−1)
(0) in terms of λ1, · · · , λp yields

γ
[i]
k (λ1, · · · , λp) = (−1)r−mi

∑
P

nj=mi−k−1

∏
1≤j �=i≤p

(nj

nj+mj−1)

(λj − λi)nj+mj
.(4.6)

In the latter expression we suppose that we have naturally nj ≤ mj .
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Theorem 4.2. Let A ∈M(r ; C) (r ≥ 2) with characteristic polynomial P (z) =∏p
j=1(z − λj)mj , where p ≥ 3, m1 + · · · + mp = r and λi 	= λj for i 	= j. Then,

etA = ϕ(r−1)(t)A0 + ϕ(r−2)(t)A1 + · · · + ϕ(t)Ar−1, where ϕ(t) =
∑p

j=1 Rj(t)eλjt is
the dynamical solution, whose associated polynomials Rj(t) (1 ≤ j ≤ p) are expressed
as follows:

Rj(t) =
mj−1∑
k=0

γ
[j]
k (λ1, · · · , λp)

k!
tk,(4.7)

where the coefficients γ[j]
k (λ1, · · · , λp) are given by (4.6).

For p = 3 in (4.6), we can recover expressions for γ[1]
k (λ1, λ2, λ3), γ

[2]
k (λ1, λ2, λ3)

and γ[3]
k (λ1, λ2, λ3). We can also show that Proposition 4.1 is a corollary of Theorem

4.2.

4.2. Connection with the Verde-Star’s approach. As pointed out in Re-
mark 2.3, in this subsection we turn our attention to how our approach is connected to
Verde-Star’s approach. First, we notice that the dynamical solution given in Theorem
4.2, can be expressed differently using Verde-Star’s approach. Indeed, we can show
that Rj(t) = Lk,j1, where Lk,j (1 ≤ k ≤ p, 0 ≤ j ≤ mk) are the functionals associ-

ated with the polynomial P (z) =
∏p

j=1(z − λj)mj , defined by Lk,jf = Eλk
dj(

f

Pk
),

where Ea(f) = f(a), dj =
Dj

j!
(D is ordinary operator of differentiation) and

Pk(z) =
P (z)

(z − λk)mk
(see (3.2)-(3.6) of [13] for more details). More precisely, the

result of Theorem 4.2 is expressed in Corollary 4.2 of [13] in terms of the functionals
Lk,j .

Second, in [14] Verde-Star has arrived at the result of Theorem 4.2 using the
sequence of Horner polynomials {wk(z)}k associated with a given polynomial w(z) =
zm+1 + b1zm + b2zm−1 + · · · + bm and the function w�(t) = (1 − zt)∑

k≥0 wk(z)tk.

The formulation of
1

w�(t)
given by Verde-Star is

1
w�(t)

=
∑
n≥0

hnt
n,

where hn =
∑

j ;|j|=n

∏p
i=0(

mi+ji

ji
)λj

i with j = (j0, j1, · · · , jp), |j| = j1 + j2 + · · ·+ jp
and {λj}0≤j≤p are the roots of w(z) of multiplicities {mj}0≤j≤p, respectively. We
infer that for w(z) = P (z) the sequence {hn}n≥0 is nothing else but the r-generalized
Fibonacci sequence {un}n≥0 considered in Section 2 (see Expression (2.4)). By the
way, we are going to digress from our aim in order to mention that this incorporation
allows us to obtain another explicit expression for the sequence {un}n≥0 in terms of
λj (1 ≤ j ≤ p), which will be useful in improving some results of [1]. Meanwhile,
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for w(z) = P (z) the formulas (5.7) and (5.12) of [14], can help us to deduce that the
coefficients of the polynomials Rj(t) (1 ≤ j ≤ p) are merely the coefficients αj,k that

figure in the partial fraction decomposition of
1
P (t)

given by

1
P (t)

=
p∑

j=1

mj−1∑
k=0

αj,k
1

(t− λj) .k
.

Moreover, following a known result, the dynamical solution ϕ(t) is the divided differ-
ence with respect to the roots of the polynomial P (z) of the function etz (see Corollary
4.1 of [13]). Therefore, ϕ(t) is the sum of the residues of the function etz/P (z) at
the distinct roots (see [13]). By considering this latter function g(x, t) = etx/P (x)
(x ∈ R), a direct computation allows us to recover the result of Proposition 4.1.

5. Application to the matrix functions. Consider an analytic function f on
a disc DK = {z ; |z| < K} and set

f(z) =
+∞∑
n=0

f (n)(0)
n!

zn.(5.1)

Let A ∈ M(r ; C) with characteristic polynomial PA(z) = zr − a0zr−1 − · · · − ar−1

such that K > Max{| λj | ; PA(λj) = 0}. Then, from (2.1)-(2.2) and (5.1) we derive
that,

f(A) =
r−1∑
k=0

Ωk(f)Ak, where Ωk(f) =
+∞∑
n=0

un−k
f (n)(0)
n!

.(5.2)

Recall that in Proposition 2.1, we had considered the (formal) analytic function
(2.6) defined by

ϕ(t) =
+∞∑
n=0

un
tn+r−1

(n+ r − 1)!
.

The above expression shows that un−r+1 = ϕ(n)(0). On the other hand, (3.1) shows

that ϕ(n)(t) =
p∑

i=1

n∑
s=n−mi+1

(sn)λ
s
iR

(n−s)
i (t). Hence, using (5.2) we have the following

proposition.

Proposition 5.1. Under the preceding hypotheses, we have f(A) =
r−1∑
k=0

Ωk(f)Ak,

where

Ωk(f) =
p∑

i=1

[
+∞∑
n=k

Γi,n(λ1, · · · , λp)
f (n)(0)
n!

]
(5.3)
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with

Γi,n(λ1, · · · , λp) =
n−k+r−1∑

s=n−k+r−mi

(sn−k+r−1)λ
s
iY

<i>
n−s+r−k−1(λ1, · · · , λp),

where we have set

Y <i>
n (λ1, · · · , λp) = R

(n)
i (0).

To the best of our knowledge, expressions (5.2)–(5.3) of f(A) are new in the
literature. Note that a formula analogous to (5.2) also appears in [14]. We would like
to note that it is an interesting issue to illustrate the deep relationship between our
development and that of Verde-Star, even though the two approaches are based on
different techniques.

6. Examples. In the two first examples we illustrate the applicability of Theo-
rem 4.2. The last example concerns the practical use of Proposition 5.1 on a classical
matrix function.

Example 1. Suppose that A ∈M(r ; C) (r ≥ 2) has characteristic polynomial with
simple roots, that is, P (z) =

∏r
j=1(z − λj), such that λi 	= λi (i 	= j). Then, the

dynamical solution associated with A is given by ϕ(t) = R1e
λ1t + · · ·+Rre

λrt, where
Ri(t) = Ri is a constant polynomial for every i (1 ≤ i ≤ r). Application of (4.6)
allows us to derive that

Ri = γ
[i]
0 = (−1)r−1 1∏

j �=i(λj − λi)
=

1∏
j �=i(λi − λj)

=
1

P ′(λi)
.

Therefore, the dynamical solution associated with matrix A is

ϕ(t) =
r∑

i=1

etλi

P ′(λi)
.(6.1)

Expression (6.1) is well–known in the literature; see, e.g., [2, 9, 13]. Hence, the
decomposition of etA in the Fibonacci-Horner basis can be obtained easily.

Example 2. Suppose that A ∈ M(3 ; C) has characteristic polynomial P (z) =
(z − λ1)2(z − λ2), where λ1 	= λ2. Then the dynamical solution associated with A is
given by ϕ(t) = R1(t)eλ1t + R2e

λ2t, where R1(t) is a polynomial of degree 1 and R2

is a constant polynomial. More precisely, it is easy to show that R1(t) = γ
[1]
0 + γ[1]

1 t

and R2(t) = γ
[2]
0 ∈ C. Application of (4.6) shows that

γ
[1]
0 = − 1

(λ1 − λ2)2
, γ

[1]
1 =

1
(λ1 − λ2)

and γ[2]
0 =

1
(λ1 − λ2)2

.

The dynamical solution associated with the matrix A is given by

ϕ(t) =
[
− 1
(λ1 − λ2)2

+
t

(λ1 − λ2)

]
eλ1t +

1
(λ1 − λ2)2

eλ2t.
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Thus, the decomposition of etA in the Fibonacci-Horner basis can be derived easily.

Example 3. As in Example 2, let A ∈ M(3 ; C) whose characteristic polynomial is
P (z) = (z−λ1)2(z−λ2) with λ1 	= λ2. Consider the function f(z) = Log(1+z). If we

consider the analytic expression f(z) =
+∞∑
n=1

(−1)n+1 z
n

n
, a straightforward application

of Proposition 5.1 implies that f(A) = Ω0(f)A0 +Ω1(f)A1, where

Ω0(f) =
+∞∑
n=1

[
λn+2

2 − λn+2
1

(λ2 − λ1)2
+ (n+ 2)

λn+1
1

λ1 − λ2

]
(−1)n−1

n

and

Ω1(f) =
+∞∑
n=1

[
λn+1

2 − λn+1
1

(λ2 − λ1)2
+ (n+ 1)

λn
1

λ1 − λ2

]
(−1)n−1

n
.

Acknowledgment. We would like to express deep gratitude to a referee for
valuable suggestions that improved a large part of this paper, especially Section 4.
References [5] and [14] were also pointed out by the referee. We thank Professor L.
Verde-Star for his kindness in sending us some of his papers.

REFERENCES

[1] R. Ben Taher and M. Rachidi. Linear recurrence relations in the algebra of matrices and appli-
cations. Linear Algebra and its Applications, 330:15–24, 2001.

[2] R. Ben Taher and M. Rachidi. Some explicit formulas for the polynomial decomposition of the
matrix exponential and applications. Linear Algebra and its Applications, 350(1-3):171–184,
2002.

[3] R. Ben Taher and M. Rachidi. Application of the ε-algorithm to the ratios of r-generalized
Fibonacci sequences. Fibonacci Quarterly, 39(1):22–26, 2001.

[4] F.R. Gantmacher. Theory of matrices. Chelsea Publishing Company, New York, 1959.
[5] P. Henrici. Applied and Computational Complex Analysis, Vol. 1. J. Wiley, New York, 1974.
[6] I.I. Kolodner. On exp(tA) with A satisfying a polynomial. Journal of Mathematical Analysis

and Applications, 52:514–524, 1975.
[7] I.E. Leonardo. The matrix exponential. SIAM Review, 38(3):507–512, 1996.
[8] C. Levesque. On m-th order linear recurrences. Fibonacci Quarterly, 23(4):290–295, 1985.
[9] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of matrix. SIAM

Review, 20(4):801–836, 1978.
[10] M. Mouline and M. Rachidi. Application of Markov Chains properties to r-Generalized Fibonacci

Sequences. Fibonacci Quarterly, 37:34–38, 1999.
[11] M. Mouline and M. Rachidi. Suites de Fibonacci généralisées, Théorème de Cayley-Hamilton
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