EIGENVALUES AND EIGENVECTORS OF TRIDIAGONAL MATRICES*

SAID KOUACHI ${ }^{\dagger}$

Abstract

This paper is continuation of previous work by the present author, where explicit formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by WenChyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the corresponding eigenvectors of tridiagonal matrices, is generalized. Expressions for the eigenvectors are obtained that differ completely from those obtained by Yueh. The techniques used herein are based on theory of recurrent sequences. The entries situated on each of the secondary diagonals are not necessary equal as was the case considered by Yueh.

Key words. Eigenvectors, Tridiagonal matrices.
AMS subject classifications. 15 A 18 .

1. Introduction. The subject of this paper is diagonalization of tridiagonal matrices. We generalize a result obtained in [5] concerning the eigenvalues and the corresponding eigenvectors of several tridiagonal matrices. We consider tridiagonal matrices of the form

$$
A_{n}=\left(\begin{array}{cccccc}
-\alpha+b & c_{1} & 0 & 0 & \ldots & 0 \tag{1}\\
a_{1} & b & c_{2} & 0 & \cdots & 0 \\
0 & a_{2} & b & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & c_{n-1} \\
0 & \ldots & \ldots & 0 & a_{n-1} & -\beta+b
\end{array}\right)
$$

where $\left\{a_{j}\right\}_{j=1}^{n-1}$ and $\left\{c_{j}\right\}_{j=1}^{n-1}$ are two finite subsequences of the sequences $\left\{a_{j}\right\}_{j=1}^{\infty}$ and $\left\{c_{j}\right\}_{j=1}^{\infty}$ of the field of complex numbers \mathbb{C}, respectively, and α, β and b are complex numbers. We suppose that

$$
a_{j} c_{j}=\left\{\begin{array}{l}
d_{1}^{2}, \text { if } j \text { is odd } \tag{2}\\
d_{2}^{2}, \text { if } j \text { is even }
\end{array} \quad j=1,2, \ldots,\right.
$$

where d_{1} and d_{2} are complex numbers. We mention that matrices of the form (1) are of circulant type in the special case when $\alpha=\beta=a_{1}=a_{2}=\ldots=0$ and all the entries on the subdiagonal are equal. They are of Toeplitz type in the special case when $\alpha=\beta=0$ and all the entries on the subdiagonal are equal and those on the superdiagonal are also equal (see U. Grenander and G. Szego [4]). When the

[^0]entries on the principal diagonal are not equal, the calculi of the eigenvalues and the corresponding eigenvectors becomes very delicate (see S. Kouachi [6]).
When $a_{1}=a_{2}=\ldots=c_{1}=c_{2}=\ldots=1, b=-2$ and $\alpha=\beta=0$, the eigenvalues of A_{n} has been constructed by J. F. Elliott [2] and R. T. Gregory and D. Carney [3] to be
$$
\lambda_{k}=-2+2 \cos \frac{k \pi}{n+1}, k=1,2, \ldots, n
$$

When $a_{1}=a_{2}=\ldots=c_{1}=c_{2}=\ldots=1, b=-2$ and $\alpha=1$ and $\beta=0$ or $\beta=1$, the eigenvalues has been reported to be

$$
\lambda_{k}=-2+2 \cos \frac{k \pi}{n}, k=1,2, \ldots, n
$$

and

$$
\lambda_{k}=-2+2 \cos \frac{2 k \pi}{2 n+1}, k=1,2, \ldots, n
$$

respectively without proof.
W. Yueh[1] has generalized the results of J. F. Elliott [2] and R. T. Gregory and D. Carney [3] to the case when $a_{1}=a_{2}=\ldots=a, c_{1}=c_{2}=\ldots=c$ and $\alpha=0, \beta=\sqrt{a c}$ or $\alpha=0, \beta=-\sqrt{a c}$ or $\alpha=-\beta=\sqrt{a c}$
$\alpha=\beta=\sqrt{a c}$ or $\alpha=\beta=-\sqrt{a c}$. He has calculated, in this case, the eigenvalues and their corresponding eigenvectors

$$
\lambda_{k}=b+2 \sqrt{a c} \cos \theta_{k}, k=1, . ., n
$$

where $\theta_{k}=\frac{2 k \pi}{2 n+1}, \frac{(2 k-1) \pi}{2 n+1}, \frac{(2 k-1) \pi}{2 n}, \frac{k \pi}{n}$ and $\frac{(k-1) \pi}{n}, k=1, . ., n$ respectively.
In S. Kouachi[5], we have generalized the results of W. Yueh [1] to more general matrices of the form (1) for any complex constants satisfying condition

$$
a_{j} c_{j}=d^{2}, j=1,2, \ldots
$$

where d is a complex number. We have proved that the eigenvalues remain the same as in the case when the a_{i} 's and the c_{i} 's are equal but the components of the eigenvector $u^{(k)}(\sigma)$ associated to the eigenvalue λ_{k}, which we denote by $u_{j}^{(k)}(\sigma), j=1, . ., n$, are of the form

$$
u_{j}^{(k)}(\sigma)=(-d)^{1-j} a_{\sigma_{1} \ldots a_{\sigma_{j-1}} u_{1}^{(k)} \frac{d \sin (n-j+1) \theta_{k}-\beta \sin (n-j) \theta_{k}}{d \sin n \theta_{k}-\beta \sin (n-1) \theta_{k}}, j=1, \ldots, n, ~, ~, ~}^{\text {, }}
$$

where θ_{k} is given by formula

$$
d^{2} \sin (n+1) \theta_{k}-d(\alpha+\beta) \sin n \theta_{k}+\alpha \beta \sin (n-1) \theta_{k}=0, k=1, \ldots, n .
$$

Recently in S. Kouachi [6], we generalized the above results concerning the eigenvalues of tridiagonal matrices (1) satisfying condition (2), but we were unable to calculate the corresponding eigenvectors, in view of the complexity of their expressions. The
matrices studied by J. F. Elliott [2] and R. T. Gregory and D. Carney [3] are special cases of those considered by W. Yueh[1] which are, at their tour, special cases with regard to those that we have studied in S. Kouachi [5]. All the conditions imposed in the above papers are very restrictive and the techniques used are complicated and are not (in general) applicable to tridiagonal matrices considered in this paper even tough for small n. For example, our techniques are applicable for all the 7×7 matrices

$$
A_{7}=\left(\begin{array}{ccccccc}
5-4 \sqrt{2} & 9 & 0 & 0 & 0 & 0 & 0 \\
6 & 5 & 8 & 0 & 0 & 0 & 0 \\
0 & 4 & 5 & -3 & 0 & 0 & 0 \\
0 & 0 & -18 & 5 & 5+i \sqrt{7} & 0 & 0 \\
0 & 0 & 0 & 5-i \sqrt{7} & 5 & -27 i & 0 \\
0 & 0 & 0 & 0 & 2 i & 5 & -1 \\
0 & 0 & 0 & 0 & 0 & -32 & 5-3 \sqrt{6}
\end{array}\right)
$$

and

$$
A_{7}^{\prime}=\left(\begin{array}{ccccccc}
5-4 \sqrt{2} & 54 i & 0 & 0 & 0 & 0 & 0 \\
-i & 5 & -16 & 0 & 0 & 0 & 0 \\
0 & -2 & 5 & 6 i & 0 & 0 & 0 \\
0 & 0 & -9 i & 5 & -8 i \sqrt{2} & 0 & 0 \\
0 & 0 & 0 & 2 i \sqrt{2} & 5 & -18 i & 0 \\
0 & 0 & 0 & 0 & 3 i & 5 & 2+2 i \\
0 & 0 & 0 & 0 & 0 & 8-8 i & 5-3 \sqrt{6}
\end{array}\right),
$$

and guarantee that they possess the same eigenvalues and in addition they give their exact expressions (formulas (15) lower) since condition (2) is satisfied:

$$
\begin{aligned}
\lambda_{1}, \lambda_{4} & =5 \pm \sqrt{(3 \sqrt{6})^{2}+(4 \sqrt{2})^{2}+2(3 \sqrt{6})(4 \sqrt{2}) \cos \left(\frac{2 \pi}{7}\right)}, \\
\lambda_{2}, \lambda_{5} & =5 \pm \sqrt{(3 \sqrt{6})^{2}+(4 \sqrt{2})^{2}+2(3 \sqrt{6})(4 \sqrt{2}) \cos \left(\frac{4 \pi}{7}\right)} \\
\lambda_{3}, \lambda_{6} & =5 \pm \sqrt{(3 \sqrt{6})^{2}+(4 \sqrt{2})^{2}+2(3 \sqrt{6})(4 \sqrt{2}) \cos \left(\frac{6 \pi}{7}\right)} \\
\lambda_{7} & =5-(3 \sqrt{6}+4 \sqrt{2})
\end{aligned}
$$

whereas the recent techniques are restricted to the limited case when the entries on the subdiagonal are equal and those on the superdiagonal are also equal and the direct calculus give the following characteristic polynomial

$$
\begin{aligned}
P(\lambda)= & \lambda^{7}+(4 \sqrt{2}+3 \sqrt{6}-35) \lambda^{6}+(24 \sqrt{3}-120 \sqrt{2}-90 \sqrt{6}+267) \lambda^{5}+ \\
& (684 \sqrt{2}-600 \sqrt{3}+447 \sqrt{6}+2075) \lambda^{4}+(6320 \sqrt{2}+1872 \sqrt{3}+6060 \sqrt{6}-23893) \lambda^{3}+ \\
& (31920 \sqrt{3}-47124 \sqrt{2}-33891 \sqrt{6}-24105) \lambda^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +(369185-98568 \sqrt{3}-114090 \sqrt{6}-44760 \sqrt{2}) \lambda \\
& +(365828 \sqrt{2}-239160 \sqrt{3}+142833 \sqrt{6}+80825)
\end{aligned}
$$

for which the roots are very difficult to calculate (degree of $P \geq 5$).
If σ is a mapping (not necessary a permutation) from the set of the integers from 1 to $(n-1)$ into the set of the integers different of zero \mathbb{N}^{*}, we denote by $A_{n}(\sigma)$ the $n \times n$ matrix

$$
A_{n}(\sigma)=\left(\begin{array}{cccccc}
-\alpha+b & c_{\sigma_{1}} & 0 & 0 & \cdots & 0 \tag{1.1}\\
a_{\sigma_{1}} & b & c_{\sigma_{2}} & 0 & \cdots & 0 \\
0 & a_{\sigma_{2}} & b & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & c_{\sigma_{n-1}} \\
0 & \cdots & \cdots & 0 & a_{\sigma_{n-1}} & -\beta+b
\end{array}\right)
$$

and by $\Delta_{n}(\sigma)=\left|\Delta_{n}(\sigma)-\lambda I_{n}\right|$ its characteristic polynomial. If $\sigma=i$, where i is the identity, then $A_{n}(i)$ and its characteristic polynomial $\Delta_{n}(i)$ will be denoted by A_{n} and Δ_{n} respectively. Our aim is to establish the eigenvalues and the corresponding eigenvectors of the matrices $A_{n}(\sigma)$.
2. The Eigenvalue Problem. Throughout this section we suppose $d_{1} d_{2} \neq 0$.In the case when $\alpha=\beta=0$, the matrix $A_{n}(\sigma)$ and its characteristic polynomial will be denoted respectively by $A_{n}^{0}(\sigma)$ and $\Delta_{n}^{0}(\sigma)$ and in the general case they will be denoted by A_{n} and Δ_{n}. We put

$$
\begin{equation*}
Y^{2}=d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
Y=b-\lambda \tag{3.1}
\end{equation*}
$$

In S. Kouachi [6], we have proved the following result
ThEOREM 2.1. When $d_{1} d_{2} \neq 0$, the eigenvalues of the class of matrices $A_{n}(\sigma)$ on the form (1.1) are independent of the entries ($a_{i}, c_{i}, i=1, . ., n-1$) and of the mapping σ provided that condition (2) is satisfied and their characteristic determinants are given by

$$
\begin{equation*}
\Delta_{n}=\left(d_{1} d_{2}\right)^{m-1} \frac{d_{1} d_{2}(Y-\alpha-\beta) \sin (m+1) \theta+\left(\alpha \beta Y-\alpha d_{1}^{2}-\beta d_{2}^{2}\right) \sin m \theta}{\sin \theta} \tag{4.a}
\end{equation*}
$$

when $n=2 m+1$ is odd and

$$
\begin{equation*}
\Delta_{n}=\left(d_{1} d_{2}\right)^{m-1} \frac{d_{1} d_{2} \sin (m+1) \theta+\left[\alpha \beta+d_{2}^{2}-(\alpha+\beta) Y\right] \sin m \theta+\alpha \beta \frac{d_{1}}{d_{2}} \sin (m-1) \theta}{\sin \theta} \tag{4.b}
\end{equation*}
$$

when $n=2 m$ is even.

Proof. When $\alpha=\beta=0$, formulas (4.a) and (4.b) become, respectively

$$
\begin{equation*}
\Delta_{n}^{0}=\left(d_{1} d_{2}\right)^{m} Y \frac{\sin (m+1) \theta}{\sin \theta} \tag{4.a.0}
\end{equation*}
$$

when $n=2 m+1$ is odd and

$$
\begin{equation*}
\Delta_{n}^{0}=\left(d_{1} d_{2}\right)^{m} \frac{\sin (m+1) \theta+\frac{d_{2}}{d_{1}} \sin m \theta}{\sin \theta} \tag{4.b.0}
\end{equation*}
$$

when $n=2 m$ is even. Since the right hand sides of formulas (4.a.0) and (4.b.0) are independent of σ, then to prove that the characteristic polynomial of $A_{n}^{0}(\sigma)$, which we denote by Δ_{n}^{0}, is also, it suffices to prove them for $\sigma=i$. Expanding Δ_{n}^{0} in terms of it's last column and using (2) and (3), we get

$$
\begin{equation*}
\Delta_{n}^{0}=Y \Delta_{n-1}^{0}-d_{2}^{2} \Delta_{n-2}^{0}, n=3, \ldots \tag{4.a.1}
\end{equation*}
$$

when $n=2 m+1$ is odd and

$$
\begin{equation*}
\Delta_{n}^{0}=Y \Delta_{n-1}^{0}-d_{1}^{2} \Delta_{n-2}^{0}, n=3, \ldots \tag{4.b.1}
\end{equation*}
$$

when $n=2 m$ is even. Then by writing the expressions of Δ_{n}^{0} for $n=2 m+1,2 m$ and $2 m-1$ respectively, multiplying $\Delta_{2 m}^{0}$ and $\Delta_{2 m-1}^{0}$ by Y and d_{1}^{2} respectively and adding the three resulting equations term to term, we get

$$
\begin{equation*}
\Delta_{2 m+1}^{0}=\left(Y^{2}-d_{1}^{2}-d_{2}^{2}\right) \Delta_{2 m-1}^{0}-d_{1}^{2} d_{2}^{2} \Delta_{2 m-3}^{0} \tag{4.a.2}
\end{equation*}
$$

We will prove by induction in m that formula (4.a.0) is true.
If $n=2 m+1$ is odd, for $m=0$ and $m=1$ formula (4.a.0) is satisfied. Suppose that it is satisfied for all integers $<m$, then from (4.a.2) and using (3), we get

$$
\Delta_{2 m+1}^{0}=Y\left(d_{1} d_{2}\right)^{m} \frac{2 \sin m \theta \cos \theta-\sin (m-1) \theta}{\sin \theta}
$$

Using the well known trigonometric formula

$$
\begin{equation*}
2 \sin \eta \cos \zeta=\sin (\eta+\zeta)+\sin (\eta-\zeta), \tag{*}
\end{equation*}
$$

for $\eta=m \theta$ and $\zeta=\theta$, we deduce formula (4.a.0).
When $n=2 m$ is even, applying formula (4.a.1) for $n=2 m+1$, we get

$$
\Delta_{2 m}^{0}=\frac{\Delta_{2 m+1}^{0}+d_{2}^{2} \Delta_{2 m-1}^{0}}{Y}
$$

By direct application of (4.a.0) two times, for $n=2 m+1$ and $n=2 m-1$, to the right hand side of the last expression, we deduce (4.b.0).

If we suppose that $\alpha \neq 0$ or $\beta \neq 0$, then expanding Δ_{n} in terms of the first and last columns and using the linear property of the determinants with regard to its columns, we get

$$
\Delta_{n}=\Delta_{n}^{0}-\alpha\left|E_{n-1}^{2}\right|-\beta\left|E_{n-1}^{1}\right|+\alpha \beta\left|\begin{array}{ccccc}
Y & c_{2} & 0 & \ldots & 0 \\
a_{2} & Y & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & c_{n-2} \\
0 & \ldots & 0 & a_{n-2} & Y
\end{array}\right|
$$

where E_{n-1}^{1} and E_{n-1}^{2} are the $(n-1)$ square matrices of the form (1)

$$
E_{n-1}^{i}=\left(\begin{array}{ccccc}
Y & c_{i} & 0 & \ldots & 0 \\
a_{i} & Y & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & c_{n+i-3} \\
\ldots & \ldots & 0 & a_{n+i-3} & Y
\end{array}\right), i=1,2
$$

Since all the entries a_{i} 's on the subdiagonal and c_{i} 's on the superdiagonal satisfy condition (2), then using formulas (4.a.0) and (4.b.0) and taking in the account the order of the entries a_{i} 's and c_{i} 's, we deduce the general formulas (4.a) and (4.b).

Before proceeding further, let us deduce from formula (4.b) a proposition for the matrix $B_{n}(\sigma)$ which is obtained from $A_{n}(\sigma)$ by interchanging the numbers α and β.

Proposition 2.2. When n is even, the eigenvalues of $B_{n}(\sigma)$ are the same as $A_{n}(\sigma)$.

Let us see what formula (4) says and what it does not say. It says that if $a_{i}^{\prime}, c_{i}^{\prime}, i=$ $1, . ., n-1$ are other constants satisfying condition (2) and

$$
A_{n}^{\prime}=\left(\begin{array}{cccccc}
-\alpha+b & c_{1}^{\prime} & 0 & 0 & \ldots & 0 \\
a_{1}^{\prime} & b & c_{2}^{\prime} & 0 & \ldots & 0 \\
0 & a_{2}^{\prime} & b & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & c_{n-1}^{\prime} \\
0 & \ldots & \ldots & 0 & a_{n-1}^{\prime} & -\beta+b
\end{array}\right)
$$

then the matrices A_{n}, A_{n}^{\prime} and $A_{n}(\sigma)$ possess the same characteristic polynomial and hence the same eigenvalues. Therefore we have this immediate consequence of formula (4)

Corollary 2.3. The class of matrices $A_{n}(\sigma)$, where σ is a mapping from the set of the integers from 1 to $(n-1)$ into \mathbb{N}^{*} are similar provided that all the entries on the subdiagonal and on the superdiagonal satisfy condition (2).

The components of the eigenvector $u^{(k)}(\sigma), k=1, \ldots, n$ associated to the eigenvalue $\lambda_{k}, k=1, \ldots, n$, which we denote by $u_{j}^{(k)}, j=1, . ., n$, are solutions of the

ELA

linear system of equations

$$
\left\{\begin{array}{c}
\left(-\alpha+\xi_{k}\right) u_{1}^{(k)}+c_{\sigma_{1}} u_{2}^{(k)}=0 \tag{5}\\
a_{\sigma_{1}} u_{1}^{(k)}+\xi_{k} u_{2}^{(k)}+c_{\sigma_{2}} u_{3}^{(k)}=0 \\
\cdots \\
a_{\sigma_{n-1}} u_{n-1}^{(k)}+\left(-\beta+\xi_{k}\right) u_{n}^{(k)}=0
\end{array}\right.
$$

where $\xi_{k}=Y$ is given by formula (3) and $\theta_{k}, k=1, \ldots, n$ are solutions of

$$
\begin{equation*}
d_{1} d_{2}\left(\xi_{k}-\alpha-\beta\right) \sin (m+1) \theta_{k}+\left(\alpha \beta \xi_{k}-\alpha d_{1}^{2}-\beta d_{2}^{2}\right) \sin m \theta_{k}=0 \tag{6.a}
\end{equation*}
$$

when $n=2 m+1$ is odd and

$$
\begin{equation*}
d_{1} d_{2} \sin (m+1) \theta_{k}+\left[\alpha \beta+d_{2}^{2}-(\alpha+\beta) \xi_{k}\right] \sin m \theta_{k}+\alpha \beta \frac{d_{1}}{d_{2}} \sin (m-1) \theta_{k}=0 \tag{6.b}
\end{equation*}
$$

when $n=2 m$ is even.
Since these n equations are linearly dependent, then by eliminating the first equation we obtain the following system of $(n-1)$ equations and $(n-1)$ unknowns, written in a matrix form as

$$
\left(\begin{array}{ccccc}
\xi_{k} & c_{\sigma_{2}} & 0 & \ldots & 0 \tag{7}\\
a_{\sigma_{2}} & \xi_{k} & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & c_{\sigma_{n-1}} \\
0 & \cdots & 0 & a_{\sigma_{n-1}} & \left(-\beta+\xi_{k}\right)
\end{array}\right)\left(\begin{array}{c}
u_{2}^{(k)} \\
u_{3}^{(k)} \\
\vdots \\
\vdots \\
u_{n}^{(k)}
\end{array}\right)=\left(\begin{array}{c}
-a_{\sigma_{1}} u_{1}^{(k)} \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right)
$$

The determinant of this system is given by formulas (4) for $\alpha=0$ and n replaced by $n-1$ and equal to

$$
\begin{equation*}
\Delta_{n-1}^{(k)}=\left(d_{1} d_{2}\right)^{m-1} \frac{d_{1} d_{2} \sin (m+1) \theta_{k}+\left[d_{1}^{2}-\beta \xi_{k}\right] \sin m \theta_{k}}{\sin \theta_{k}} \tag{8.a}
\end{equation*}
$$

when $n=2 m+1$ is odd and

$$
\begin{equation*}
\Delta_{n-1}^{(k)}=\left(d_{1} d_{2}\right)^{m-1} \frac{\left(\xi_{k}-\beta\right) \sin m \theta_{k}-\beta \frac{d_{1}}{d_{2}} \sin (m-1) \theta_{k}}{\sin \theta_{k}} \tag{8.b}
\end{equation*}
$$

when $n=2 m$ is even, for all $k=1, \ldots, n$.

$$
\begin{equation*}
u_{j}^{(k)}(\sigma)=\frac{\Gamma_{j}^{(k)}(\sigma)}{\Delta_{n-1}^{(k)}}, j, k=1, \ldots, n, \tag{9}
\end{equation*}
$$

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 115-133, April 2006

122
S. Kouachi
where

$$
\Gamma_{j}^{(k)}(\sigma)=\left\lvert\, \begin{array}{cccccccc}
\xi_{k} & c_{\sigma_{2}} & 0 & \ldots & -a_{\sigma_{1}} u_{1}^{(k)} & 0 & \ldots & 0 \\
a_{\sigma_{2}} & \xi_{k} & \ddots & \ddots & 0 & 0 & \ldots & \vdots \\
0 & \ddots & \ddots & c_{\sigma_{j-2}} & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & a_{\sigma_{j-2}} & \xi_{k} & 0 & 0 & \ldots & \vdots \\
\vdots & \vdots & \ddots & a_{\sigma_{j-1}} & 0 & c_{\sigma_{j}} & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 & \xi_{k} & \ddots & 0 \\
\vdots & \vdots & \ldots & \ddots & \vdots & a_{\sigma_{j}+1} & \ddots & \ddots
\end{array}\right.
$$

$j=2, \ldots, n, \quad k=1, \ldots, n$. By permuting the $j-2$ first columns with the $(j-1)$-th one and using the properties of the determinants, we get

$$
\begin{equation*}
u_{j}^{(k)}(\sigma)=(-1)^{j-2} \frac{\Lambda_{j}^{(k)}(\sigma)}{\Delta_{n-1}}, j=2, \ldots, n \tag{10}
\end{equation*}
$$

where $\Lambda_{j}^{(k)}(\sigma)$ is the determinant of the matrix

$$
C_{j}^{(k)}(\sigma)=\left(\begin{array}{cc}
T_{j-1}^{(k)}(\sigma) & \mathbf{0} \\
\mathbf{0} & S_{n-j}^{(k)}(\sigma)
\end{array}\right)
$$

where

$$
T_{j-1}^{(k)}(\sigma)=\left(\begin{array}{cccccc}
-a_{\sigma_{1}} u_{1}^{(k)} & \xi_{k} & c_{\sigma_{2}} & 0 & \cdots & 0 \\
0 & a_{\sigma_{2}} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & 0 & \ddots & \ddots & \ddots & c_{\sigma_{j-2}} \\
\vdots & 0 & 0 & \ddots & \ddots & \xi_{k} \\
0 & \cdots & \cdots & \cdots & 0 & a_{\sigma_{j-1}}
\end{array}\right)
$$

is the supertriangular matrix of order $j-1$ with diagonal $\left(-a_{\sigma_{1}} u_{1}^{(k)}, a_{\sigma_{2}}, \ldots, a_{\sigma_{j-1}}\right)$ and

$$
S_{n-j}^{(k)}(\sigma)=\left(\begin{array}{ccccc}
\xi_{k} & c_{\sigma_{j+1}} & 0 & \cdots & 0 \\
a_{\sigma_{j}+1} & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & c_{\sigma_{n-1}} \\
0 & \cdots & 0 & a_{\sigma_{n-1}} & \left(-\beta+\xi_{k}\right)
\end{array}\right)
$$

is a tridiagonal matrix of order $n-j$ belonging to the class of the form (1.1) and satisfying condition (2). Thus

$$
\begin{align*}
\left|C_{j}^{(k)}(\sigma)\right| & =\left|T_{j-1}^{(k)}(\sigma)\right|\left|S_{n-j}^{(k)}(\sigma)\right| \tag{11}\\
& =-a_{\sigma_{1}} \ldots a_{\sigma_{j-1}} u_{1}^{(k)} \Delta_{n-j}^{(k)}, j=2, \ldots, n \text { and } k=1, \ldots, n
\end{align*}
$$

where $\Delta_{n-j}^{(k)}(\sigma)$ is given by formulas (4) for $\alpha=0$ and $n-1$ replaced by $n-j$

$$
\Delta_{n-j}^{(k)}=\left\{\begin{array}{l}
\left(d_{1} d_{2}\right)^{\frac{n-j}{2}-1} \frac{d_{1} d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+\left(d_{1}^{2}-\beta \xi_{k}\right) \sin \frac{n-j}{2} \theta_{k}}{\sin \theta_{k}}, \text { when } j \text { is odd } \tag{12.a}\\
\left(d_{1} d_{2}\right)^{\frac{n-j-1}{2}} \frac{\left(\xi_{k}-\beta\right) \sin \left(\frac{n-j+1}{2}\right) \theta_{k}-\beta \frac{d_{2}}{d_{1}} \sin \left(\frac{n-j-1}{2}\right) \theta_{k}}{\sin \theta_{k}}, \text { when } j \text { is even }
\end{array}\right.
$$

when n is odd and

$$
\Delta_{n-j}^{(k)}= \begin{cases}\left(d_{1} d_{2}\right)^{\frac{n-j-1}{2}} \frac{\left(\xi_{k}-\beta\right) \sin \left(\frac{n-j-1}{2}\right) \theta_{k}-\beta \frac{d_{1}}{d_{2}} \sin \left(\frac{n-j-1}{2}\right) \theta_{k}}{\sin \theta_{k}}, \text { when } j \text { is odd } \tag{12.b}\\ \left(d_{1} d_{2}\right)^{\frac{n-j}{2}-1} \frac{d_{1} d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+\left(d_{2}^{2}-\beta \xi_{k}\right) \sin \frac{n-j}{2} \theta_{k}}{\sin \theta_{k}}, \text { when } j \text { is even }\end{cases}
$$

when n is even, for all $j=2, \ldots, n$ and $k=1, \ldots, n$. Using formulas (9)-(12), we get

$$
\begin{equation*}
u_{j}^{(k)}(\sigma)=(-1)^{j-1} a_{\sigma_{1}} \ldots a_{\sigma_{j-1}} u_{1}^{(k)} \frac{\Delta_{n-j}^{(k)}}{\Delta_{n-1}^{(k)}}, j=2, \ldots, n \text { and } k=1, \ldots, n \tag{13}
\end{equation*}
$$

Finally

$$
u_{j}^{(k)}(\sigma)=\mu_{j}(\sigma) u_{1}^{(k)}\left\{\begin{array}{r}
\frac{d_{1} d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+\left(d_{1}^{2}-\beta \xi_{k}\right) \sin \frac{n-j}{2} \theta_{k}}{d_{1} d_{2} \sin \left(\frac{n+1}{2}\right) \theta_{k}+\left(d_{1}^{2}-\beta \xi_{k}\right) \sin \left(\frac{n-1}{2}\right) \theta_{k}}, \text { when } j \text { is odd } \tag{13.a}\\
\sqrt{d_{1} d_{2}} \frac{\left(\xi_{k}-\beta\right) \sin \left(\frac{n-j+1}{2}\right) \theta_{k}-\beta \frac{d_{2}}{d_{1} \sin \left(\frac{n-j-1}{2}\right) \theta_{k}}}{d_{1} d_{2} \sin \left(\frac{n+1}{2}\right) \theta_{k}+\left(d_{1}^{2}-\beta \xi_{k}\right) \sin \left(\frac{n-1}{2}\right) \theta_{k}}, \text { when } j \text { is even }
\end{array}\right.
$$

when n is odd and

$$
u_{j}^{(k)}(\sigma)=\mu_{j}(\sigma) u_{1}^{(k)}\left\{\begin{array}{c}
\frac{\left(\xi_{k}-\beta\right) \sin \left(\frac{n-j-1}{2}\right) \theta_{k}-\beta \frac{d_{1}}{d_{2}} \sin \left(\frac{n-j-1}{2}\right) \theta_{k}}{\left(\xi_{k}-\beta\right) \sin \frac{n}{2} \theta_{k}-\beta \frac{d_{1}}{d_{2}} \sin \left(\frac{n}{2}-1\right) \theta_{k}}, \text { when } j \text { is odd }, \tag{13.b}\\
\frac{1}{\sqrt{d_{1} d_{2}}} \frac{d_{1} d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+\left(d_{2}^{2}-\beta \xi_{k}\right) \sin \frac{n-j}{2} \theta_{k}}{\left(\xi_{k}-\beta\right) \sin \frac{n}{2} \theta_{k}-\beta \frac{d_{1}}{d_{2}} \sin \left(\frac{n}{2}-1\right) \theta_{k}}, \text { when } j \text { is even, }
\end{array}\right.
$$

ELA

for all $j=2, \ldots, n$ and $k=1, \ldots, n$, when n is even, where

$$
\mu_{j}(\sigma)=\left(-\sqrt{d_{1} d_{2}}\right)^{1-j} a_{\sigma_{1} \ldots a_{\sigma_{j-1}}, j=2, \ldots, n, ~}
$$

$\xi_{k}=Y$ and θ_{k} are given respectively by (3) and formulas (6).
3. Special Cases. From now on, we put

$$
\rho_{j}(\sigma)=\left(-\sqrt{d_{1} d_{2}}\right)^{n-1} \mu_{j}(\sigma), j=1, \ldots, n
$$

where $\mu_{j}(\sigma)$ is given by (\dagger).

3.1. Case when n is odd. If $\alpha=\beta=0$, we have

Theorem 3.1. If $\alpha=\beta=0$, the eigenvalues $\lambda_{k}(\sigma), k=1, \ldots, n$ of the class of matrices $A_{n}(\sigma)$ on the form (1.1) are independent of the entries ($a_{i}, c_{i}, i=1, . ., n-1$) and of σ provided that condition (2) is satisfied and they are given by

$$
\lambda_{k}=\left\{\begin{array}{c}
b+\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=1, \ldots, m \tag{14}\\
b-\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=m+1, \ldots, 2 m \\
b, k=n
\end{array}\right.
$$

The corresponding eigenvectors $u^{(k)}(\sigma)=\left(u_{1}^{(k)}(\sigma), \ldots, u_{n}^{(k)}(\sigma)\right)^{t}, k=1, . ., n-1$ are given by

$$
u_{j}^{(k)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
d_{1} d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+d_{1}^{2} \sin \frac{n-j}{2} \theta_{k}, \text { when is } j \text { odd }, \tag{14.a}\\
\sqrt{d_{1} d_{2}}\left(b-\lambda_{k}\right) \sin \left(\frac{n-j+1}{2}\right) \theta_{k}, \text { when is } j \text { even }
\end{array}\right.
$$

and

$$
u_{j}^{(k)}(\sigma)=\left\{\begin{array}{c}
a_{\sigma_{1}} \ldots a_{\sigma_{j-1}}\left(-d_{2}^{2}\right)^{\frac{n-j}{2}}, \text { when } j \text { is odd } \tag{14.b}\\
0, \text { when } j \text { is even }
\end{array}\right.
$$

$j=1, \ldots n$, where $\rho_{j}(\sigma)$ is given by (\ddagger) and

$$
\theta_{k}=\left\{\begin{array}{c}
\frac{2 k \pi}{n+1}, k=1, \ldots, m \\
\frac{2(k-m) \pi}{n+1}, k=m+1, \ldots, 2 m
\end{array}\right.
$$

Proof, We take $a_{\sigma_{0}}=a_{0}=1$. The eigenvalues $\lambda_{k}, k=1, \ldots, 2 m$ are trivial consequence of (4) by putting $(m+1) \theta=k \pi, k=1, \ldots, m$ and using (3). The

ELA

eigenvalue λ_{n} is a consequence of (4) and (3.1) by putting $Y=0$. Formula (14.a) is a trivial consequence of (13.a) by taking $\beta=0$ and choosing

$$
u_{1}^{(k)}=\left(-\sqrt{d_{1} d_{2}}\right)^{n-1}\left[d_{1} d_{2} \sin \left(\frac{n+1}{2}\right) \theta_{k}+d_{1}^{2} \sin \left(\frac{n-1}{2}\right) \theta_{k}\right], k=1, \ldots, n-1 .
$$

Concerning the $n-$ th eigenvector, we solve directly system (7) and choose

$$
u_{1}^{(n)}=\left(-d_{2}^{2}\right)^{\frac{n-1}{2}} \cdot \square
$$

If $\alpha=d_{2}$ and $\beta=d_{1}$ or $\beta=-d_{1}$ and $\alpha=-d_{2}$, then using the trigonometric formula $\left(^{*}\right)$ for $\eta=\left(\frac{2 m+1}{2}\right) \theta_{k}$ and $\zeta=\frac{\theta_{k}}{2}$, formula (6.a) becomes

$$
\begin{equation*}
\left(\xi_{k} \pm\left(d_{1}+d_{2}\right)\right) \sin \frac{(2 m+1)}{2} \theta_{k} \cos \frac{\theta_{k}}{2}=0 \tag{6.a.1}
\end{equation*}
$$

then we get
Theorem 3.2. If $\alpha=d_{2}$ and $\beta=d_{1}$ or $\beta=-d_{1}$ and $\alpha=-d_{2}$, the eigenvalues $\lambda_{k}(\sigma), k=1, \ldots, n$ of the class of matrices $A_{n}(\sigma)$ on the form (1.1)are independent of the entries $\left(a_{i}, c_{i}, i=1, . ., n-1\right)$ and of σ provided that condition (2) is satisfied and they are given by

$$
\lambda_{k}=\left\{\begin{array}{c}
b+\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=1, \ldots, m, \tag{15}\\
b-\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=m+1, \ldots, 2 m, \\
b-(\alpha+\beta), k=n
\end{array}\right.
$$

The corresponding eigenvectors $u^{(k)}(\sigma)=\left(u_{1}^{(k)}(\sigma), \ldots, u_{n}^{(k)}(\sigma)\right)^{t}, k=1, . ., n$ are given by

$$
u_{j}^{(k)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+\left[d_{1}-b+\lambda_{k}\right] \sin \frac{n-j}{2} \theta_{k}, j \text { is odd }, \tag{15.a}\\
-\sqrt{\frac{d_{2}}{d_{1}}}\left[\left(d_{1}-b+\lambda_{k}\right) \sin \left(\frac{n-j+1}{2}\right) \theta_{k}+d_{2} \sin \left(\frac{n-j-1}{2}\right) \theta_{k}\right] j \text { is even },
\end{array}\right.
$$

$k=1, . . n-1$ and

$$
u_{j}^{(n)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
1, \text { when } j \text { is odd }, \\
\sqrt{\frac{d_{2}}{d_{1}}}, \text { when } j \text { is even }
\end{array}\right.
$$

$j=1, . ., n$, when $\alpha=d_{2}$ and $\beta=d_{1}$ and

$$
u_{j}^{(k)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+\left[d_{1}+b-\lambda_{k}\right] \sin \frac{n-j}{2} \theta_{k}, j \text { is odd }, \tag{15.b}\\
\sqrt{\frac{d_{2}}{d_{1}}}\left[\left(d_{1}+b-\lambda_{k}\right) \sin \left(\frac{n-j+1}{2}\right) \theta_{k}+d_{2} \sin \left(\frac{n-j-1}{2}\right) \theta_{k}\right] j \text { is even }
\end{array}\right.
$$

ELA

$k=1, . . n-1$ and

$$
u_{j}^{(n)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
1, \text { when } j \text { is odd, } \\
-\sqrt{\frac{d_{2}}{d_{1}}}, \text { when } j \text { is even, }
\end{array}\right.
$$

$j=1, . ., n$, when $\beta=-d_{1}$ and $\alpha=-d_{2}, j=1, . ., n$, where $\rho_{j}(\sigma)$ is given by \ddagger) and

$$
\theta_{k}=\left\{\begin{array}{c}
\frac{2 k \pi}{n}, k=1, \ldots, m, \\
\frac{2(k-m) \pi}{n}, k=m+1, \ldots, 2 m .
\end{array} .\right.
$$

Proof. Formula (15) is a simple consequence of (6.a.1). Using (13.a), the expressions (15.a) and (15.b) are trivial by choosing

$$
u_{1}^{(k)}=\left(-\sqrt{d_{1} d_{2}}\right)^{n-1}\left[d_{2} \sin \left(\frac{n+1}{2}\right) \theta_{k}+\left[d_{1}-b+\lambda_{k}\right] \sin \left(\frac{n-1}{2}\right) \theta_{k}\right],
$$

if $\alpha=d_{2}$ and $\beta=d_{1}$ and

$$
u_{1}^{(k)}=\left(-\sqrt{d_{1} d_{2}}\right)^{n-1}\left[d_{2} \sin \left(\frac{n+1}{2}\right) \theta_{k}+\left[d_{1}+b-\lambda_{k}\right] \sin \left(\frac{n-1}{2}\right) \theta_{k}\right]
$$

when $\beta=-d_{1}$ and $\alpha=-d_{2}$. The last eigenvector is obtained by choosing

$$
u_{1}^{(n)}(\sigma)=\left(-\sqrt{d_{1} d_{2}}\right)^{n-1} a_{\sigma_{1} \ldots a_{\sigma_{j-1}} .}
$$

When $\alpha=d_{2}$ and $\beta=-d_{1}$ or $\alpha=-d_{2}$ and $\beta=d_{1}$, then using the trigonometric formula

$$
\begin{equation*}
2 \cos \eta \sin \zeta=\sin (\eta+\zeta)-\sin (\eta-\zeta) \tag{**}
\end{equation*}
$$

for $\eta=\left(\frac{2 m+1}{2}\right) \theta_{k}$ and $\zeta=\frac{\theta_{k}}{2}$, formula (4.a) becomes

$$
\begin{equation*}
\left(\xi_{k} \pm\left(d_{2}-d_{1}\right)\right) \cos \frac{(2 m+1)}{2} \theta_{k} \sin \frac{\theta_{k}}{2}=0 \tag{6.a.2}
\end{equation*}
$$

then we get
THEOREM 3.3. If $\alpha=-d_{2}$ and $\beta=d_{1}$ or $\beta=-d_{1}$ and $\alpha=d_{2}$, the eigenvalues $\lambda_{k}(\sigma), k=1, \ldots, n$ of the class of matrices $A_{n}(\sigma)$ on the form (1.1)are independent of the entries $\left(a_{i}, c_{i}, i=1, . ., n-1\right)$ and of σ provided that condition (2) is satisfied and they are given by

$$
\lambda_{k}=\left\{\begin{array}{c}
b+\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=1, \ldots, m, \tag{16}\\
b-\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=m+1, \ldots, 2 m, \\
b-(\alpha+\beta), k=n
\end{array}\right.
$$

The corresponding eigenvectors $u^{(k)}(\sigma)=\left(u_{1}^{(k)}(\sigma), \ldots, u_{n}^{(k)}(\sigma)\right)^{t}, k=1, . ., n$ are given by (15.a) and

$$
u_{j}^{(n)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
(-1)^{\frac{j-1}{2}}, \text { when } j \text { is odd, } \\
\sqrt{\frac{d_{2}}{d_{1}}}(-1)^{\frac{j+2}{2}}, \text { when } j \text { is even, }
\end{array} \quad j=1, . ., n,\right.
$$

when $\alpha=-d_{2}$ and $\beta=d_{1}$ and (15.b) and

$$
u_{j}^{(n)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
(-1)^{\frac{j-1}{2}}, \text { when } j \text { is odd, } \\
\sqrt{\frac{d_{2}}{d_{1}}}(-1)^{\frac{j}{2}}, \text { when } j \text { is even, }
\end{array} \quad j=1, . ., n\right.
$$

when $\beta=-d_{1}$ and $\alpha=d_{2}$, where $\rho_{j}(\sigma)$ is given by $(\ddagger$) and

$$
\theta_{k}=\left\{\begin{array}{c}
\frac{(2 k-1) \pi}{n}, k=1, \ldots, m, \\
\frac{(2(k-m)-1) \pi}{n}, k=m+1, \ldots, 2 m .
\end{array}\right.
$$

Proof. Formula (16) is trivial by solving (6.a.2). Concerning the eigenvectors, following the same reasoning as in the case when $\alpha=d_{2}$ and $\beta=d_{1}$ or $\beta=-d_{1}$ and $\alpha=-d_{2}$ and since we use formula (13.a) to find the components of the eigenvectors which depend only of β, we deduce the same results. The last eigenvector is obtained by passage to the limit in formula (13.a) when θ_{k} tends to π and choosing the first component as in the previous case.
3.2. Case when n is even. If $\alpha \beta=d_{2}^{2}$, then using $\left(^{*}\right)$ for $\eta=m \theta_{k}$ and $\zeta=\theta_{k}$, formula (6.b) becomes

$$
\left[2 d_{1} d_{2} \cos \theta_{k}+\alpha \beta+d_{2}^{2}-(\alpha+\beta) \xi_{k}\right] \sin m \theta_{k}=0
$$

Using (3), we get

$$
\begin{equation*}
\left[\xi_{k}^{2}-(\alpha+\beta) \xi_{k}+d_{2}^{2}-d_{1}^{2}\right] \sin m \theta_{k}=0 \tag{6.b.1}
\end{equation*}
$$

which gives

$$
\sin m \theta_{k}=0
$$

and

$$
\begin{equation*}
\xi_{k}^{2}-(\alpha+\beta) \xi_{k}+d_{2}^{2}-d_{1}^{2}=0 \tag{3.2}
\end{equation*}
$$

then we get
Theorem 3.4. If $\alpha b=d_{2}^{2}$, the eigenvalues $\lambda_{k}(\sigma), k=1, \ldots, n$ of the class of matrices $A_{n}(\sigma)$ on the form (1.1) are independent of the entries ($a_{i}, c_{i}, i=1, . ., n-1$)

ELA

and of σ provided that condition (2) is satisfied and they are given by

$$
\lambda_{k}=\left\{\begin{array}{c}
b+\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=1, \ldots, m-1, \tag{17}\\
b-\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=m, \ldots, 2 m-2, \\
b+\frac{(\alpha+\beta)+\sqrt{(\alpha-\beta)^{2}+4 d_{1}^{2}}}{2}, k=n-1, \\
b+\frac{(\alpha+\beta)-\sqrt{(\alpha-\beta)^{2}+4 d_{1}^{2}}}{2}, k=n .
\end{array}\right.
$$

The corresponding eigenvectors $u^{(k)}(\sigma)=\left(u_{1}^{(k)}(\sigma), \ldots, u_{n}^{(k)}(\sigma)\right)^{t}, k=1, . ., n-2$ are given by

$$
u_{j}^{(k)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
\left(b-\lambda_{k}-\beta\right) \sin \left(\frac{n-j-1}{2}\right) \theta_{k}-\beta \frac{d_{1}}{d_{2}} \sin \left(\frac{n-j-1}{2}\right) \theta_{k}, j \text { is odd }, \tag{17.a}\\
\frac{1}{\sqrt{d_{1} d_{2}}}\left[d_{1} d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+\left(d_{2}^{2}-\beta\left(b-\lambda_{k}\right)\right) \sin \frac{n-j}{2} \theta_{k}\right], j \text { even }
\end{array}\right.
$$

where $\rho_{j}(\sigma), j=1, \ldots, n$ is given by (\ddagger) and

$$
\theta_{k}=\left\{\begin{array}{c}
\frac{2 k \pi}{n}, k=1, \ldots, m-1 \\
\frac{2(k-m+1) \pi}{n}, k=m, \ldots, 2 m-2
\end{array}\right.
$$

The eigenvectors $u^{(n-1)}(\sigma)$ and $u^{(n)}(\sigma)$ associated respectively with the eigenvalues λ_{n-1} and λ_{n} are given by formula (13.b), where θ_{k} is given by (3), (3.1) and (3.2).

Proof. Formula (17) is a consequence of (6.b.1). The eigenvectors are a consequence of formula (13.b) by choosing
$u_{1}^{(k)}=\left(-\sqrt{d_{1} d_{2}}\right)^{n-1}\left\{\begin{array}{l}\left(b-\lambda_{k}-\beta\right) \sin \frac{n}{2} \theta_{k}-\beta \frac{d_{1}}{d_{2}} \sin \left(\frac{n}{2}-1\right) \theta_{k}, \text { when } j \text { is odd, } \\ \left(b-\lambda_{k}-\beta\right) \sin \frac{n}{2} \theta_{k}-\beta \frac{d_{1}}{d_{2}} \sin \left(\frac{n}{2}-1\right) \theta_{k}, \text { when } j \text { is even. }\end{array}\right.$
When $\alpha=-\beta= \pm d_{2}$, then, using (${ }^{* *}$), formula (6.b) gives

$$
\begin{equation*}
2 d_{1} d_{2} \cos m \theta=0 \tag{6.b.2}
\end{equation*}
$$

then we have
Theorem 3.5. If $\alpha=-\beta= \pm d_{2}$, the eigenvalues $\lambda_{k}(\sigma), k=1, \ldots, n$ of the class of matrices $A_{n}(\sigma)$ on the form (1.1)are independent of the entries $\left(a_{i}, c_{i}, i=\right.$

ELA

$1, . ., n-1)$ and of σ provided that condition (2) is satisfied and they are given by

$$
\lambda_{k}=\left\{\begin{array}{c}
b+\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=1, \ldots, m, \tag{18}\\
b-\sqrt{d_{1}^{2}+d_{2}^{2}+2 d_{1} d_{2} \cos \theta_{k}}, k=m+1, \ldots, n
\end{array}\right.
$$

The corresponding eigenvectors $u^{(k)}(\sigma)=\left(u_{1}^{(k)}(\sigma), \ldots, u_{n}^{(k)}(\sigma)\right)^{t}, k=1, . ., n$ are given by

$$
u_{j}^{(k)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
\left(b-\lambda_{k}-d_{2}\right) \sin \left(\frac{n-j-1}{2}\right) \theta_{k}-d_{1} \sin \left(\frac{n-j-1}{2}\right) \theta_{k}, j \text { is odd }, \tag{18.a}\\
d_{1} d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+\left[d_{2}^{2}-d_{2}\left(b-\lambda_{k}\right)\right] \sin \frac{n-j}{2} \theta_{k}, j \text { is even }
\end{array}\right.
$$

when $\alpha=-\beta=-d_{2}$ and

$$
u_{j}^{(k)}(\sigma)=\rho_{j}(\sigma)\left\{\begin{array}{c}
\left(b-\lambda_{k}+d_{2}\right) \sin \left(\frac{n-j-1}{2}\right) \theta_{k}+d_{1} \sin \left(\frac{n-j-1}{2}\right) \theta_{k}, j \text { is odd }, \tag{18.b}\\
d_{1} d_{2} \sin \left(\frac{n-j}{2}+1\right) \theta_{k}+\left[d_{2}^{2}+d_{2}\left(b-\lambda_{k}\right)\right] \sin \frac{n-j}{2} \theta_{k}, j \text { is even }
\end{array}\right.
$$

when $\alpha=-\beta=d_{2}$ where $\rho_{j}(\sigma), j=1, \ldots, n$ is given by (\ddagger) and

$$
\theta_{k}=\left\{\begin{aligned}
\frac{(2 k-1) \pi}{n}, & k=1, \ldots, m \\
\frac{(2 k-2 m-1) \pi}{n}, & k=m+1, \ldots, n
\end{aligned}\right.
$$

Proof. Formula (18) is a consequence of (6.b.2).The eigenvectors are a consequence of formula (13.b) by choosing
$u_{1}^{(k)}=\left(-\sqrt{d_{1} d_{2}}\right)^{n-1}\left\{\begin{array}{c}\left(b-\lambda_{k}-d_{2}\right) \sin \frac{n}{2} \theta_{k}-d_{1} \sin \left(\frac{n}{2}-1\right) \theta_{k}, \text { when } j=2 l+1 \\ \sqrt{d_{1} d_{2}}\left[\left(b-\lambda_{k}-d_{2}\right) \sin \frac{n}{2} \theta_{k}-d_{1} \sin \left(\frac{n}{2}-1\right) \theta_{k}\right], \text { when } j=2 l\end{array}\right.$
when $\alpha=-\beta=-d_{2}$
$u_{1}^{(k)}=\left(-\sqrt{d_{1} d_{2}}\right)^{n-1}\left\{\begin{array}{c}\left(b-\lambda_{k}+d_{2}\right) \sin \frac{n}{2} \theta_{k}+d_{1} \sin \left(\frac{n}{2}-1\right) \theta_{k}, \text { when } j=2 l+1 \\ \sqrt{d_{1} d_{2}}\left[\left(b-\lambda_{k}+d_{2}\right) \sin \frac{n}{2} \theta_{k}+d_{1} \sin \left(\frac{n}{2}-1\right) \theta_{k}\right], \text { when } j=2 l\end{array}\right.$
when $\alpha=-\beta=d_{2}$. \square
4. Case when $d_{1} d_{2}=0$. In this case, we have proved in S. Kouachi [6], the following.

Proposition 4.1. When $d_{1} d_{2}=0$, the eigenvalues $\lambda_{k}(\sigma), k=1, \ldots, n$ of the class of matrices $A_{n}(\sigma)$ on the form (1.1) are independent of the entries $\left(a_{i}, c_{i}, i=\right.$

ELA

1,.., $n-1$) and of σ provided that condition (2) is satisfied and their characteristic polynomials are given by

$$
\Delta_{n}=\left\{\begin{array}{l}
\left(\xi^{2}-d_{2}^{2}\right)^{\frac{n-1}{2}-1}(\xi-\alpha)\left(\xi^{2}-\beta \xi-d_{2}^{2}\right), \text { when } n \text { is odd } \tag{19.a}\\
\left(\xi^{2}-d_{2}^{2}\right)^{\frac{n}{2}-1}\left(\xi^{2}-(\alpha+\beta) \xi+\alpha \beta\right), \text { when } n \text { is even }
\end{array}\right.
$$

when $d_{1}=0$ and

$$
\Delta_{n}=\left\{\begin{array}{c}
\left(\xi^{2}-d_{1}^{2}\right)^{\frac{n-1}{2}-1}(\xi-\beta)\left(\xi^{2}-\alpha \xi-d_{1}^{2}\right), \text { when } n \text { is odd } ; \tag{19.b}\\
\left(\xi^{2}-d_{1}^{2}\right)^{\frac{n}{2}-2}\left(\xi^{2}-\alpha \xi-d_{1}^{2}\right)\left(\xi^{2}-\beta \xi-d_{1}^{2}\right), \text { when } n \text { is even, }
\end{array}\right.
$$

when $d_{2}=0$, where $\xi=Y$ is given by (3)
An immediate consequence of this proposition is
Proposition 4.2. If $d_{1} d_{2}=0$, the eigenvalues $\lambda_{k}(\sigma), k=1, \ldots, n$ of the class of matrices $A_{n}(\sigma)$ on the form (1.1)are independent of the entries ($a_{i}, c_{i}, i=1, . ., n-1$) and of σ provided that condition (2) is satisfied:

1) When $\alpha=\beta=0$, they are reduced to three eigenvalues

$$
\left\{b \pm d_{2}, b\right\}
$$

when $d_{1}=0$ or when n is odd and $d_{2}=0$

$$
\left\{b \pm d_{1}, b\right\}
$$

and only two eigenvalues

$$
\left\{b \pm d_{1}\right\}
$$

when n is even and $d_{2}=0$.
2) When $\alpha \neq 0$ or $\beta \neq 0$, they are reduced to five eigenvalues

$$
:\left\{b \pm d_{2}, b-\alpha, b-\frac{1}{2} \beta \pm \frac{1}{2} \sqrt{\beta^{2}+4 d_{2}^{2}}\right\}
$$

when n is odd and $d_{1}=0$, five also

$$
\left\{b \pm d_{1}, b-\beta, b-\frac{1}{2} \alpha \pm \frac{1}{2} \sqrt{\alpha^{2}+4 d_{1}^{2}}\right\}
$$

when n is odd and $d_{2}=0$, four

$$
\left\{b \pm d_{2}, b-\alpha, b-\beta\right\}
$$

when n is even and $d_{1}=0$ and six eigenvalues

$$
\left\{b \pm d_{1}, b-\frac{1}{2} \alpha \pm \frac{1}{2} \sqrt{\alpha^{2}+4 d_{1}^{2}}, b-\frac{1}{2} \beta \pm \frac{1}{2} \sqrt{\beta^{2}+4 d_{1}^{2}}\right\}
$$

ELA

when n is even and $d_{2}=0$.
3) All the corresponding eigenvectors $u^{(k)}(\sigma)=\left(u_{1}^{(k)}(\sigma), \ldots, u_{n}^{(k)}(\sigma)\right)^{t}, k=1, . ., n$ are are simple and given by 3.1) When λ_{k} is simple

when $d_{1}=0$ and

$$
u_{j}^{(k)}(\sigma)=\nu_{j}(\sigma)\left\{\begin{array}{cl}
\left\{\begin{array}{c}
\left(b-\lambda_{k}\right)\left[\left(b-\lambda_{k}\right)^{2}-d_{1}^{2}\right]^{\frac{n-j}{2}}, \text { when } j \text { is odd, } \\
{\left[\left(b-\lambda_{k}\right)^{2}-d_{1}^{2}\right]^{\frac{n-j-1}{2}+1}, \text { when } j \text { is even, }}
\end{array}\right. \\
\left\{\begin{array}{c}
\left(b-\lambda_{k}\right)\left[\left(b-\lambda_{k}\right)^{2}-d_{1}^{2}\right]^{\frac{n-1-j}{2}}, \text { when } j \text { is odd, } \\
{\left[\left(b-\lambda_{k}\right)^{2}-d_{1}^{2}\right]^{\frac{n-j}{2}}, \text { when } j \text { is even, }}
\end{array}\right. & , n \text { is even, }
\end{array}\right.
$$

when $d_{2}=0, j=2, \ldots, n$ and $k=1, \ldots, n$,where

$$
\begin{equation*}
\nu_{j}(\sigma)=(-1)^{n-j} a_{\sigma_{1} \ldots a_{\sigma_{j-1}}}, j=2, \ldots, n \tag{20.b}
\end{equation*}
$$

3.2) When λ_{k} is multiple, then all the components are zero except the last four ones at most and which we calculate directly.

Proof. The expressions of the eigenvalues are trivial by annulling the corresponding characteristic determinants. Following the same reasoning as the case $d_{1} d_{2} \neq 0$, by solving system (7), we get the expressions of the eigenvectors by formulas (13)

$$
u_{j}^{(k)}(\sigma)=(-1)^{n-1} \nu_{j}(\sigma) u_{1}^{(k)}\left[\left[\frac{\Delta_{n-j}^{(k)}}{\Delta_{n-1}^{(k)}}\right]\right], j=2, \ldots, n \text { and } k=1, \ldots, n
$$

where [[.]] denote the reduced fraction.

$$
\Delta_{n-1}^{(k)}=\left\{\begin{array}{c}
\left(\xi_{k}^{2}-d_{2}^{2}\right)^{m-2}\left(\xi_{k}^{2}-d_{2}^{2}\right)\left(\xi_{k}^{2}-\beta \xi_{k}-d_{2}^{2}\right), \text { when } n=2 m+1 \text { is odd } \\
\left(\xi_{k}^{2}-d_{2}^{2}\right)^{m-2}\left(\xi_{k}-\beta\right)\left(\xi_{k}^{2}-d_{2}^{2}\right), \text { when } n=2 m \text { is even }
\end{array}\right.
$$

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 15, pp. 115-133, April 2006

132
S. Kouachi
when $d_{1}=0$ and

$$
\Delta_{n-1}^{(k)}=\left\{\begin{array}{c}
\left(\xi_{k}^{2}-d_{1}^{2}\right)^{m-1}\left(\xi_{k}^{2}-\beta \xi\right)_{k}, \text { when } n=2 m+1 \text { is odd } \\
\left(\xi_{k}^{2}-d_{1}^{2}\right)^{m-2} \xi_{k}\left(\xi_{k}^{2}-\beta \xi_{k}-d_{1}^{2}\right), \text { when } n=2 m \text { is even }
\end{array}\right.
$$

when $d_{2}=0$.
$\Delta_{n-j}^{(k)}=\left\{\begin{array}{l}\left\{\begin{array}{c}\left(\xi_{k}^{2}-d_{2}^{2}\right)^{\frac{n-j}{2}-2}\left(\xi_{k}^{2}-d_{2}^{2}\right)\left(\xi_{k}^{2}-\beta \xi_{k}-d_{2}^{2}\right), \text { when } j \text { is odd, } \\ \left(\xi_{k}^{2}-d_{2}^{2}\right)^{\frac{n-j-1}{2}-1} \xi_{k}\left(\xi_{k}^{2}-\beta \xi_{k}-d_{2}^{2}\right), \text { when } j \text { is even }\end{array}\right. \\ \left\{\begin{array}{c}\left(\xi_{k}^{2}-d_{2}^{2}\right)^{\frac{n-j-1}{2}-1}\left(\xi_{k}-\beta\right)\left(\xi_{k}^{2}-d_{2}^{2}\right), \text { when } j \text { is odd, }, \\ \left(\xi_{k}^{2}-d_{2}^{2}\right)^{\frac{n-j}{2}-1}\left(\xi_{k}^{2}-\beta \xi_{k}\right), \text { when } j \text { is even, }\end{array}\right.\end{array}\right.$
when $d_{1}=0$ and
$\Delta_{n-j}^{(k)}=\left\{\begin{array}{c}\left\{\begin{array}{c}\left(\xi_{k}^{2}-d_{1}^{2}\right)^{\frac{n-j}{2}-1}\left(\xi_{k}^{2}-\beta \xi_{k}\right), \text { when } j \text { is odd, } \\ \left(\xi_{k}^{2}-d_{1}^{2}\right)^{\frac{n-j-1}{2}-1}\left(\xi_{k}-\beta\right)\left(\xi_{k}^{2}-d_{1}^{2}\right), \text { when } j \text { is even }\end{array} \quad n \text { is odd, }\right. \\ \left\{\begin{array}{c}\left(\xi_{k}^{2}-d_{1}^{2}\right)^{\frac{n-j-1}{2}-1} \xi_{k}\left(\xi_{k}^{2}-\beta \xi_{k}-d_{1}^{2}\right), \text { when } j \text { is odd, } \\ \left(\xi_{k}^{2}-d_{1}^{2}\right)^{\frac{n-j}{2}-2}\left(\xi_{k}^{2}-d_{1}^{2}\right)\left(\xi_{k}^{2}-\beta \xi_{k}-d_{1}^{2}\right), \text { when } j \text { is even }\end{array}\right.\end{array}\right.$
when $d_{2}=0$. Then, when $d_{1}=0$, we have

$$
u_{j}^{(k)}(\sigma)=(-1)^{n-1} \nu_{j}(\sigma)\left\{\begin{array}{l}
\left\{\begin{array}{l}
\left(\xi_{k}^{2}-d_{2}^{2}\right)^{\frac{1-j}{2}}, \text { when } j \text { is odd, } \\
\left(\xi_{k}^{2}-d_{2}^{2}\right)^{\frac{-j}{2}} \xi_{k}, \text { when } j \text { is even }
\end{array}\right. \\
\left\{\begin{array}{l}
\left(\xi_{k}^{2}-d_{2}^{2}\right)^{\frac{1-j}{2}}, \text { when } j \text { is odd, }, \\
\left(\xi_{k}^{2}-d_{2}^{2}\right)^{\frac{-j}{2}} \xi_{k}, \text { when } j \text { is even, }
\end{array}\right.
\end{array}\right.
$$

$j=2, \ldots, n$ and $k=1, \ldots, n$. By putting $j=n$, calculating $u_{1}^{(k)}$ according to $u_{n}^{(k)}(\sigma)$ and choosing

$$
u_{n}^{(k)}(\sigma)=a_{\sigma_{1} \ldots} \ldots a_{\sigma_{n-1}},
$$

we get (20.a).
Following the same reasoning as in the case when $d_{1}=0$, we deduce (20.b).
Acknowledgment. The author thanks the superior education ministry and the national agency of development and scientific research (ANDRU) for their financial support.

REFERENCES

[1] Wen-Chyuan Yueh. Eigenvalues of several tridiagonal matrices. Applied Mathematics E-Notes, 5:66-74, 2005.
[2] J. F. Elliott. The characteristic roots of certain real symmetric matrices. Master's thesis, Univ. of Tennessee, 1953.
[3] R. T. Gregory and D. Carney. A Collection of Matrices for Testing Computational Algorithm. Wiley-Interscience, New York, 1969.
[4] U. Grenander and G. Szego. Toeplitz Forms and Their Applications. University of California. Press, Berkeley and Los Angeles, 1958.
[5] S. Kouachi. Eigenvalues and eigenvectors of several tridiagonal matrices. Submitted to the Bulletin of the Belgian Mathematical Society.
[6] S. Kouachi. Eigenvalues and eigenvectors of tridiagonal matrices with non equal diagonal entries. In preparation.
[7] S. Kouachi. Explicit Eigenvalues of tridiagonal matrices. To appear in Applied Mathematics E-Notes.

[^0]: * Received by the editors 9 January 2006. Accepted for publication 21 March 2006. Handling Editor: Ludwig Elsner.
 ${ }^{\dagger}$ Laboratoire de mathematiques, Universite de badji, Mokhtar, Annaba, 23200, Algeria (kouachi.said@caramail.com).

