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A REFINEMENT OF AN INEQUALITY OF JOHNSON,

LOEWY AND LONDON ON NONNEGATIVE MATRICES

AND SOME APPLICATIONS.�

THOMAS J. LAFFEYy AND ELEANOR MEEHANy

Dedicated to Hans Schneider on the occasion of his seventieth birthday.

Abstract. Let A be an entrywise nonnegative n � n matrix and let sk := trace (Ak) (k =
1;2; : : :). It is shown that if n is odd and s1 = 0, then (n � 1)s4 � s2

2
. The result is applied

to show that (3; 1
2
(1 � p17);�2;�2) is not the spectrum of a nonnegative 5 � 5 matrix while

(3; 1
2
(1�

p
17);�2;�2;0) is the spectrum of a nonnegative symmetric 6� 6 matrix.
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1. Introduction. Let A be an entrywise nonnegative n� n matrix and let

sk := trace (Ak); (k = 1; 2; : : :):

The JLL-inequalities discovered independently by Loewy and London [10] and John-
son [5] state that

(JLL) nm�1skm � smk

for all positive integers k, m.
Equality can occur in (JLL) for various k, m; for example, if Ak is a scalar

matrix, then equality holds for all m.
In this paper we obtain a re�nement of one of the inequalities in a special case.

We prove Main Theorem. Let A be an entrywise nonnegative n � n matrix with
trace (A) = 0. Then, if n is odd,

(n� 1)s4 � s22;

that is,

(n� 1)trace (A4) � �trace (A2)
�2
:

This inequality is best possible|for example if A is the matrix

diag

�
0 1
1 0

�
� � � � � diag

�
0 1
1 0

�
� (0)
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then equality occurs. It also fails in general for n even, for example

A = diag

�
0 1
1 0

�
� � � � � diag

�
0 1
1 0

�

provides a counterexample. In the case n = 5, this inequality was proved in a number
of special cases by Reams [11], [12].

Though the re�nement in the JLL inequality is small, it has some important
applications. It enables one to show that there exists a list (�1; : : : ; �5) of real numbers
which is not the spectrum of a nonnegative 5� 5 matrix but the list with 0 adjoined,
(�1; : : : ; �5; 0), is the spectrum of a nonnegative symmetric 6 � 6 matrix. In [6],
Johnson, Loewy and the �rst author presented a list (�1; : : : ; �r) of real numbers
which forms the spectrum of a nonnegative r � r matrix but not the spectrum of a
nonnegative symmetric r � r matrix; see also [8]. This was placed in the context of
Boyle-Handelman theory [2], [3] and showed that in realizing a given list satisfying
the obvious necessary conditions as the nonzero part of the spectrum of a nonnegative
matrix A, one cannot in general place restrictions on the rank of the zero eigenvalue
part of the Jordan form of A. However, if A is real symmetric, then its rank is the
same as the number of nonzero elements in its spectrum, so the example presented
here is signi�cant.

The paper is organized as follows. In Section 1 we consider a quadratic form as-
sociated with the triangular graphs. In Section 2 we show how the desired inequality
can be formulated in terms of the copositivity of the form. This copositivity is estab-
lished in Section 3. In Section 4, the result is applied to determine the realizability
of certain spectra.

2. The triangular graph. Let n � 5 be an integer. Let S be the set of all 2-subsets
of f1; 2; : : : ; ng. De�ne a graph �n as follows:
�n has vertex set S and for �; � 2 S, �� = �� is an edge of �n if and only if
j� \ �j = 1. The graph �n is known as the triangular graph on f1; 2; : : :; ng. It is
an example of a strongly regular graph (see van Lint and Wilson [9, p. 231]) and its
parameters are ��

n

2

�
; 2(n� 2); n� 2; 4

�
:

This means that it has
�
n

2

�
vertices, each vertex has degree 2(n � 2) and if �; � are

distinct vertices, then if �� is an edge, there are n � 2 vertices 
 incident with both
� and � while if �� is not an edge, there are 4 vertices incident with � and �. Note
also that �n is the line graph L(Kn) of the complete graph Kn on n vertices; see
Cvetkovi�c, Doob, Sachs [4, p. 169].

Label the vertices of �n by the symbols 1; 2; : : : ; N :=
�
n

2

�
, and let Pn be its

adjacency matrix. By van Lint and Wilson [9, p. 231]

P 2
n +

�
4� (n� 2)

�
Pn +

�
4� 2(n� 2)

�
IN = 4JN ;

where IN is the N �N identity matrix and JN the N �N matrix with all its entries
equal to 1. The vector with all components equal to 1 is an eigenvector for both Pn
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and JN and the corresponding eigenvalue of Pn is 2(n� 2). The other eigenvalues of
JN are all 0 and it follows that the remaining eigenvalues of Pn satisfy the equation

x2 +
�
4� (n� 2)

�
x+ 4� 2(n� 2) = 0:

So they are n�4 and �2 and the corresponding multiplicities are (n�1) and �n�12 ��1
(as determined from the equation trace (Pn) = 0). [The fact that the eigenvalues of
Pn are integers is related to the fact that the Z-span of I, JN , Pn is a ring (the
Bose-Messner algebra of �n [9, pp. 234{235])].

Note also that since �n is the line graph L(Kn),

Pn = RT
nRn � 2IN

where Rn is the incidence matrix of the graph Kn (where the edges of Kn are labeled
consistently with our labeling of the vertices of Pn).

Consider the quadratic form

Q := (x1 � � �xN )Pn

0
BB@

x1
x2
...
xN

1
CCA = (x1 � � �xN )RTR

0
BB@

x1
x2
...
xN

1
CCA � 2

NX
i=1

x2i

= 
2
1 + � � �+ 
2

n � 2
NX
i=1

x2i ;

where 
i = xiji(1)+� � �+xiji(n�1)
and ji(1); : : : ; ji(n�1) are the edges ofKn containing

the vertex i (i = 1; 2; : : : ; n). Thus for i 6= k, 
i and 
k involve exactly one common
symbol. We show in the next section that the problem of minimizing the form

(x1 � � �xN )(Pn + I)

0
BB@

x1
x2
...
xN

1
CCA = 
2

1 + � � �+ 
2
n �

NX
i=1

x2i

over D :=
�
(x1; : : : ; xN)jxi � 0 for all i and

NX
i=1

xi = 1
	
arises in the proof of the

main theorem.

3. Nonnegative matrices of trace 0. Let A = (aij) be a nonnegative n�n matrix
of trace 0 and let sk := trace (Ak) for k = 1; 2; : : :; n. Note that

s2 = 
1 + � � �+
n

where


i =
nX

j=1
j 6=i

aijaji (i = 1; 2; : : :; n):
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Write y1 = a12a21, y2 = a13a31; : : :, yn�1 = a1nan1, yn = a23a32, yn+1 = a24a42; : : :,
yN = an�1nann�1 where N :=

�
n
2

�
.

We now consider s4 = trace (A4). The diagonal terms of A2 contribute 
2
1+� � �
2

n

to s4. We observe that this contribution is a quadratic form in y1; y2; : : : ; yN . Thus
we are led to consider that part of s4 which can be expressed as a quadratic form in
y1; : : : ; yN . Since trace (A) = 0, all diagonal entries of A are 0 and thus s4 is a sum of
terms of the form ar1r2ar2r3ar3r4ar4r1 , where either all the ri are distinct or it equals
a term of the form apqaqparsasr.

The 4-cycle type ar1r2ar2r3ar3r4ar4r1 with r1, r2, r3, r4 distinct does not give a
quadratic form in y1; : : : ; yN .

Consider a term of the form

apqaqparsasr

where p 6= q, r 6= s. If fr; sg = fp; qg, this term only arises in the component

2
1 + � � �+ 
2

n. Suppose fr; sg 6= fp; qg. If fr; sg \ fp; qg is empty, this term cannot
occur in s4 at all. Hence we are led to consider the occurrence of terms apqaqparsasr
in which ��fp; qg \ fr; sg�� = 1

(where j � j denotes cardinality).
Suppose p = r. Then such a term occurs in s4 � (
2

1 + � � �+
2
n) in the following

ways: in the contribution of the (q; s) term of A2 and the (s; q) term of A2 to the
(q; q) element of A4 and also to the (s; s) element of A4 and in no other way, so its
coe�cient in s4 � (
2

1 + � � �+ 
2
n) is 2.

If p = s, then the term arises in the (q; q) and (r; r) terms contribution to s4 �
(
2

1 + � � �+ 
2
n) and not in any other term.

Similarly the term occurs with coe�cient 2 in s4 � (
2
1 + � � � + 
2

n) if fqg =
fp; qg \ fr; sg.

Thus we �nd that

s4 � 
2
1 + � � �+
2

n + 2
X

ylym

where the sum is over all fl;mg such that if yl = apqaqp and ym = arsasr, then��fp; q; r; sg��= 3.
Thus in the notation of Section 1,

s4 � 
2
1 + � � �+ 
2

n + (y1 � � �yN )Pn

0
B@

y1
...
yN

1
CA :

But note that


2
1 + � � �+ 
2

n = (y1 � � �yN )RTR

0
B@

y1
...
yN

1
CA :
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Since Pn = RTR� 2IN , we have

s4 � 2(
2
1 + � � �+
2

n)� 2
NX
i=1

y2i :

To prove the theorem, it su�ces to show that

(E) 2(n� 1)(
2
1 + � � �+ 
2

n) � 2(n� 1)
NX
i=1

y2i � s22 = 4(y1 + � � �+ yN )
2:

4. An optimization problem. Motivated by Section 2, we formulate the following
question. Let D = f(y1; : : : ; yN )jyi � 0 for all i and

PN

i=1 yi = 1g where n is an
odd integer � 3 and N =

�
n

2

�
. Let �1;�2; : : : ;�n be a collection of subsets of

fy1; y2; : : : ; yNg satisfying the following properties.
1. Each �i contains n� 1 yis
2. j�i \ �jj = 1 for all 1 � i 6= j � n

3. Each yi belongs to exactly two of the �js.
Let 
i be the sum of the elements of �i and let

�(y1; : : : ; yN ) := 
2
1 + � � �+ 
2

n �
NX
i=1

y2i :

The problem is to determine the global minimumof �(y1; : : : ; yN ) as y runs through D.
Since � is a continuous function on the compact set D the global minimum exists.
We now suppose y1; : : : ; yN have been chosen so that
(1) �(y1; : : : ; yN ) is the global minimum of � on D
(2) The number of nonzero yi is least possible subject to condition (1).

We �rst establish the following result.
Claim 1. Assume the notation is chosen so that y1 = max

1�i�N
yi and that

y1 2 �1 \ �2. Then 
1 = 
2 = y1 (that is, all the yis occurring in (�1 [ �2)nfy1g
are zero).
Proof. For suppose 
1 contains an element yj(j 6= 1) with yj 6= 0 and choose yj least
possible subject to this.

De�ne y01 = y1 + yj, y
0
j = 0.

Let �1 = fy1; yj; yh3 ; : : : ; yhn�1g, �2 = fy1; yr2 ; : : : ; yrn�1g and note yj 62 �2 by
property 2. Put �01 = fy01; y0j ; yh3 ; : : : ; yhn�1g, �02 = fy01; yr2 ; : : : ; yrn�1g. Now yj is
contained in some �i(i > 1), say yj 2 �3. De�ne

�03 = (�3nfyjg) [ fy0jg:

De�ne �0k = �k for all k > 3. Consider the e�ect of this change on


2
1 + � � �
2

n �
NX
i=1

y2i :
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Note that 
01 = 
1 and that (
02)
2 is increased (over 
2

2) by

y2j + 2yj(y1 + yr2 + � � �+ yrn ) = y2j + 2yj
2:

Also (
03)
2 is reduced (over 
2

3) by

y2j + 2yj(
3 � yj)

Also y01
2 + y0j

2 +
P

t6=1;j y
0
t
2 is increased (over

PN

i=1 y
2
i ) by 2y1yj .

Thus the overall e�ect on the function � is an increase of

2yj(
2 � y1)� 2yj(
3 � yj) = 2yj
�
(
2 � y1)� (
3 � yj)

�
:

It follows that 
2 � y1 � 
3 � yj . But if equality occurs here, then � is unchanged
while the number of nonzero yi's has been decreased by 1, contrary to hypothesis (2)
above. Hence we have

(�) 
2 � y1 > 
3 � yj:

Consider the following swap of the original �i.
Leave �1;�4; : : : ;�n as before.
Put

�002 = (�3nfyjg) [ fy1g
�003 = (�2nfy1g) [ fyjg

Note that the system

�1;�
00
2 ;�

00
3;�4; : : : ;�n

satis�es the hypothesis and that the sum
P

y2i is unchanged and the overall change
in � is to add

2y1(
3 � yj) + 2yj(
2 � y1) = 2(y1 � yj)
�
(
3 � yj) � (
2 � y1)

�
:

Since � achieves its global minimum for these yi's, it follows that this must be non-
negative.

If y1 � yj > 0, this implies that

(
3 � yj)� (
2 � y1) � 0;

contradicting (�) above. Hence y1 = yj and 
2 > 
3. But now we can reverse the
roles of y1 and yj and de�ne y01 = 0 and y0j = y1 + yj . The argument then yields

2 < 
3, thus yielding the desired contradiction.

Claim 2. The global minimum is achieved by an assignment in which each �i

has at most one nonzero yi.
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Proof. By Claim 1, we may assume �1 = �2 = fy1g, where we assume y1 =
maxfy1; : : : ; yNg. The Claim is now clear if n = 3. Suppose n > 3. Using our
hypotheses, we may write

�1 = fy1; y2; : : : ; yn�1g and �2 = fy1; yn; yn+1; : : : ; y2n�3g;

and y2 = 0; : : : ; yn�1 = 0, yn = 0; : : : ; y2n�3 = 0. Note that y2; : : : ; yn�1 belong
to distinct members of the list �3; : : : ;�n and thus each �i (i = 3; : : : ; n) contains
exactly one of y2; : : : ; yn�1. Similarly�3; : : : ;�n contains exactly one of yn; : : : ; y2n�3.
But now deleting those elements from �3; : : : ;�n leads to a list �03; : : : ;�

0
n of n � 2

subsets of fy2n�2; : : : ; yNg which satisfy our hypotheses with n replaced by n�2 (and
NX
i=1

yi = 1 replaced by
NX

i=2n�2

yi = 1� 2y1).

So now we can use induction on n to conclude that the minimum contribution
from these subsets occurs for an arrangement in which each of �03; : : : ;�

0
n contains at

most one nonzero element. This establishes Claim 2.
Since n is odd, Claim 2 implies that one of the �ks consists of zeros since the

nonzero elements pair o� as
�fy1g; fy1g�; �fy2g; fy2g�; : : : Thus the problem of min-

imizing � in this case reduces to: Minimize 2(y21 + y22 + � � � + y2k) � (y21 + � � �+ y2k)

(where k = n�1
2 ) subject to yi � 0 and

kX
i=1

yi = 1.

But for any real numbers a; b

(a� b)2 + (a+ b)2 > 2a2

if b 6= 0.
Hence at the global minimum, all yi must be equal, and thus they must equal 1

k

and the global minimum of � is

k

k2
=

1

k
=

2

n� 1
:

Proof of (E). The proof of (E) reduces to showing that

2(n� 1)
�
(
2

1 + � � �+ 
2
n)�

NX
i=1

y2i
� � 4(y1 + � � �+ yN )

2

for n odd, and all y1 � 0; : : : ; yN � 0. We may assume y1 + � � �+ yN = 1, otherwise

replace each yi by yi
� 0@ NX

j=1

yj

1
A :

But now by the optimization result,

2(n� 1)

"

2
1 + � � �+
2

n �
NX
i=1

y2i

#
� 2(n� 1)

k
= 4
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since 1
k
is the global minimum of


2
1 + � � �+ 
2

n �
NX
i=1

y2i :

This proves (E) and completes the proof of the Main Theorem for n � 3. Note that
we have equality in the theorem when n = 3.

5. Applications. 1. Consider the cubic multigraph (Cvetkovi�c et al [4, (4.15)
p. 309]) with adjacency matrix

A :=

0
BBBBB@

0 1 1 1 0 0
1 0 2 0 0 0
1 2 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 2
0 0 0 1 2 0

1
CCCCCA

The spectrum of A is

(3;
1

2
(1 +

p
17);

1

2
(1�

p
17);�2;�2; 0)

and 4trace (A4) � �trace (A2)
�2

= �28 so (3; 12 (1 +
p
17); 12(1 �

p
17);�2;�2) is not

the spectrum of a nonnegative 5� 5 matrix
2. The list (10; 8;�7;�6;�5) is not the spectrum of a nonnegative 5 � 5 matrix

since

4s4 � s22 = �1404:
This list was proposed as a test spectrum by R. Loewy since it satis�ed all previously
known necessary conditions for realizability by a nonnegative matrix.

3. The list (3; 3;�2;�2;�2) has been used as an example by several authors. It
satis�es the JLL inequalities but is not realizable as the spectrum of a nonnegative
matrix A. For if such an A exists, since the Perron eigenvalue 3 is repeated, A
would have to be reducible under permutation similarity and thus the list would have
to be partitionable into two lists which are separately realizable and this is clearly
impossible. Note that its unrealizability also follows from the Main Theorem since
4s4 � s22 = �60. One can seek the least positive number t for which

(3 + t; 3� t;�2;�2;�2)
is realizable. A necessary condition is that 4s4 � s22 � 0, that is

t4 + 78t2 � 15 � 0

t � t0 :=

q
16
p
6� 39 = 0:43799 � � �
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But for such a real number t, the matrix

0
BBB@

0 1 0 0 0
15+t2

2 0 1 0 0
0 0 0 1 0
0 0 0 0 1
v

(t4+78t2�15)
4 10 + 6t2 15+t2

2 0

1
CCCA

where v = �72+8t2+ (15+ t2)(5+ 3t2) = 3t4+58t2+ 3 has the spectrum (3+ t; 3�
t;�2;�2;�2). By Guo Wuwen [13], (3 + �; 3;�2;�2;�2) is therefore the spectrum
of a nonnegative matrix for all � � 2t0 = 0:87598 � � �

This is perhaps surprising in view of a generally held view that � � 1 was best
possible here. The di�cult question of �nding the best possible bound on � will be
considered elsewhere.

4. A real symmetric n � n matrix A is called copositive if xTAx � 0 for all
vectors x with nonnegative entries; see [1], [7]. The class of copositive matrices
obviously includes the class of positive semi-de�nite and positive de�nite matrices
and also the class of (entrywise) nonnegative symmetric matrices. Furthermore it is
clear that if A = P + N when P is a positive semi-de�nite real symmetric matrix
and N a nonnegative real symmetric matrix, then A is copositive, and a question
arose as to whether conversely every copositive matrix is expressible as such a sum.
A counterexample to this was constructed by A. Horn [7, (16.2)] and it is interesting
to note that with a suitable ordering of the vertices, his example coincides with the
leading principal 5�5 submatrix of 2(I+P5)�J10. But, by (E) above, for nonnegative
x1; : : : ; x10,

(x1; : : : ; x10)
T2(I + P5)

0
@ x1

...
x10

1
A � (x1 + � � �+ x10)

2

= (x1; : : : ; x10)
TJ10

0
@ x1

...
x10

1
A

Hence 2(I + P5)� J10 is copositive.
It then follows from Horn's argument that 2(I + P5) � J10 is not of the form

X + Y where X is a nonnegative symmetric matrix and Y is a positive semi-de�nite
real symmetric matrix. The cone of copositive n� n matrices is the dual of the cone
of completely positive matrices; see [1], [7].

Acknowledgement. The authors wish to thank the two referees for very carefully
reading the paper and for their helpful suggestions which have improved its readability.
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