
ELA

BOUNDED AND STABLY BOUNDED PALINDROMIC
DIFFERENCE EQUATIONS OF FIRST ORDER∗
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Abstract. Criteria for palindromic difference equations A�xi + Axi+1 = 0, where � stands
for either transpose or conjugate transpose, to have bounded or stably bounded solutions are given
in terms of the congruent equivalent classes of the matrix A. It is proved that the set of bounded
palindromic difference equations is connected in the complex case, and has two connected components
corresponding to the sign of the determinant of A in the real case. The connected components of
the set of stably bounded palindromic difference equations are characterized.
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1. Introduction. We consider systems of first order difference equations with
constant coefficients:

A0xi +A1xi+1 = 0, i = 0, 1, . . . ,(1.1)

where A0 and A1 are fixed (real or complex) n×n matrices, and {xi}∞i=0 is a sequence
of vectors to be found.

It will be assumed that A1 is invertible. Then the solutions of (1.1) are easy to
find:

xi = (−A−1
1 A0)ix0, i = 0, 1, . . . .(1.2)

Of special interest for us will be situations where every solution sequence {xi}∞i=0 is
bounded; in such case we say that the system (1.1) is bounded. Using the formula
(1.2) and the Jordan form of the matrix −A−1

1 A0, it is not difficult to obtain the
following well-known criterion:

Proposition 1.1. The system (1.1) is bounded if and only if the eigenvalues
of −A−1

1 A0 have absolute value less than or equal to 1, and the partial multiplicities
corresponding to the unimodular eigenvalues (if any) are all equal to 1.

A symmetry assumption will be imposed on the difference equation (1.1). We
consider three cases; here and in the sequel, XT and X∗ denote the transpose and
the conjugate transpose, respectively, of a (real or complex) matrix X :

(I) A0 = A∗
1, and the matrices are complex;

(II) A0 = AT
1 , and the matrices are real;

(III) A0 = AT
1 , and the matrices are complex.
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The associated matrix polynomial A0 + λA1 is then palindromic, of first degree.
This terminology was introduced in [21], by analogy with linguistic palindromes.
Bounded and stably bounded palindromic systems of difference equations of even
orders for the case (I) have been studied in [8], see also [6], [7], using the matrix poly-
nomial techniques of [9]. Recently, palindromic polynomials of arbitrary degree and
their applications have been intensively studied, in particular in terms of lineariza-
tions, see [11], [13], [21], [22].

We suppose now that one of the symmetry conditions (I) - (III) holds. Thus,
(1.1) can be rewritten in the form

A�xi +Axi+1 = 0, i = 0, 1, . . . , xi ∈ F
n×1,(1.3)

where 	 stands for the conjugate transpose if (I) is assumed, and for the transpose if
(II) or (III) is assumed, and where F = C (the complex field) if (I) or (III) is assumed,
and F = R (the real field) if (II) is assumed. Denote U := A−1A�.

We say that the difference equation (1.3) with invertible A is stably bounded if
there exists ε > 0 such that every solution of any difference equation

Ã�xi + Ãxi+1 = 0, i = 0, 1, . . . , xi ∈ F
n×1,(1.4)

is bounded provided ‖Ã−A‖ < ε and Ã ∈ Fn×n. In particular, every solution of the
equation (1.3) is bounded.

In this paper we give criteria for boundedness and stable boundedness of (1.3) in
terms of the congruence equivalence class of the matrix A, and describe the connected
components of the sets of bounded and stably bounded systems. It turns out that
the set of bounded systems is connected in the cases of symmetries (I) and (III), and
it has two connected components, distinguished by the sign of the determinant of A,
under the symmetry (II). In contrast, the set of stably bounded systems, which turns
out to be an open set in Fn×n, has a rather involved description of components under
the symmetries (I) and (II); there are no nontrivial stably bounded systems under
the symmetry (II).

The problems of describing connected components of stably bounded systems,
mainly in the context of differential Hamiltonian equations, have a long history, start-
ing with the 1950’s [5], [16], [23]; later works include [3], [14], [24]. Some basic parts
of this material are exposed in [6], [7]. It is interesting to note that in the case
of differential equations as well, the set of stably bounded systems typically has a
complicated characterization of components, whereas the set of bounded systems is
typically connected.

Besides the introduction, the paper consists of 6 sections. The symmetry (I) is
studied in Sections 2 and 3. Preliminary material, largely known, on canonical forms
of real matrices under congruence and on Jordan structures of matrices of the form
A−1AT , is presented in Section 4. It is used in Sections 5 and 6 to study bounded
and stably bounded systems and their connected components under symmetry (II).
Finally, in Section 7 palindromic systems with symmetry (III) are considered.

We conclude the introduction with several observations that serve as a starting
point of our investigation. First, a remark concerning eigenvalues of matrices of the
form A−1A�:
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Remark 1.2. Let A ∈ Fn×n be invertible. If λ is an eigenvalue of U := A−1A�,
then so is λ−1 (if (II) or (III) holds) or λ−1 (if (I) holds).

This is a general fact valid also for palindromic polynomials of arbitrary degree
[21].

Proposition 1.3. Assume that A is invertible. Then (1.3) is bounded if and
only if the matrix U := A−1A� is diagonalizable (over the complex field) with all
eigenvalues on the unit circle.

For the proof use Remark 1.2 together with Proposition 1.1.
Proposition 1.4. The following statements are equivalent for the system (1.3)

with an invertible matrix A:
(1) (1.3) has a geometrically growing solution {xi}∞i=0, i.e.,

‖xi‖ ≥ Kri, i = 0, 1, . . . ,

where the constants K > 0 and r > 1 are independent of i;
(2) the matrix U := A−1A� has a nonunimodular eigenvalue;
(3) the matrix U has an eigenvalue of absolute value larger than 1;
(4) the matrix U has an eigenvalue of absolute value smaller than 1.
The equivalence of (1) and (3) is well known and follows easily from formula

(1.2) and the Jordan structure of U ; the equivalence of (2), (3), and (4) follows from
Remark 1.2.

Remark 1.5. The boundedness and stable boundedness properties of equation
(1.3), as well as the property of having a geometrically growing solution, are invariant
under 	-congruence transformations of the matrix A. Indeed, if B = S�AS for some
invertible S, then the difference equation

B�yi +Byi+1 = 0, i = 0, 1, . . . ,

is reduced to (1.3) upon substitution yi = S−1xi (i = 0, 1, 2, . . .).
The following notation will be used throughout: (·, ·) stands for the standard

inner product in the column vector space Fn×1, where F = C, the complex field,
or F = R, the real field. The set of eigenvalues of a matrix X , including complex
eigenvalues for real matrices, is denoted by σ(X). Im or I (with the size understood)
stands for the m×m identity matrix. The m×m upper triangular Jordan block with
the (real or complex) eigenvalue a is denoted Jm(a). We use the notation J2m(a± ib)
or J2m(a+ib, a−ib) to denote the 2m×2m almost upper triangular real Jordan block
with a pair of nonreal complex conjugate eigenvalues a± ib; here a, b ∈ R, b 
= 0:

J2m(a± ib) = J2m(a+ ib, a− ib) =


T (a, b) I2 0 · · · 0 0

0 T (a, b) I2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · T (a, b) I2
0 0 0 · · · 0 T (a, b)

 ,
where

T (a, b) :=
[

a b
−b a

]
.
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2. Symmetry (I). In this section and in the next one we assume symmetry (I),
i.e., the matrices and vectors are complex and � stands for the conjugate transpose.
Recall that two matrices X,Y ∈ Cn×n are said to be congruent if X = S∗Y S for
some invertible S ∈ Cn×n.

In this section we describe bounded and stably bounded systems (1.3) in various
ways.

We begin with preliminary facts and remarks needed for the proof of the main
theorems in this section, as well as for subsequent results. In view of formula (1.2),
Jordan forms of matrices of the form A−1A∗ will play a role. These forms are known;
see [1], [4], and also [27], where the corresponding problems are addressed in a more
general context of fields with involutions.

By Remark 1.5, we may replace the given matrix A by a canonical form obtained
from A using a congruence transformation. Such a canonical form is presented next.

Proposition 2.1. Let A ∈ C
n×n be invertible. Then there exist an invertible

S ∈ Cn×n such that S∗AS has the following form:

δ1 (Fk1 + iGk1)⊕ · · · ⊕ δr (Fkr + iGkr )
⊕ η1 ((i+ α1)F�1 +G�1)⊕ · · · ⊕ ηq

(
(i+ αq)F�q +G�q

)
⊕
[

0 (i+ β1)Fm1 +Gm1

(i+ β1)Fm1 +Gm1 0

]
⊕ · · · ⊕

[
0 (i+ βs)Fms +Gms

(i+ βs)Fms +Gms 0

]
.(2.1)

Here, k1 ≤ · · · ≤ kr, "1, · · · , "q, and m1, · · · ,mq are positive integers, αj are real
numbers, βj are complex nonreal numbers different from ±i, δ1, . . . , δr, η1, . . . , ηq are
signs, each equal to +1 or −1, and Fm and Gm are m×m matrices given by

Fm =



0 · · · · · · 0 1
... 1 0
...

...

0 1
...

1 0 · · · · · · 0


and Gm =

[
Fm−1 0
0 0

]
.(2.2)

Moreover, the form (2.1) is unique for a given A, up to a permutation of blocks.
For the proof see [17, Corollary 6.4].
Other canonical forms for congruence are available, and the literature on this

topic in the more general context of sesquilinear forms over commutative fields is
quite extensive; we mention here only [12], [25].

Next, a straightforward calculation shows the following fact:
Remark 2.2. Assume A is in the form (2.1). Then the matrix U = A−1A∗ is

diagonalizable with all eigenvalues on the unit circle if and only if all ki’s and all "j ’s
are equal to 1 and the blocks[

0 (i+ βp)Fmp +Gmp

(i+ βp)Fmp +Gmp 0

]
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are absent.
It will be convenient to introduce the following notation for an invertible matrix

A:

Σ(A) := {z ∈ C : zA+ zA∗ is not invertible}.
Clearly,

C \ Σ(A) = {z ∈ C \ {0} : −z

z

∈ σ(A−1A∗)}.

In particular, C \Σ(A) is nonempty.
In what follows we use the notation ν+(X), resp., ν−(X), to denote the number of

positive, resp., negative, eigenvalues counted with their multiplicities, of an Hermitian
matrix X . For future use we note that for A given by (2.4) we have

U := A−1A∗ = Ir ⊕ diag ((i+ α1)−1(−i+ α1), . . . , (i+ αq)−1(−i+ αq)),(2.3)

and the number of negative and positive squares ν+(Qλ(z)) and ν−(Qλ(z)) of the
quadratic form

Qλ(z) := ((zA+ zA∗)x, x), x ∈ Ker (U − λI), λ ∈ σ(U),

where z ∈ C \ Σ(A), is described in the following remark.
Remark 2.3. (a) Assume

λ = (i+ αj0)
−1(−i+ αj0) 
= 1.

Then, if the real part of z(−i+αj0) is positive, then ν+(Qλ(z)) (resp., ν−(Qλ(z))) is
equal to the number of indices j, (1 ≤ j ≤ q), such that

λ = (i+ αj)−1(−i+ αj) and ηj = 1 (resp., ηj = −1).
If the real part of z(−i+αj0) is negative, then ν+(Qλ(z)) (resp., ν−(Qλ(z))) is equal
to the number of indices j, (1 ≤ j ≤ q), such that

λ = (i+ αj)−1(−i+ αj) and ηj = −1 (resp., ηj = 1).

(b) Assume λ = 1. If the real part of z is positive, then ν+(Q1(z)) (resp.,
ν−(Q1(z))) is equal to the number of indices j, (1 ≤ j ≤ r), such that δj = 1 (resp.,
δj = −1), and if the real part of z is negative, then ν+(Q1(z)) (resp., ν−(Q1(z))) is
equal to the number of indices j, (1 ≤ j ≤ r), such that δj = −1 (resp., δj = 1).

We need one more piece of preparation. A matrix is said to be u-diagonalizable
if it is similar to a diagonal matrix with unimodular entries on the diagonal. Let
H ∈ Cn×n be an invertible Hermitian matrix. An H-unitary matrix U is called stably
u-diagonalizable if there exists ε > 0 such that every G-unitary matrix V is u-diago-
nalizable as soon as G ∈ C

n×n is Hermitian, V is G-unitary, and the inequality

‖G−H‖+ ‖V − U‖ < ε
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holds. (This terminology is borrowed from [6], [7], [8].)
Theorem 2.4. Let U be an H-unitary matrix. Then U is stably u-diagonalizable

if and only if the quadratic form (Hx, x) is either positive definite or negative definite
on Ker (λ0I − U), for every λ0 ∈ σ(U).

See [7, Chapter 9] for the proof of Theorem 2.4. Note that the definiteness of
the quadratic form (Hx, x) on Ker (λ0I − U), where λ0 ∈ σ(U) and U is H-unitary,
implies that |λ0| = 1 and the partial multiplicities of U corresponding to λ0 are all
equal to 1.

We now are ready to state and prove the main results of this section.
Theorem 2.5. The following statements are equivalent for an invertible matrix

A ∈ Cn×n, where U = A−1A∗:
(a) The equation (1.3) is bounded.
(b) For every λ ∈ σ(U) and every z ∈ C \ Σ(A), the quadratic form ((zA +

zA∗)x, x) is nondegenerate on Ker (U − λI), i.e., if y ∈ Ker (U − λI) is such
that ((zA+ zA∗)x, y) = 0 for all x ∈ Ker (U − λI), then necessarily y = 0.

(c) For every λ ∈ σ(U) and some z ∈ C \ Σ(A), the quadratic form ((zA +
zA∗)x, x) is nondegenerate on Ker (U − λI).

(d) A is congruent to a diagonal matrix of the form

diag (δ1, . . . , δr)⊕ diag (η1(i+ α1), . . . , ηq(i+ αq)), r + q = n,(2.4)

where r, q are nonnegative integers, αj are real numbers, and

δ1, . . . , δr, η1, . . . , ηq

are signs, each equal to +1 or −1.
Proof. Using the form (2.1) we show the equivalence of (a) and (d). To this end,

combine Remark 2.2 and Proposition 1.3.
Next, note the equality

U∗(zA+ zA∗)U = zA+ zA∗, z ∈ C, U = A−1A∗,(2.5)

which can be easily verified. (The equality (2.5) has been observed and used in the
literature, see [4], for example.) Thus, for z ∈ C \ Σ(A), the matrix U is unitary in
the indefinite inner product

[x, y] := ((zA+ zA∗)x, y), x, y ∈ C
n×1,

defined by the Hermitian invertible matrix zA+zA∗, or in other words, U is zA+zA∗-
unitary. Now the equivalence of (b), (c), and the u-diagonalizability of U follows from
the general theory of H-unitary matrices, see [6], [7, Chapter 5]. It remains to use
Proposition 1.3 to complete the proof of Theorem 2.5.

Theorem 2.6. The following statements are equivalent for an invertible matrix
A ∈ Cn×n, where U = A−1A∗:

(a) The system (1.3) is stably bounded.
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(b) There exists ε > 0 such that every system

Ã∗xi + Ãxi+1 = 0, i = 0, 1, . . . , xi ∈ C
n×1,

with ‖Ã−A‖ < ε is stably bounded.
(c) For every λ ∈ σ(U) and every z ∈ C \ Σ(A), the condition

x ∈ Ker (U − λI) \ {0} =⇒ ((zA+ zA∗)x, x) 
= 0(2.6)

holds.
(d) For every λ ∈ σ(U) and some z ∈ C \ Σ(A), the condition (2.6) holds.
(e) A is congruent to a diagonal matrix of the form

(±Ir)⊕ diag (η1(i+ α1), . . . , ηq(i+ αq)), r + q = n,(2.7)

where r, q are nonnegative integers, αj are real numbers, and η1, . . . , ηq are
signs, each equal to +1 or −1, subject to the condition that αj1 = αj2 implies
ηj1 = ηj2 .

Proof. (c) =⇒ (d) is trivial. (d) =⇒ (a) follows from Theorem 2.4, using the
observation that U is zA+zA∗-unitary, z ∈ C\Σ(A). (a) =⇒ (b) follows easily arguing
by contradiction. Indeed, if (a) holds, but (b) does not, then in every neighborhood
of A there is a matrix Â such that the system

Â∗xi + Âxi+1 = 0, i = 0, 1, . . . , xi ∈ C
n×1,

is not stably bounded, which in turn means that for every such Â there exists a B̂ as
close as we wish to Â for which the corresponding system is not bounded. This leads
to a contradiction with (a).

Next, we prove (b) =⇒ (e). We assume arguing by contradiction that (e) does
not hold, and we will show that (1.3) is not stably bounded. In other words, we will
construct matrices Ã by arbitrarily small perturbations of A such that not all solution
sequences of

Ã∗xi + Ãxi+1 = 0, i = 0, 1, . . . ,(2.8)

are bounded. By Remark 2.2, we may assume that

A = diag (δ1, . . . , δr)⊕ diag (η1(i+ α1), . . . , ηq(i+ αq)),

where the parameters ηj and δj are signs ±1, and the numbers αj are real. Since (e)
does not hold, at least one of the following two situations happens: (1) not all signs
δ1, . . . , δr are the same (if 1 is an eigenvalue of U), or (2) there is α ∈ R such that
λ = (i + α)−1(−i + α) is an eigenvalue of U and not all signs ηj such that αj = α

are the same. Therefore, the construction of Ã boils down to consideration of the
following cases:

A =
[
1 0
0 −1

]
, and A =

[
i+ α 0
0 −i− α

]
, α ∈ R.(2.9)
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If A =
[
1 0
0 −1

]
, we let

Ã =
[

1 ε
−ε −1

]
,

where ε > 0 is small. Then

Ũ := Ã−1Ã∗ =
1

−1 + ε2

[ −1− ε2 2ε
2ε −1− ε2

]

has eigenvalues (1±ε)2/(1−ε2) which are not unimodular. If A =
[
i+ α 0
0 −i− α

]
with α 
= 0, we similarly let

Ã =
[
i+ α ε
−ε −i− α

]
, ε > 0 small.

Then

Ũ := Ã−1Ã∗ =
1

−(α+ i)2 + ε2

[ −1− α2 − ε2 2αε
2αε −1− α2 − ε2

]
,

which has non-unimodular eigenvalues (1+(α±ε)2)/((α+i)2−ε2). If A =
[
i 0
0 −i

]
,

we let

Ã =
[
i ε
ε −i

]
, ε > 0 small,

resulting in the matrix

Ũ =
1

1− ε2

[ −1− ε2 −2iε
2iε −1− ε2

]
with real non-unimodular eigenvalues −(1± ε)2/(1− ε2).

For the proof of (e) =⇒ (c), observe that if (e) holds then by Remark 2.3 the
quadratic form Qλ(z) is definite for every λ ∈ σ(U) and every z ∈ C \ Σ(A), and (c)
follows.

We note also the following fact:
Theorem 2.7. If (1.3) is bounded but not stably bounded, then for every ε > 0

there exists a system

Ã∗xi + Ãxi+1 = 0, i = 0, 1, . . . , xi ∈ C
n×1,(2.10)

with ‖Ã−A‖ < ε and such that (2.10) has a geometrically growing solution.
Proof. Just repeat the arguments of the proof of (b) =⇒ (e) in Theorem 2.6.
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3. Connected Components of Stably Bounded Difference Equations.
In this section we continue to study the system of first order difference equations

A∗xi +Axi+1 = 0, i = 0, 1, . . . ,(3.1)

where A ∈ Cn×n is an invertible matrix.
We now consider the problem of describing the connected components of the set of

bounded systems (3.1) and of the set of stably bounded systems (3.1), in the natural
topology of matrices. Thus, the open neighborhoods of a system (3.1) have the form

{{B∗xi +Bxi+1 = 0}∞i=0 : B ∈ C
n×n and ‖B −A‖ < ε} ,

where ε > 0 is arbitrary but fixed for every neighborhood. The connected components
of bounded, resp., stably bounded, systems (3.1) correspond exactly to the connected
components of the set of all matrices A that satisfy the conditions of Theorem 2.5,
resp., Theorem 2.6.

Theorem 3.1. The set of systems (3.1) with bounded solutions is arcwise con-
nected.

Proof. We need to show that the set Ωn of matrices A ∈ Cn×n which are congruent
to a matrix of the form (2.4) is connected. Since the group of invertible complex n×n
matrices is connected, it suffices to show that any two matrices of the form (2.4) are
connected in Ωn. Replacing each δj in (2.4) by δj(xi + 1), 0 ≤ x ≤ 1, we connect a
matrix in the form (2.4) to a matrix in the same form but with r = 0 (i.e., the terms
δ1, . . . , δr are absent). Next, consider a matrix

B := diag (η1(i+ α1), . . . , ηn(i+ αn)), ηj ∈ {1,−1}, αj ∈ R.

Letting αj −→ +∞ if ηj = 1, αj −→ −∞ if ηj = −1, and scaling

B −→ diag (
√
|α1|−1, . . . ,

√
|αn|−1)Bdiag (

√
|α1|−1, . . . ,

√
|αn|−1),

we see that B −→ I, and throughout this process all matrices belong to Ωn.
The situation with connected components of stably bounded systems is more

involved. We need some notation to describe the result here. Let SBDn be the set of
all n × n matrices A that are congruent to a matrix of the form (2.7). Consider the
set Ξn of all ordered tuples of the form

(k;m1,m2, · · · ,m2β),(3.2)

where 1 ≤ k ≤ n is an integer, and m1, . . . ,m2β are positive integers that sum up
to n − k. Here, β is a nonnegative integer; if β = 0, the terms m1, . . . ,m2β do not
appear in (3.2). For example, if n = 5, then Ξ5 consists of the following 8 elements:

(5); (3; 1, 1); (2; 2, 1); (2; 1, 2); (1; 3, 1); (1; 2, 2); (1; 1, 3); (1; 1, 1, 1, 1).

With every ordered tuple

τ := (k;m1,m2, · · · ,m2β) ∈ Ξn,(3.3)
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we associate a subset

SBDn(τ) := SBDn(k;m1,m2, · · · ,m2β) ⊆ SBDn

constructed as follows: A matrix A ∈ Cn×n belongs to SBDn(τ) if and only if either
A or −A is congruent to a matrix of the form

Ik ⊕
(⊕m1

j=1(i+ α1,j)
)⊕ (−⊕m2

j=1 (i+ α2,j)
)⊕ · · ·

⊕ (⊕m2β−1
j=1 (i+ α2β−1,j)

)⊕ (−⊕m2β

j=1 (i+ α2β,j)
)
,(3.4)

where

α1,1 ≤ · · · ≤ α1,m1 < α2,1 ≤ · · · ≤ α2,m2 < · · · < α2β,1 ≤ · · · ≤ α2β,m2β
,(3.5)

or to a matrix of the form (3.4) in which Ik is replaced by any one matrix

Ik1 ⊕
(
−⊕k3

j=1 (i+ κj)
)
⊕
(
⊕k2

j=1(i+ γj)
)
,(3.6)

where k1, k2, k3 are nonnegative integers that sum up to k and

κ1 ≤ · · · ≤ κk3 < α1,1, α2β,m2β
< γ1 ≤ · · · ≤ γk2 .(3.7)

In these formulas, k, β, and m1, . . . ,m2β are fixed by (3.3), whereas α�,j , k1, k2, k3,
γj , and κj are variable subject only to the specified restrictions.

In connection with this definition we remark that it will be shown that matrices
of the form In and Ik1 ⊕ (η ⊕k3

j=1 (i+ κj)), where η = ±1 and k1 + k3 = n, are in the
same connected component of the set of stably bounded systems (3.1) if and only if
η = −1.

We are now in a position to describe the connected components of the set of
stably bounded systems:

Theorem 3.2. The classes SBDn(τ), τ ∈ Ξn, are the connected components of
the set of stably bounded systems of difference equations (3.1).

Note that since the set of stably bounded systems is open in Cn×n, its connected
components coincide with its arcwise connected components.

Thus, the set of 5×5 stably bounded systems (3.1) consists of exactly 8 connected
components.

The rest of this section is devoted to the proof of Theorem 3.2. We start with
some preliminaries. First, we note the following fact:

Proposition 3.3. If A ∈ SBDn, then µA ∈ SBDn for every µ ∈ C \ {0}.
The proof follows easily from (e) ⇐⇒ (c) in Theorem 2.6.
In particular, A and −A belong to the same connected component of SBDn.
Next, we prove connectedness of each class SBDn(τ):
Proposition 3.4. For a fixed τ ∈ Ξn, the set SBDn(τ) is connected.
Proof. Let τ be given by (3.3). Since the set of all invertible complex n×nmatrices

is connected, and in view of Proposition 3.3, all what we need to show is that the set
of matrices of the form (3.4) is connected, and the set of matrices obtained from the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 15, pp. 22-49, January 2006



ELA

32 Leiba Rodman

form (3.4) by replacing Ik with any one of the matrices (3.6) subject to k1+k2+k3 = k
and inequalities (3.7), is connected within SBDn(τ) to a matrix of the form (3.4).

The connectivity of the set of matrices of the form (3.4) subject to (3.5) with
fixed parameters m1,m2, . . . ,m2β is easy: If B is a matrix of the form (3.4), and B′

is another matrix of the same form but perhaps with different parameters α′
�,j then

let B(t) be the matrix of the form (3.4) with the parameters tα�,j + (1 − t)α′
�,j , for

0 ≤ t ≤ 1. Clearly, B(t) connects B and B′ within the set of matrices of the form
(3.4).

Furthermore, consider the matrix

C := Ik1 ⊕
(
⊕k2

j=1(i+ γj)
)
⊕
(
−⊕k3

j=1 (i+ κj)
)

⊕ (⊕m1
j=1(i+ α1,j)

)⊕ (−⊕m2
j=1 (i+ α2,j)

)⊕ · · ·
⊕ (⊕m2β−1

j=1 (i+ α2β−1,j)
)⊕ (−⊕m2β

j=1 (i+ α2β,j)
)
,

subject to k1 + k2 + k3 = k, k1 > 0, k2 ≥ 0, k3 ≥ 0, (3.7), and (3.5). We are going to
prove that C is connected within SBDn(τ) to a matrix of the form (3.4). Without
loss of generality we may assume that

κj < 0 for j = 1, 2, . . . , k3 and γ� > 0 for " = 1, 2, . . . , k1.(3.8)

Indeed, we may replace κj with κj − t, and γ� with γ� + t, for 0 ≤ t ≤ t0, where t0 is
sufficiently large. This transformation connects C within SBDn(τ) with a matrix of
the same form as C has, but for which (3.8) is satisfied. Assuming (3.8) holds true,
we let

C(t) := Ik1 ⊕
(
⊕k2

j=1

(
i

t
+ γj

))
⊕
(
−⊕k3

j=1

(
i

t
+ κj

))
⊕ (⊕m1

j=1(i+ α1,j)
)⊕ (−⊕m2

j=1 (i+ α2,j)
)⊕

· · · ⊕ (⊕m2β−1
j=1 (i+ α2β−1,j)

)⊕ (−⊕m2β

j=1 (i+ α2β,j)
)
, 1 ≤ t ≤ ∞,

Clearly, C(t) ∈ SBDn(τ), 1 ≤ t ≤ ∞, and C(∞) is congruent to a matrix of the form
(3.4).

Proposition 3.5. (1) The set SBDn coincides with the union of the sets
SBDn(τ) over all τ ∈ Ξn.

(2) If τ 
= τ ′, then SBDn(τ) ∩ SBDn(τ ′) = ∅.
(3) Each set SBDn(τ), τ ∈ Ξn, is open in C

n×n.
Proof. Proof of (1): In view of the the equivalence (a) ⇐⇒ (e) in Theorem 2.6,

we only need to show that if A is congruent to a diagonal matrix of the form

Ir ⊕ diag (η1(i+ α1), . . . , ηn(i+ αn)),

where

η1 = · · · = η�1 
= η�1+1, ηn = ηn−1 = · · · = ηn−�2+1 
= ηn−�2 , α1 ≤ α2 ≤ · · · ≤ αn,
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subject to αj1 = αj2 =⇒ ηj1 = ηj2 , then

A ∈
⋃

τ∈Ξn

SBDn(τ).

Indeed, assume first that the case r = 0, η1 = 1, ηn = −1 does not happen. Then by
the definition of the set SBDn(τ), A belongs to SBDn((r0;m1, . . . ,m2β)) for some
positive integers m1, . . . ,m2β , where r0 is given as follows:

r0 =


r if η1 = 1, ηn = −1,
r + "1 if η1 = −1, ηn = −1,
r + "2 if η1 = 1, ηn = 1,
r + "1 + "2 if η1 = −1, ηn = 1.

If r = 0, η1 = 1, ηn = −1, then −A is congruent to

diag (−η1(i+ α1), . . . ,−ηn(i+ αn)),

therefore A ∈ SBDn("1 + "2;m1, . . . ,m2β) for some positive integers m1, . . . ,m2β .
For the proof of (2) use the uniqueness of the form (2.1) up to a permutation of

blocks.
We now prove (3). Assume that A or −A is R-congruent to a matrix of the form

Ik1 ⊕
(
−⊕k3

j=1 (i+ κj)
)
⊕ (⊕m1

j=1(i+ α1,j)
)⊕ (−⊕m2

j=1 (i+ α2,j)
)⊕ · · ·

⊕ (⊕m2β−1
j=1 (i+ α2β−1,j)

)⊕ (−⊕m2β

j=1 (i+ α2β,j)
)⊕ (

⊕k2
j=1(i+ γj)

)
,(3.9)

where k1 + k2 + k3 = k, subject to (3.5) and (3.7). Note that U := A−1A∗ has
eigenvalues

−i+ κj

i+ κj
,

−i+ αu,j

i+ αu,j
,

−i+ γj
i+ γj

,

all of them on the unit circle. Note also that

−i+ x

i+ x
−→ 1, x ∈ R, x −→ ±∞.

Now combining Remark 2.3 with a perturbation result [7, Theorem 9.8.1] for H-
unitary matrices, applied to the zA∗ + zA-unitary matrix U (for a suitable z), yields
statement (3).

Proposition 3.6. Let A ∈ SBDn(τ) and B ∈ SBDn(τ ′). If τ 
= τ ′, then A and
B cannot be connected within the set SBDn.

Proof. Arguing by contradiction, assume that A and B can be connected by a
continuous curve within SBDn:

A = C(0), B = C(1), C : [0, 1] → SBDn,
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where C is a continuous function. Let t0 be the supremum of all numbers t ∈ [0, 1]
such that

C(t′) ∈ SBDn(τ) ∀t′ ≤ t.

Then clearly

C(t′) ∈ SBDn(τ) ∀t′ < t0,

and for every ε > 0 there exists t′(ε) ∈ [0, 1] such that t0 ≤ t′(ε) < t0 + ε and

C(t′(ε)) 
∈ SBDn(τ).

We obtain a contradiction with Proposition 3.5(3) applied to C(t0).
Proof of Theorem 3.2. The proof is now immediate in view of Propositions 3.4

and 3.6.

4. Symmetry (II): Preliminaries. In this and the next two sections we as-
sume that symmetry (II) holds, i.e., the matrices and vectors are real and � stands for
the transpose. Real matrices A and B are said to be R-congruent if A = STBS for
some real invertible matrix S.

We start with preliminary results. The main results and their proofs will be given
in the next two sections.

Introduce the following standard matrices:

Ξk :=



0 0 0 · · · 0 0 1
0 0 0 · · · 0 −1 0
0 0 0 · · · 1 0 0
...

... . . .
...

...
...

0 1 0 · · · 0 0 0
(−1)k−1 0 0 · · · 0 0 0


= (−1)k−1ΞT

k ∈ R
k×k.

Thus, Ξk is symmetric if k is odd, and skew-symmetric if k is even.

Υ(1)
2k+1 := G2k+1 +

 0 0 Fk

0 01 0
−Fk 0 0

 .

Υ(2)
k := Fk +

 01 0 0
0 0 F k−1

2

0 −F k−1
2

0

 , k odd.

Υ(3)
k := Fk +


01 0 0 0
0 0 0 F k−2

2

0 0 01 0
0 −F k−2

2
0 0

 , k even and k/2 even.
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Υ(4)
� := G� +

[
0 F�/2

−F�/2 0

]
, " even.

Υ(5)
� :=

[
0 G�/2 + F�/2

G�/2 − F�/2 0

]
, " even and "/2 odd.

Υ(6)
� (α) :=

[
0 (α+ 1)F�/2 +G�/2

(α− 1)F�/2 +G�/2 0

]
, " even, α > 0.

Υ(7)
2m(ν) :=


0 0 · · · 0 0 �(ν,m)
0 0 · · · 0 −�(ν,m) −I2
0 0 · · · �(ν,m) −I2 0
...

... . . .
...

...
...

(−1)m−1�(ν,m) −I2 0 · · · 0 0

 ,

where we have denoted by �(ν,m) the 2× 2 matrix νΞm+1
2 + Ξm

2 , and where ν > 0.

Υ(8)
4m(a, b) :=

[
0 J2m(a± ib)T + I2m

J2m(a± ib)− I2m 0

]
,

where a, b > 0. In all these matrices, the subscript indicates the size.
Theorem 4.1. Let A ∈ Rn×n. Then A is R-congruent to a matrix of the form

0s×s ⊕
x⊕

c=1

Υ(1)
2k′

c+1 ⊕
r⊕

j=1

δjΥ
(2)
kj

⊕
y⊕

d=1

Υ(3)
k′′

d
⊕

p⊕
t=1

ηtΥ
(4)
�t

⊕
z⊕

e=1

Υ(5)
�′e

(4.1)

⊕
w⊕

f=1

Υ(6)
�′′f
(αf )⊕

q⊕
u=1

ζuΥ
(7)
2mu

(νu)⊕
v⊕

g=1

Υ(8)
4m′

g
(ag, bg).(4.2)

Here, δj , ηt, ζu are signs ±1. Some types of blocks may be absent in (4.1), (4.2).
Moreover, the form (4.1), (4.2) is unique, for a given A, up to a permutation of

blocks.
A result equivalent to Theorem 4.1 was proved in [19].
The proof follows from a well known canonical form for real matrix pencils B+λC,

where B = BT , C = −CT , upon applying this form to B := A+AT

2 , C := A−AT

2 .
The canonical form can be found in many sources, for example [18] and [26], where
historical remarks and further references are given. We have used here the canonical
form as presented in [18].

Theorem 4.2. Let A ∈ R
n×n be invertible. Then the matrix U := A−1AT is

similar to a matrix of the following form:

r⊕
j=1

Jkj (1)⊕
y⊕

d=1

(Jk′′
d /2(1)⊕ Jk′′

d /2(1))⊕
p⊕

t=1

J�t(−1)⊕(4.3)
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z⊕
e=1

(J�′e/2(−1)⊕ J�′e/2(−1))⊕
w⊕

f=1

(J�′′
f
/2(βf )⊕ J�′′

f
/2(β−1

f ))⊕
q⊕

u=1

J2mu(zu, zu)(4.4)

⊕
v⊕

g=1

(
J2m′

g
(z′g, z′g)⊕ J2m′

g
((z′g)

−1, (z′g)
−1)

)
.(4.5)

Here kj’s are odd integers, k′′d/2’s are even integers, "t’s are even integers, "′e/2’s
are odd integers, "′′f/2’s are integers (even or odd), βf ’s are nonzero real numbers
with absolute values less than 1, zu’s are unimodular numbers with positive imaginary
parts, and z′g’s are complex numbers with positive imaginary parts and absolute values
less than 1.

Conversely, if U ∈ Rn×n is similar to a matrix in the form (4.3) − (4.5), then
there exists a real invertible matrix A such that U = A−1AT .

Proof. For the direct statement, we need only to verify the statement for each of
the constituent blocks in (4.1) - (4.2). Note that the parameters in (4.3) - (4.5) are
obtained from the parameters in (4.1) - (4.2) as follows:

βf =
αf + 1
αf − 1

; αf > 0, αf 
= 1; zu = −1− iνu
1 + iνu

;

and z′g is one of the four numbers

(ag − 1± ibg)−1(ag + 1± ibg), (ag + 1± ibg)−1(ag − 1± ibg).

The verification is straightforward: First, note that the blocks Υ(1)
2k+1 cannot appear

because A is assumed to be invertible. For blocks of other types we have:

U
(2)
k := (Υ(2)

k )−1(Υ(2)
k )T = K

(2)
k ,(4.6)

where K(2)
k is an upper triangular matrix with 1’s on the main diagonal and

(2, 2, . . . , 2,−2,−2, . . . ,−2) on the next superdiagonal (2 and −2 appear (k − 1)/2
times each);

U
(3)
k := (Υ(3)

k )−1(Υ(3)
k )T = K

(3a)
k/2 ⊕K

(3b)
k/2(4.7)

where K(3a)
k/2 and K

(3b)
k/2 are upper triangular matrices with 1’s on the main diagonal

and 2’s (for K(3a)
k/2 ) or −2’s (for K(3b)

k/2 ) on the next superdiagonal;

U
(4)
� := (Υ(4)

� )−1(Υ(4)
� )T = K

(4)
� ,(4.8)

where K(4)
� is a lower triangular matrix with −1’s on the main diagonal and

(−2,−2, . . . ,−2, 2, 2, . . . , 2) on the next subdiagonal (−2 appears ("/2)− 1 times and
2 appears "/2 times);

U
(5)
� := (Υ(5)

� )−1(Υ(5)
� )T = K

(5a)
�/2 ⊕K

(5b)
�/2(4.9)
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where K(5a)
�/2 and K

(5b)
�/2 are lower triangular matrices with −1’s on the main diagonal

and −2’s (for K(5a)
�/2 ) or 2’s (for K(5b)

�/2 ) on the next subdiagonal;

U
(6)
� (α) := (Υ(6)

� (α))−1(Υ(6)
� (α))T = K

(6a)
�/2 (α) ⊕K

(6b)
�/2 (α);(4.10)

here α > 0 (because of the general hypothesis concerning the block Υ(6)
� (α)), α 
= 1

(because A is assumed to be invertible), K(6a)
�/2 (α) is a lower triangular matrix with

(α+1)/(α−1) on the main diagonal and−2(α−1)−2 on the next subdiagonal, whereas
K

(6b)
�/2 (α) is a lower triangular matrix with (α− 1)/(α+ 1) on the main diagonal and

2(α+ 1)−2 on the next subdiagonal;

U
(7)
2m(ν) := (Υ(7)

2m(ν))
−1(Υ(7)

2m(ν))
T = K

(7)
2m(ν),(4.11)

where ν is a positive parameter, and

K
(7)
2m(ν) :=


J2(y, y) J2(x, x) 0 · · · 0 0

0 J2(y, y) −J2(x, x) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · J2(y, y) ±J2(x, x)
0 0 0 · · · 0 J2(y, y)

 ,

with

y := (−1)m−1z−1z, x := z−2z + (−1)mz−1, z := im(1 + iν);(4.12)

U
(8)
4m(a, b) := (Υ(8)

4m(a, b))
−1(Υ(8)

4m(a, b))
T = K

(8)
4m(a, b),(4.13)

where a and b are positive parameters and

K
(8)
4m(a, b) = (J2m(a± ib)− I)−1(J2m(a± ib) + I)

⊕ (J2m(a± ib)T + I)−1(J2m(a± ib)T − I).

In each instance, it is easy to see that the real Jordan forms of the left hand sides
of (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), and (4.13) conform to formulas (4.3) - (4.5).
Note that x 
= 0 in (4.12). Also note that the eigenvalues of U (8)

4m(a, b) are

a+ 1 + ib

a− 1 + ib
,

a+ 1− ib

a− 1− ib
,

a− 1 + ib

a+ 1 + ib
,

a− 1− ib

a+ 1− ib
.

For the proof of the converse statement, we replace (without loss of generality)
the matrix U by a similar matrix which is a block diagonal with diagonal blocks given
by matrices K(2)

k , K(3a)
k/2 ⊕K

(3b)
k/2 , K

(4)
� , K(5a)

�/2 ⊕K
(5b)
�/2 , K

(6a)
�/2 (α)⊕K

(6b)
�/2 (α), K

(7)
2m(ν),

K
(8)
4m(a, b) (there may be several, or no, matrices on the block diagonal of U of any

given type, and different parameters k, ", m, ν, a, b may occur for diagonal blocks of
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the same type). Now use formulas (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), and (4.13)
to write U in the form U = A−1AT .

In another formulation, Jordan forms of real matrices of the form A−1AT have
been described in [1], and see [10] for a corresponding result in the context of bilinear
forms.

Note that the proof of Theorem 4.2 establishes a correspondence between the
blocks in the canonical form of A under R-congruence in Theorem 4.1 and the blocks
of the canonical form of U = A−1AT under similarity in Theorem 4.2.

Theorem 4.3. Let A ∈ Rn×n be an invertible matrix. Then U = A−1AT is
diagonalizable (over C) with only unimodular eigenvalues if and only if the matrix A
is R-congruent to a matrix of the following form:

diag (δ1, . . . , δr)⊕
z⊕

i=1

[
0 1
−1 0

]
⊕

q⊕
u=1

ζu

[ −νu 1
−1 −νu

]
.(4.14)

Here the parameters δj and ζu are signs ±1, and the numbers νu are positive.
The proof follows by inspection from Theorem 4.2 and its proof.

5. Boundedness and stable boundedness. Consider the system of difference
equations

ATxi +Axi+1 = 0, i = 0, 1, . . . , xi ∈ R
n×1,(5.1)

where A is invertible real n× n matrix.
Combining Theorem 4.3 and Proposition 1.3 we obtain:
Theorem 5.1. The system (5.1) is bounded if and only if A is R-congruent to a

matrix of the form (4.14).
Stably bounded systems (5.1) are described in the next theorem. It will be con-

venient to introduce the following notation: If X ∈ Rm×m and if λ is a (possibly
nonreal) eigenvalue of X , we let

KerR (X ;λ) = Ker (X − λI) ⊆ R
m×1

if λ is real, and

KerR (X ;λ) = Ker (X2 − (λ+ λ)X + |λ|2I) ⊆ R
m×1

if λ ∈ C \ R.
Theorem 5.2. The following statements are equivalent for an invertible A ∈

Rn×n:
(1) The system (5.1) is stably bounded;
(2) There exists ε > 0 such that every system

ÃTxi + Ãxi+1 = 0, i = 0, 1, . . . , xi ∈ R
n×1,

with Ã ∈ Rn×n and ‖Ã−A‖ < ε is stably bounded;
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(3) A is R-congruent to a matrix of the form

±Ir ⊕
q⊕

u=1

ζu

[ −νu 1
−1 −νu

]
,(5.2)

where the νu’s are positive numbers, and the ζu’s are signs ±1 subject to the
condition

νu1 = νu2 =⇒ ζu1 = ζu2 .(5.3)

(4) The matrix A+AT is invertible, and for every λ ∈ σ(A−1AT ) the condition

x ∈ KerR (A−1AT ;λ) \ {0} =⇒ ((A+AT )x, x) 
= 0(5.4)

holds.
Proof. Proof of (1) =⇒ (3). By Theorem 4.3 we may and do assume that

A = diag (δ1, . . . , δr)⊕
[

0 1
−1 0

]
⊕· · ·⊕

[
0 1
−1 0

]
⊕

q⊕
u=1

ζu

[ −νu 1
−1 −νu

]
,(5.5)

as in (4.14). We assume that (5.1) is stably bounded. Let B :=
[

x 1
−1 −x

]
, where

x > 0 is close to zero. Note that

B−1BT =
1

1− x2

[ −x2 − 1 2x
2x −x2 − 1

]
,

and the matrix B−1BT has nonunimodular eigenvalues. Since B is close to the block[
0 1
−1 0

]
, it follows from the stable boundedness of (5.1) (arguing by contradiction)

that the blocks
[

0 1
−1 0

]
are absent in (5.5). Also, if C :=

[
1 x
−x −1

]
, where

x > 0 is close to zero, then the matrix

C−1CT =
1

−1 + x2

[ −x2 − 1 2x
2x −x2 − 1

]
has nonunimodular eigenvalues. Using the stable boundedness of (5.1) again, and
arguing by contradiction, we conclude that all signs δj are the same. Finally, assume
that (5.3) is not satisfied. Say, ν := ν1 = ν2, ζ1 = −ζ2 = 1. We now use the standard
map

φ

[
a b
−b a

]
= a+ ib

that identifies a subalgebra of R2×2 with C, and apply it 2 × 2 blockwise to real
matrices of even size. We have

φ

([ −ν 1
−1 −ν

]
⊕−

[ −ν 1
−1 −ν

])
=
[
i− ν 0
0 −(i− ν)

]
.(5.6)
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By Theorem 2.6, the matrix on the right hand side of (5.6) is not stably bounded (in
the sense of symmetry (I)). Thus, by Theorem 2.7 there exists X ∈ C2×2 as close as
we wish to the zero matrix such that the system([

i− ν 0
0 −(i− ν)

]
+X

)∗
yi +

([
i− ν 0
0 −(i− ν)

]
+X

)
yi+1 = 0, yi ∈ C

2,

has a geometrically growing solution, in other words, the matrix([
i− ν 0
0 −(i− ν)

]
+X

)−1 ([
i− ν 0
0 −(i− ν)

]
+X

)∗

has nonunimodular eigenvalues. Since the map φ preserves eigenvalues (in the sense
that λ ± iµ being an eigenvalue of Y ∈ R2m×2m, where λ, µ ∈ R, is equivalent to at
least one of the two numbers λ+ iµ and λ− iµ being an eigenvalue of φ(Y ) ∈ Cm×m),
the matrix

D :=
(([ −ν 1

−1 −ν
]
⊕−

[ −ν 1
−1 −ν

])
+ φ−1(X)

)−1

×
(([ −ν 1

−1 −ν
]
⊕−

[ −ν 1
−1 −ν

])
+ φ−1(X)

)T

also has nonunimodular eigenvalues. Then the system

DTxi +Dxi+1 = 0, i = 0, 1, 2, . . . , xi ∈ R
4×1

has geometrically growing solutions (by Theorem 2.7), a contradiction with the stable
boundedness of (5.1). This proves the implication (1) =⇒ (3).

Proof of (3) =⇒ (4). Note that both conditions (3) and (4) are invariant under
congruence transformation. Thus, without loss of generality we assume that

A = ±Ir ⊕
q⊕

u=1

ζu

[ −νu 1
−1 −νu

]
,

where νu > 0, ζu = ±1, and condition (5.3) is satisfied. The invertibility of A + AT

is obvious. Note that

A−1AT = Ir ⊕
q⊕

u=1

1
ν2
u + 1

[
ν2
u − 1 2νu
−2νu ν2

u − 1

]
.

Now it is clear that because of condition (5.3), the quadratic form ((A +AT )x, x) is
definite (positive or negative) on the subspace KerR (A−1AT ;λ), for every eigenvalue
λ of A−1AT . Thus, (4) follows.

Proof of (4) =⇒ (2). Assume (4) holds; denote U = A−1AT and H = A + AT .
Note the equality

UT (A+AT )U = A+AT ,
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so U is H-unitary. Observe that the quadratic form (Hx, x) is either positive definite
or negative definite on

KerC (λ0I − U) := {x ∈ C
n×1 : Ux = λ0x},

for every λ0 ∈ σ(U). Indeed, since U is real, one can choose real bases in the complex
subspaces KerC (λ0I − U) (if λ0 is real) and

KerC (λ0I − U)+̇KerC (λ0I − U) = KerC (U2 − (λ0 + λ0)U + |λ0|2I).

Representing the quadratic form (Hx, x) with respect to this basis, and using con-
dition (5.4), we see that (Hx, x) is definite on KerC (λ0I − U). Now it follows from
Theorem 2.6 that (2) holds.

Since the implication (2) =⇒ (1) is trivial, we are done.
We have also the real analogue of Theorem 2.7:
Theorem 5.3. Assume symmetry (II). If (5.1) is bounded but not stably bounded,

then for every ε > 0 there exist a system

ÃTxi + Ãxi+1 = 0, i = 0, 1, . . . , xi ∈ R
n×1,(5.7)

with Ã ∈ R
n×n and ‖Ã − A‖ < ε and such that (5.7) has a geometrically growing

solution.
The proof of Theorem 5.3 is obtained by repeating the arguments in the proof of

(1) =⇒ (3) in Theorem 5.2.
An interesting observation follows immediately from Theorem 5.2:
Corollary 5.4. If n is even, then detA > 0 for every stably bounded system

(5.1).

6. Connected components. We study in this section the connected compo-
nents of bounded and stably bounded systems of linear difference equations with
symmetry (II).

Theorem 6.1. The set of bounded systems of the form (5.1) consists of exactly
two arcwise connected components, one with A’s having positive determinants, the
other with A’s having negative determinants.

Proof. Let ΩR be the set of all matrices A ∈ Rn×n that are R-congruent to a
matrix of the form (4.14), and let ΩR,0 be the set of n × n matrices of the form
(4.14). Thus, X ∈ ΩR if and only if X = STY S for some Y ∈ ΩR,0 and some
invertible S ∈ Rn×n. By Theorem 4.3, we need to show that the set ΩR has exactly
two (arcwise) connected components, one with positive determinants, the other with
negative determinants. We may assume that n ≥ 2.

Step 1. We show that every matrix X ∈ ΩR,0 is connected within ΩR to a
diagonal matrix with ±1’s on the diagonal. Indeed, for a block

ζu

[ −νu 1
−1 −νu

]
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in X , by letting νu −→ ∞ and scaling we see that it is connected to −ζuI2. The

block
[

0 1
−1 0

]
is connected to −I2 within ΩR via

[ −x 1
−1 −x

]
, 0 ≤ x < ∞,

and scaling.

Step 2. We show that every matrix X ∈ ΩR,0 is connected within ΩR to either
In or (−1) ⊕ In−1. In view of Step 1, we need only to show that −I2 is connected

within ΩR to I2. This is easy:
[

0 1
−1 0

]
is connected to −I2 by Step 1,

[
0 −1
1 0

]
is

connected to I2 by taking the negatives, and the matrices
[

0 1
−1 0

]
and

[
0 −1
1 0

]
are R-congruent with the congruence matrix

[
1 0
0 −1

]
.

Step 3. Let now X ∈ ΩR, so that X = STY S for some Y ∈ ΩR,0 and some
invertible S ∈ R

n×n. Using Step 2, we connect simultaneously Y within ΩR to either
In or (−1)⊕ In−1, and S within the group of n× n real invertible matrices to either
In or (−1)⊕ In−1 again (depending on the sign of the determinant of S). As a result,
X is connected within ΩR either to In or to (−1)⊕ In−1. From here the result follows
easily.

We now pass to the stably bounded systems (5.1). As in the complex case, we
need some preparation to state the results. For n fixed, consider the set Ξn,R of
ordered tuples of integers of the form

(6.1)
Ξn,R := {(ξ; r;m1,m2, . . . ,mβ) : ξ = ±1, r ≥ 0; mj > 0 for j = 1, 2, . . . , β}

subject to

r + 2
β∑

j=1

mj = n.

Here β ≥ 0; if β = 0, the terms mj are absent in (6.1). For example, if n = 6, the set
Ξ6,R consists of 16 elements:

(±1; 0; 1, 1, 1); (±1; 0; 2, 1); (±1; 0; 1, 2); (±1; 0; 3);

(±1; 2; 1, 1); (±1; 2; 2); (±1; 4; 1); (±1; 6).

With each element

ω := (ξ; r;m1,m2, . . . ,mβ) ∈ Ξn,R
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we associate a set SBDn,R(ω) of all n × n real matrices that are R-congruent to a
matrix of the form

ξ

Is ⊕
−

t⊕
j=1

[ −ν0,j 1
−1 −ν0,j

]⊕

m1⊕
j=1

[ −ν1,j 1
−1 −ν1,j

]⊕
−

m2⊕
j=1

[ −ν2,j 1
−1 −ν2,j

]⊕ · · ·

⊕
(−1)β−1

mβ⊕
j=1

[ −νβ,j 1
−1 −νβ,j

] ,(6.2)

where r = s+ 2t, (s and t are nonnegative integers), and where

ν0,1 ≥ · · · ≥ ν0,t > ν1,1 ≥ · · · ≥ ν1,m1 > ν2,1 ≥ · · · ≥ ν2,m2 >

· · ·> νβ,1 ≥ · · · ≥ νβ,mβ
> 0.

Finally, denote by SBDn,R the set of all real n× n matrices A for which the system
(5.1) is stably bounded, i.e., (in view of Theorem 5.2), SBDn,R consists of all matrices
A ∈ Rn×n that are R-congruent to a matrix of the form (5.2).

Proposition 6.2. (1) The set SBDn,R coincides with the union⋃
ω∈Ξn,R

SBDn,R(ω).

(2) For every ω ∈ Ξn,R with r ≥ 1, the set SBDn,R(ω) is connected. For every
ω ∈ Ξn,R with r = 0 the set SBDn,R(ω) consists of two connected components, one
component containing the matrix

ξ


β⊕

u=1

(−1)u−1

mu⊕
j=1

[ −νu,j 1
−1 −νu,j

](6.3)

and the other component containing the matrix

diag (−1, 1, 1, . . . , 1)ξ


β⊕
u=1

(−1)u−1

mu⊕
j=1

[ −νu,j 1
−1 −νu,j

]diag (−1, 1, 1, . . . , 1).

(6.4)
(3) For every ω ∈ Ξn,R, the set SBDn,R(ω) is open in Rn×n. If r = 0, then each

of the two connected components of SBDn,R(ω) is open in Rn×n.
(4) If ω′, ω ∈ Ξn,R and ω′ 
= ω, then

SBDn,R(ω) ∩ SBDn,R(ω′) = ∅.
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Proof. The statement (1) follows from Theorem 5.2.
Proof of (2): We fix

ω = (ξ; r;m1,m2, . . . ,mβ) ∈ Ξn,R.

First we verify that

ξ

Ir ⊕
β⊕

u=1

(−1)u−1
mu⊕
j=1

[ −νu,j 1
−1 −νu,j

](6.5)

is connected within SBDn,R(ω) to

ξ

Is ⊕
−

t⊕
j=1

[ −ν0,j 1
−1 −ν0,j

]⊕
β⊕

u=1

(−1)u−1
mu⊕
j=1

[ −νu,j 1
−1 −νu,j

] ,

for all nonnegative integers s and t such that s+2t = r. Indeed, scaling if necessary the
numbers νu,j , we may assume that νu,j < 1 for j = 1, 2, . . . ,mu and u = 1, 2, . . . , β;
then the continuous function

C(x) := Is ⊕
−

t⊕
j=1

[
−ν0,j

x+ν0,j−1
ν0,jx

1/x
−1/x −ν0,j

x+ν0,j−1
ν0,jx

] , 1 ≤ x ≤ ∞,

realizes such a connection when substituted for Ir in (6.5). Now it is routine to see
that the matrices of the form (6.2) are connected to each other within SBDn,R(ω)
(cf. the proof of Proposition 3.4).

Next, let A ∈ SBDn,R(ω), so that A = STA0S for some invertible S ∈ Rn×n

and some A0 of the form (6.2). By the already proved part of (2), there exists a
continuous function

D(x) ∈ SBDn,R(ω), 0 ≤ x ≤ 1,

such that D(0) = A0 and

D(1) = ξ

Ir ⊕
m1⊕

j=1

[ −ν1,j 1
−1 −ν1,j

]⊕
−

m2⊕
j=1

[ −ν2,j 1
−1 −ν2,j

]⊕ · · ·

⊕
(−1)β−1

mβ⊕
j=1

[ −νβ,j 1
−1 −νβ,j

] .(6.6)

On the other hand, there exists a continuous invertible function S(x) ∈ R
n×n such

that S(0) = S and

S(1) = diag (±1, 1, 1, . . . , 1).
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Then, if r ≥ 1, the continuous function

A(x) = S(x)TD(x)S(x), 0 ≤ x ≤ 1,

connects A and D(1) within SBDn,R(ω). This concludes the proof of (2) in the
case r ≥ 1. This also shows that in case r = 0, the set SBDn,R(ω) is a union of
two connected sets, one containing the matrix (6.3), the other containing the matrix
(6.4).

To conclude the proof of (2) in the case r = 0, it remains to show that the matrices
(6.3) and (6.4) cannot be connected within SBDn,R(ω). Note that if A ∈ SBDn,R(ω),
then the skew symmetric part 1

2 (A − AT ) of A is invertible. Thus, if there existed a
continuous path within SBDn,R(ω) between (6.3) and (6.4), then there would be a
continuous path within the set of invertible skew symmetric real matrices between the
skew symmetric parts of (6.3) and (6.4). However, this is impossible, since the set of
invertible n× n real skew symmetric matrices consists of two connected components,
one with positive pfaffians, the other with negative pfaffians (see, for example, [15],
[20], and [2] for the basic properties of pfaffians), and the skew symmetric parts of
(6.3) and (6.4) have pfaffians of opposite signs.

Proof of (3): The openness of SBDn,R(ω) follows in the same way as in the proof
of Proposition 3.5(3), using [7, Theorem 9.8.1] and the (A+AT )-unitary property of
the matrix U := A−1AT . If r = 0, then the openness of each of the two components of
SBDn,R(ω) follows from the openness of SBDn,R(ω) and the continuity of the pfaffian
of real skew symmetric matrices. Thus, for every A ∈ SBDn,R(ω), there exists ε > 0
such that for all B ∈ SBDn,R(ω) with ‖B − A‖ < ε, the sign of the pfaffian of the
skew symmetric part of B coincides with that of the skew symmetric part of A.

Finally, statement (4) follows from the uniqueness of the canonical form (4.1),
(4.2) for a given matrix A ∈ Rn×n.

If r = 0, we denote the two components of SBDn,R(ω) by SBDn,R(ω)±.
Using Proposition 6.2, we now obtain, analogously to the proof of Theorem 3.2,

the following characterization of the connected components of stably bounded systems
(5.1).

Theorem 6.3. The classes SBDn,R(ω), ω ∈ Ξn, for the elements ω with r > 0,
and the classes SBDn,R(ω)+ and SBDn,R(ω)−, ω ∈ Ξn, for the elements ω with
r = 0, are the (arcwise) connected components of the set of stably bounded systems of
difference equations

ATxi +Axi+1 = 0, i = 0, 1, . . . , xi ∈ R
n×1,(6.7)

where A ∈ Rn×n is invertible.

7. Symmetry (III). In this section we assume that symmetry of type (III) holds,
i.e., the matrices are complex and � stands for the transpose.

We start with a canonical form for complex matrices under transposition. Ma-
trices A,B ∈ Cn×n are said to be T -congruent if there exists an invertible complex
matrix S such that A = STBS.
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Introduce additional standard matrices:

Υ(6a)
� (α) :=

[
0 (α+ 1)F�/2 +G�/2

(α− 1)F�/2 +G�/2 0

]
.

The difference between Υ(6)
k and Υ(6a)

k is that α is required to be real and positive in
Υ(6)

k , whereas in Υ(6a)
k , α is any nonzero complex number.

Theorem 7.1. Let A ∈ Cn×n. Then A is T -congruent to a matrix of the form

0s×s ⊕
x⊕

c=1

Υ(1)
2k′

c+1 ⊕
r⊕

j=1

Υ(2)
kj

⊕
y⊕

d=1

Υ(3)
k′′

d
⊕

p⊕
t=1

Υ(4)
�t

⊕
z⊕

e=1

Υ(5)
�′e

⊕
w⊕

f=1

Υ(6a)
�′′f

(αf )(7.1)

Some types of blocks may be absent in (7.1).
Moreover, the form (7.1) under complex T -congruence is unique, for a given A, up

to a permutation of blocks and up to a possible replacement of some of the parameters
αf with their negatives.

Theorem 7.1 follows immediately from a well-known canonical form for matrix
pencil B + λC, where B = BT and C = −CT are complex matrices such that
A = B + C. See, for example, [26, Theorem 1].

Analogously to Section 4, we now obtain:
Theorem 7.2. Let A ∈ C

n×n be invertible. Then the matrix U := A−1AT is
similar to a matrix of the following form:

r⊕
j=1

Jkj (1)⊕
y⊕

d=1

(Jk′′
d /2(1)⊕ Jk′′

d /2(1))⊕
p⊕

t=1

J�t(−1)(7.2)

⊕
z⊕

e=1

(J�′e/2(−1)⊕ J�′e/2(−1))⊕
w⊕

f=1

(J�′′f /2(βf )⊕ J�′′f /2(β−1
f )).(7.3)

Here kj’s are odd integers, k′′d/2’s are even integers, "t’s are even integers, "′e/2’s are
odd integers, "′′f/2’s are integers (even or odd), and the parameters βf are nonzero
complex numbers not equal to ±1.

Conversely, if U ∈ Cn×n is similar to a matrix in the form (7.2), (7.3), then there
exists a complex invertible matrix A such that U = A−1AT .

Theorem 7.3. Let A ∈ Cn×n be an invertible matrix. Then U = A−1AT is
diagonalizable with only unimodular eigenvalues if and only if the matrix A is T -
congruent to a matrix of the following form:

Ir ⊕
z⊕

i=1

[
0 1
−1 0

]
⊕

w⊕
f=1

[
0 αf + 1

αf − 1 0

]
.(7.4)

Here the parameters αf are complex numbers with zero real parts and positive imagi-
nary parts.
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Combining Proposition 1.3 with Theorem 7.3, the following corollary is immedi-
ate:

Corollary 7.4. Let A ∈ Cn×n be invertible. Then all solutions of the system

ATxi +Axi+1 = 0, i = 0, 1, . . . , xi ∈ C
n×1,(7.5)

are bounded if and only if A is T -congruent to a matrix of the form (7.4).
We now turn to the connectivity problem:
Theorem 7.5. The set of bounded equations of the form (7.5) is arcwise con-

nected.
Proof. By Corollary 7.4, we have to verify that the set of matrices X ∈ C

n×n

which are T -congruent to a matrix in the form (7.4) is arcwise connected. Indeed, by

taking αf = yf i with yf > 0 and yf → 0, we see that the block
[

0 αf + 1
αf − 1 0

]
is connected to

[
0 1
−1 0

]
. On the other hand, taking yf → ∞, we obtain

(
√
y−1
f I2)

[
0 αf + 1

αf − 1 0

]
(
√
y−1
f I2) −→

[
0 i
i 0

]
,

which is easily seen to be T -congruent to I2. Finally, use the fact that the group of
invertible complex matrices is connected.

In contrast with symmetries (I) and (II), there are no stably bounded equations
(7.5) (unless n = 1):

Theorem 7.6. Let A ∈ Cn×, n > 1, be such that all solutions of (7.5) are
bounded. Then for every ε > 0 there exists a matrix B ∈ Cn×n such that ‖B−A‖ < ε
and the corresponding system

BTxi +Bxi+1 = 0, i = 0, 1, . . . , xi ∈ C
n×1,

has a geometrically growing solution.
Proof. In view of Theorem 7.3 and Proposition 1.4, we need only to demonstrate

the following fact: For each of the following two matrices

A1 = I2, and A2 =
[

0 yi+ 1
yi− 1 0

]
, y ≥ 0,

and for every ε > 0 there exists Bj ∈ C2×2, j = 1, 2, such that ‖Bj − Aj‖ < ε and
the matrix B−1

j BT
j has an eigenvalue with absolute value larger than 1. Indeed, take

B1 =
[

1 xi
−xi 1

]
, B2 =

[
0 yi+ x+ 1

yi+ x− 1 0

]
where x is a small positive number. Then

B−1
1 BT

1 =
1

1− x2

[
1 + x2 −2xi
2xi 1 + x2

]
,
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which is a Hermitian matrix close to I2 with trace larger than 2. Therefore, it has an
eigenvalue larger than 1. Next,

B−1
2 B2 =

[
q 0
0 q−1

]
,

where q := (yi+ x+ 1)(yi+ x− 1)−1 is not unimodular, and we are done.
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