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Dedicated to my friend Pier Vittorio Ceccherini on the occasion of his 65th birthday

Abstract. As an extension of Cauchy’s double alternant, a general determinant evaluation
formula is established. Several interesting determinant identities are derived as consequences by
means of divided differences.
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1. Cauchy’s Double Alternant and Extension. Cauchy’s double alternant
reads as

Q:

det |: 1 :| HO<’L<]<71(Z xﬂ)(yl - yj)
Osijsn [T +Yj [lo<ij<n (@i +5)

For the subsequent use, we denote a variant of it by

QO =

det |: 1 :| H1<z<]<n(x m])(yl - y])
1<i,5<n [ T + Y; [li<ij<n (@i +y;)

In this paper, we extend it to the following determinant identities:
THEOREM 1 (Extension of Cauchy’s double alternant).

WiV n
Mn = d t . # — Q 1 @ , ’ v, 7
0<ig<n [“’J + JUH—yj] {1+ 6(z,y;u,v w)}gukvk

where ©(x, y; u, v, w) is given by the following double sum:

- W, H?:o (i +y,) H?:o (T, + ;)

O(z, y;u,v,w) = -
2.7=0 w0y (2, + Y) Hi;sz(fcz — ;) Hj;ﬁj(y] —Yj)

When ug = 0, it reduces easily to the following interesting result.
PROPOSITION 2 (Determinant identity).

. .
det [wj ; 7] g [ el —ve) g wn Ty (w1 + i)
0<4,j<n i + Y5 | uo=0 yo + Zys) = Uk Hj#k( yj)

k=1
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Proof of Theorem 1. Consider the extended square matrix of order (n+2) x (24+n)
given explicitly by

UGV j
zity;

0 @ w;+ (0<i,j<n)
whose determinant is obviously equal to the determinant stated in the theorem.

Now subtracting the first row from each other row, we transform the matrix into
the following one:

1 W (0< 5 <n)
UG V4 L.
— <i,7<
1 Zity; (0<i,5<n)

Then the Laplace expansion formula with respect to the first row gives

M, = “—} 3 (1), det [_ | L]

de
0<i,j<n ch + v = J#) © Xt Y

Expanding further the last determinant with respect to the first column, we get

n
DU 340 uiv;
det | —1: = -1 det | ——|,
J#) { : ﬂfierj] Z( ) ?ii [ﬂfi+yj]
3#3

2=0

which leads us to the following expression:

M, =

n
det [L”j ]+ Z(l)zﬂu}]det{ L }
osigsn [ +y;l o A i Ti +Yj
W J77

Evaluating the last determinant by means of Cauchy’s double alternant

UV; (=11 Q IT—o(zi + 1)) H?:O (T + ) 14
det = H UkVk,
it | T + Y, U0, (T, + Yy) Hi;ﬁz (2 — ) Hj;é] (¥ — vj) 0

we find the determinant identity stated in the theorem. O

2. Divided Differences. In order to make the paper self-contained, we review
some basic facts about divided differences. The details can be found in Lascoux [4,
Chapter 7], where different notation has been introduced. For a complex function
f(y) and uneven spaced grid points {zx}7_,, the divided differences with respect to
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y are defined in succession as follows:

Aleo,a1]f(y) = TE) =S @)

o — X1

Aleo, 21, za] f(y) = 207l fﬁ) - i[xlvxz]f(y)7

Mol () = Mot Tl )~ Aozl )

To — Tn

which can also be expressed as

Alsosar. -+ anl () = { T] Alowsls )} (2.1)
k=1 Y=o
and the symmetric formula
" T
Alzg,z1, -, 2] f(y) = A (2.2)
= Min (21 — )
For variables X = {xq, 21, -+, Zn}, the elementary and complete symmetric func-

tions in X are defined (cf. Macdonald [5, §1.2]), respectively, by

e(X) =1 and e,(X) = Z Xy Thy * ** Tk, for m=1,2,--;
0<k1 <ka<---<km<n
hy(X) = 1 and h,,(X) = Z Xpy Thy *** Tk, for m=1,2---.

0<ky <ka<<hpm<n

Then the divided differences on monomials result in complete symmetric functions.
LEMMA 3 (Sylvester (1839), cf. Bhatnagar [1] and Chu [2]).

07 m = Oa]-v yn— 17
= hmfn(xml‘lv"',xn)a m:nan+]—7"';
(=n" 11 4 — 1 _9 _
TOLLTn hoim zo’ X1’ Y, )0 m=—-1,-2,-3,

From this lemma, we display a short list of the divided differences for rational
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functions, which will be used in the next section for determinant evaluation.
AX ] w+w) =1, (2.3)
k=1
n n
A[X] H(y +ug) = Z(fﬂk + ug), (2.4)
k=0 k=0
n+1 n
AKX [T +u) = D af +ea(X, V), (2.5)
k=0 k=0
1 (_1>n
AlX = , 2.6
[ ]erv TN (2.6)
et (Y + up et (v — ug
y+o ooV + x)
ape oty £y oo~ ue) (2.8)
Y+ [Ti—o(v + k)
n+1 n+1 o
A[X] A= whu) _ ei(U,X)—v+ H%:O W) (2.9)
y+’U Hj=0(’U+£Cj)

3. Determinant Identities.
given by

w; = u(w;),

Then we can express the double ©-

vj = v(y;)

Suppose that u;, v; and w; are the three functions

and  w; :== w(y,).

sum in Theorem 1 and the sum with respect to k

in Proposition 2 in terms of divided differences:

O(x, y; u, v, w)

X

"y T (o + )
o Uk Hj;ék(yk —Y;)

Aa:[x()vxlv"' 7xn]Ay[y()7y1a"' 7yn] (31)
{ w(y)  Tio(@x +y)(x+yk)}
u(z)v(y) z+y ’
w(y) 17
Ay[ymylw" ayn]{@ kl;[l($k +y)} (32)

Applying the divided difference formulae displayed in the last section, we can derive
without difficulty the following determinant identities.
EXAMPLE 1 (wy = v = 1 in Proposition 2).

det
0<i,j<n

|

EXAMPLE 2 (wg =1 and vy =

det
0<é,j<n

I
i +Yj

Ui + T + Y
i +Yj

ui (v + yj5)

n

:Q’H

k=1

Uk(y() - yk)
(Yo + zi)

] uo=0

v + y in Proposition 2).

:| u0:0

n

:Q’H

k=1

ur(yo — yr) (v — o)
(yo + xx)
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EXAMPLE 3 (wr = w + yg and v = 1 in Proposition 2).

n n
Uq ’ Yo — Yk
det |w+uy; + :Q{wforg T + }”7
o<m’<n[ Yi $i+yj:|u0=0 0 k=0( b o) iy (Yo + xk)

EXAMPLE 4 (wr = w + y and vy, = v + y in Proposition 2).

ﬁ k(Yo — (v — )

(o +Ik)

0<é,j<n

uo

i +Yj

EXAMPLE 5 (w = (w4 yx)(v 4+ yx) and vx, = 1 in Proposition 2).

u; } _ o ﬁ uk(yo — yr)
i + Y5 | uo=o0 k1 (yo + 1)

det |:(w +y)(v+y;) +

0<i,5<n

X {wv+ (w+v)e(X,Y)+e(X,Y)+ ;yi}

EXAMPLE 6 (ur = vx = 1 and wy, = 1/w in Theorem 1).

w+T; +y;

0<ij<n | x; +yj

det { ] = Qu{w+ei(X,Y)}.

EXAMPLE 7 (up = u+ g, vy = v and wy, = w in Theorem 1).

(ut+z)v] L, CU— Y T
0<(11,c}t<n[wJr T + Y = {erwwgv—i—x,@}H(quI“)'

EXAMPLE 8 (up = u, vy = v and wy, = w + yj, in Theorem 1).

. uv _ n S 2
()S(Zigtgn {w +y; + o —l—y]} = Q(uv) {uv +we(X,Y)+eX,Y)+ sz:oy,{}.

EXAMPLE 9 (ur = u + 2, vy = v and wy, = u — y in Theorem 1).

n n
det [U_yﬁw} = QU”{U—i-el(X,Y)H U_yK}H(u—i—xH).
K k=0

0<4,j<n T+ Yj -0 U+ T,
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EXAMPLE 10 (ur = 1/(u + k), vx = v and w, = w in Theorem 1).

v
det )b —— | = Qn Fuer(X,Y) + hy(X,Y) = S 42 b
e [w(u x;) :Eier]} v w{ ueq ( ) a( Zy }

0<i,5<n

EXAMPLE 11 (ur =1/(u+ k), vy = v — yg and wy = w in Theorem 1).

et [ S22 = of s ) [ 422 T )

0<i,j<n T + Y 0 U — Yr o

EXAMPLE 12 (up = u, vy = v + yi and wy = w + yx in Theorem 1).

zﬁiﬂﬁ]

n
=Qu" U+ Yy
pa—— [Tw+u)

det ;
ogig‘gn {w Tyt o

Lu vt en(X,Y)—(w— ) [ S22 ).
{u v+ w+ e w U’E)U_Fyﬁ}

EXAMPLE 13 (up = u + xk, vy, = v and wy, = w + y in Theorem 1).

det {w+yj+w} = Q" (u+v+w) Hqu:cH
0<i4,5< T; + Y o

X{17u+w+e1XY ﬁu—yﬁ}

u+v+w U+ Ty

EXAMPLE 14 (ux = u + xp, vy = v and wr, = (w + yx) (v — yx) in Theorem 1).

det [(u )t y) +

0<i,j<n
o lerteran ) T2 )

k=0 k=0

EXAMPLE 15 (ux = 1/(u+ xg), vg = u — yi and wr, = w + yg, in Theorem 1).

n

| It 1 RS PO = :
OSOiIS'tSn (u—i-acz)(w—l—y])—i—xierj] = Q{l ue(X,Y) hQ(X,Y)-F’;Jyn

—Hw+ubﬂXﬁﬂIIu+xn}IUu—%)

In order to illustrate the method of proof, we prove the determinant identity
displayed in Example 3 in detail. According to Proposition 2, we need only to evaluate
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(3.2) for v(y) = 1 and w(y) = w+y. In this case, the corresponding divided differences
(3.2) can be evaluated by means of (2.4) as follows:

n
Ay[yanla"'vyn{ y ka—’—y}
y k=1
n

:Ay[yanla"' 7yn{w+y H :Ck+y}
k=1

=w — X9 + Z(xk + Yk).-
k=0

Then the determinant identity in Example 3 follows immediately.
In particular, Example 3 implies another interesting determinant identity. Refor-
mulating the general entry of the matrix
(@ +u; +wjy)(c+v; +wj) ui(c—a+v;)

= a+w;+ R
c+u; +v; +w; C+ u; +v; +w;

we derive from Example 3 the following curious formula.
PROPOSITION 4 (Determinant identity).

det
0<i,j<n

[(Wr ui +w;)(c+vi + wj)] _ hicicyen(ui +vi — uj — ) (wi — w))
C+u; + v + wj wo=0 H1gi,j§n(c + u; + v + wy)

n n
uk(cfaJrvk)(wofwk)
x{a+cn+wo+ uk+vk+wk} .
;( ) l];[l c+ug +vg +wo

The very special case up = ku of this identity reduces to the determinant evalu-
ation.
COROLLARY 5 (Krattenthaler [3, Eq5.3]).

det

0<i,j<n

n n
L - } (c—a+vk)(w07wk).
Xnu{a+cn+“(2)+w0+;(vk+wk) kli[l ¢+ uk + v, +wo

(a+ui+w)(ctoi+w)]  Thcicjen(wi —uj+vi —vj)(wi —wy)
c+ui+v; +w; H1§i7jgn(c+ui+vi+wj)

Krattenthaler [3, Eq 5.3] discovered this identity by means of the condensation
method, which has been the author’s primary motivation for this work.
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