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SOME SUBPOLYTOPES OF THE BIRKHOFF POLYTOPE*

EDUARDO MARQUES DE SAf

Abstract. Some special subsets of the set of uniformly tapered doubly stochastic matrices
are considered. It is proved that each such subset is a convex polytope and its extreme points are
determined. A minimality result for the whole set of uniformly tapered doubly stochastic matrices is
also given. It is well known that if x and y are nonnegative vectors of R"™ and x is weakly majorized
by y, there exists a doubly substochastic matrix S such that x = Sy. A special choice for such S
is exhibited, as a product of doubly stochastic and diagonal substochastic matrices of a particularly
simple structure.

Key words. Doubly-stochastic matrices, Inequalities, Polytopes, Majorization.

AMS subject classifications. 15A39, 52B11.

1. Introduction. A square, nonnegative matrix with row and column sums
equal to 1 is called doubly stochastic. There is an extensive literature on €,,, the set
of doubly stochastic matrices of order n. The name Birkhoff polytope given to 2,
comes from a famous theorem of G. Birkhoff [1] who showed that , is a polytope
whose vertices are the n X n permutation matrices.

For any interval F of {1,...,n}, of cardinality ¢, i.e., a set of the form F =
{r+1,...,74+ ¢} (for some r, 0 <7 < n) let Ep be the n X n matrix

Ep:=1&J,® I v

where J, is the ¢ x ¢ matrix with all entries = 1/¢. An interval partition of {1,...,n},
is a partition & = {Py,..., Ps} of {1,...,n} into disjoint, nonempty intervals P;. For
such &, we let

Egz = EPlEPg"'EPS~ (11)

The set i, of the so-called uniformly tapered doubly stochastic matrices was intro-
duced in [7, 11] by means of a set of linear inequalities. Theorem 1 of [9] asserts that
i, is the convex hull of all matrices E 4. We shall prove that all Eg are vertices of
$l,, and settle a minimality property of il,. Note that Fs is the barycenter of the
face of €2, consisting of all doubly stochastic matrices whose (i, j)-entry is 0 if the
(i,7)-entry of Eg is 0. The facial structure of §2,, has been thoroughly studied in
[2, 3, 4, 5], however, the sub-polytopes of ,, we shall consider are not faces of §2,,.
A nested family of intervals of {1,...,n} is aset & = {F1,..., F;} of intervals of
{1,...,n}, such that any two intervals in the family either have an empty intersection,
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or one of them is contained in the other. Note that, in these conditions, the matrices

Ep,...,Er, commute. We define {(.%) as the set of all n x n matrices of the form
t
[Oéil + (1 - ai)EFi] , (12)
i=1
where aq,...,a; run over [0,1], independently of each other. We shall prove that

$U(.F) is a subpolytope of i,,, and determine its vertices.

We denote by ©(n) the set of all z € R", such that z1 > -+ > x,, and D1 (n)
is the set of all nonnegative vectors of ®(n). We adopt the following majorization
symbols: for z,y € R", we write x <, ¥ whenever

i+t <y 4+ 4y, forallke{l,...,n}, (1.3)
where 21, ..., 2, denotes the non-increasing rearrangement of z € R"; and we write
x <y if (1.3) holds with equality for £ = n. In [9], the reader may find the following
refinement of a well-known theorem of Hardy, Littlewood and Pélya [8]: if z,y € D(n)
satisfy x <y, there exists R € Y, such that x = Ry, together with three proofs of
this result. In section 2, we show that the third of these proofs, due to D.Z. Djokovic
(see [9, p. 325]) may be conveniently adapted to give a little bit more than the referred
refinement. Then we extend that result to the case of weak majorization.

2. Nested Families and Majorization. PROPOSITION 2.1. For any %, a
nested family of intervals of {1,...,n}, U(.F) is a subset of i,.
Proof. Let us expand the polynomial

f(ul, L. ,ut) = H [Oéi + (1 — ai)ui] ,

i=1

where the «; are real numbers and the u; are commutative variables, as a sum of mono-
mials. The sum of all coefficients of f’s monomials is f(1,...,1), which obviously
equals 1. So (1.2) is a convex combination of the products Ex, ---Ex_, for 0 < s <t
and Xq,...,X, € . Note that, if X DY, then ExEy = EyEx = Ex. Thus
we only have to consider products Ex, --- Ex, for pairwise disjoint sets Xi,..., X;s.
Therefore (1.2) lies in i, and so U(.F) C U,,. O

The proof of the following theorem is essentially due to D. Djokovic [9, p. 325].

THEOREM 2.2. Let x,y € D(n) satisfy x < y. There exists a nested family of
intervals of {1,...,n}, and a matrizx R € U(F), such that x = Ry.

Proof. We consider the two cases of D.Z. Djokovic’s proof [9, p. 325]. In Case 1, it
is assumed there is k < n such that x1 +---+ 2, = y1 + - - - + yx. By induction, there
exist a nested family %’ of intervals of {1,...,k}, a nested family .#” of intervals of
{1,...,n —k}, and there exist R’ € (F') and R"” € U(F") such that = = Ry, with
R:= R @& R". Define

Fo=F U(F" +k),
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where %" +k is the family of all sets {i+k : ¢ € X}, for X running over .#". Clearly,
F is a nested family of intervals of {1,...,n}. On the other hand, it is also clear that
R' @ I,,—k and I & R” both lie in U(F); therefore, R lies in U(.F) as well. So we are
done with Case 1. In Case 2, D.Z. Djokovic proves that x = R[ﬂ[+(1*ﬂ)E{1,___7n}} Y,
where R is obtained as in Case 1. In our situation, this means R lies in (%) for
some nested family .Z of intervals. Note that .#Z U{{1,...,n}} is also a nested family
of intervals. So the theorem holds in this case as well. O

Theorem 2.2 gives us a representation of matrix R as a product of type (1.2), of
t doubly stochastic matrices of simple structure, where ¢ is the cardinality of .%#. On
the other hand, the only sets F; € % which are relevant in (1.2) are those having
cardinality at least 2. A straightforward argument, left to the reader, shows that
any mazimal nested family of intervals of {1,...,n} has precisely n — 1 elements of
cardinality at least 2. So, n — 1 is an upper bound to the number of relevant factors
in R’s factorization (1.2).

It is well known [10, p. 27] that if 2,y € D (n) satisfy <, y, then z = Sy for
some doubly sub-stochastic matrix S. In the following theorem we give a factorization
for a special choice of S, in the spirit of Theorem 2.2.

We shall use the following notation: for each p € {1,...,n}, A, is the nxn
diagonal matrix

A, := Diag(1,1,...,1,0,0,...,0).
———

p

THEOREM 2.3. Let x € ©4(n) be a vector whose distinct coordinates are x1 >
<o > xs. Suppose m; is the number of times x; occurs in x. If y € D4 (n) satisfies
T < Y, then the following conditions hold:

(I) There exist real numbers 61,...,05 in the interval [0,1], a nested family F
on {1,...,n} and a matriz R in U(F), such that x = DRy, where D is the diagonal
matrix

D:= H [0:1 + (1 — 0:) Ay ooty - (2.1)

=1

(II) The following entities exist: a positive integer p, real numbers o1,...,0, in the
interval [0,1], nested families, F1,...,Fp, of intervals of {1,...,n}, and matrices
Ry e M(F),..., R, € (Fp), such that © = [DyR, - DaRaD1R1]y, where

Di = O'Z'I —+ (]. — Ui)Anfms s fOT’ = ]., ceey S (22)

Proof. For each z € R" let ¥(2) := 21 + -+ + 2z,,. For each ¢t € R let z(t) € D(n)
be the vector with i-th entry max{x;,t}. Clearly z(¢t) > z= for all ¢, with equality
iff t < z,. X(z(t)) is a continuous function, and it is strictly increasing with ¢, for
t > xp. As x <y Yy, we have X(z) = X(z(z,)) < E(y) < B(x(y1)). So there is a



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 15, pp. 1-7, January 2006

4 Eduardo M. Sa

unique 7T > x, such that X(z(7)) = X(y). We prove

> i —x(r)i] >0, (2.3)

i=1

for k=1,....,n—1. If 7 > x4, then z(7) = (7,...,7) and (2.3) is obvious. Now
assume 7 < z1, and let v := sup{i : x; > 7}. Note that 1 <v < n. As z;(1) = a; for
ie{l,...,v}, (2.3) is true for k € {1,...,v}. So we are left with the case v < k < n.
Clearly

lyi — 2(7)i] = Z (T —vi) - (24)

1 i=k+1

k n
i=

On the other hand, as = <, y and (y; — 7)I; in non-increasing, we have

0=3@) - B(r) = Y w—=)+ > (i)
i=1 i=v+1
> Y Tz Y wi-7. (25)
i=v+1 i=k+1

So (2.4) is nonnegative. This proves (2.3). Therefore = < z(7) < y. By Theorem 2.2
we know that

z(7) = Ry, (2.6)

where R € (&) for some nested family of intervals, .#. From now on we assume
that = and y lie in D (n).

Proof of (I). If 2 = (), then (I) holds with D := I, i.e. with 6, := 1 for
i=1,...,s. Now assume z # x(7). Let v := min{i : #; < 7}. Then define 4, := 1 for
i=1,...,u—1, 0, :=x./7 and 0; := x;/x;j-1 for j =u+1,...,s. We clearly have
x = Dz(t), for D as given in (2.1). So (I) holds.

Proof of (II). The proof is easy when s = 1, i.e. when all entries of = are equal.
For, we define p:=1, 01 := x, /7 if 7 > 0 and o7 := 0 if 7 = 0 (note that in this case
x = x(7)). Then put Ry := R, the matrix of (2.6). With these definitions (II) holds.
We now work out the case s > 2. For any z € R", let x(z) be the smallest integer
greater than [X(z) — 3¥(x)]/(msxs—1). In particular

K(z)msxs—1 = X(z) — X(z). (2.7)

The proof goes by induction on x(y). Note that k(y) = k(z(7)). We have two cases.
CASE 1: when my7 > X(y) — X(x). Define p := 2,

msT — X(y) + %(z)
g1 .= )
mgT
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o9 := 0 and R; := R, the matrix of (2.6). Moreover, let D; be as given in (2.2) and
let y' := Dix(7). As 2(y') = E(x(7)) — ms7(1 — 01), some easy computations show
Y(y') = X(x). This identity may be written as:

Z x(71); + msTor = Z Ti +msT . (2.8)
i=1 i=1

As 01 < 1, this implies, for each k € {1,...,ms}:

n—msg n—ms

Z (1) +kTor = Z x; + k7. (2.9)
i=1

i=1

Taking into account that z(7) > x, (2.8)-(2.9) show that = < y'. So, for some nested
family of intervals s, there exists Ro € U(F2) such that © = Ray’. Therefore
x = [DaRaDiR;i]y and (II) holds. CASE 2: when ms7 < X(y) — X(x). Here,
we let o7 := 0 and D; be as in (2.2). The vector ¢y := Dyz(7) clearly satisfies
Y(y') = E(y) — mem > 3(x). Tt is now easy to show that

T <wy . (2.10)

On the other hand,

0 < X(x(1)) —X(x) — msT = Z m; - max{0,7 — x;} — msT

<n-max{0,7 — xs—1} -
Therefore 7 > x—1. Taking (2.7) into account we obtain:

2(y) — (z) = B(y) — B(z) —msT
< KY)IMsXs—1 — msT < [K(y) — Lmsxs—1 -

This yields x(y') < x(y) — 1, and this, taken together with (2.10), allows us to
use induction: there exist nested families of intervals, %, .. .,ﬂé, matrices R} €
UWF), ..., Ry € UF ] and diagonal matrices, D1, ..., Dy, of the type of (2.2), such
that x = [D; Ry, - - D1 R}]y'. Therefore

T = [D;R; ---DIRYD1R)y
and the proof is done. O

Incidentally, in the course of proof, we showed the existence of a z such that
x < z < y. This is a result of [6] (see also [10, p. 123] and references therein).
However, we got a little bit more: that we may choose z of the form z(7). We point
out that our inductive proof of Theorem 2.3(II) also yields an upper bound for the
number, p, of factors D;R;, namely p < s(y) + 1. This gives an indication on the
complexity of the procedure given by the proof.
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3. Extreme Points. There exist 27! distinct interval partitions of {1,...,n},

and so this is the cardinality of the set {E %} of all matrices defined in (1.1). Theorem
1 of [9] says that {E%} contains the set of all extreme points of il,. Our aim now is
to prove that any E % is an extreme point of il,,.

LEMMA 3.1. Let w € R™ be a vector satisfying wy > -+ > wy, R an element
of W, and 4 an interval partition of {1,...,n}. The identity Rw = Egw implies
R=Fgy.

Proof. By Theorem 1 of [9], R is a convex combination of the F 4, for all partitions
P, i.e., R =) ApEqp, for some nonnegative coefficients Ag which sum up 1. As
Rw = Egyw,

Eqw = ZA@E@M. (3.1)

The second proof of Theorem 2 of [9] shows that the 2”1 vectors E»w are pairwise
distinct, and are the extreme points of {x € ®(n) : « < w}. Therefore (3.1) implies
that all Ap are 0, except Ay that equals 1. Thus R = Eg as required. O

THEOREM 3.2. For any interval partition &, E« is an extreme point of i,,.

Proof. Pick any E¢ and write it as a convex combination of the Eg. Then an
equation like (3.1) arises. The argument under (3.1) now proves that Fy is not a
convex combination of the other generators Fo of i,,. This means Fy is an extreme
point of 4,,. O

THEOREM 3.3. U, is minimal among all sets M of n X n matrices satisfying the
conditions: M is convex, and, if x,y € D(n) satisfy x X y, there exists M € M such
that © = My.

Proof. Assume 9 C 41, satisfies the given conditions. With w as in Lemma 3.1 we
have, for any interval partition &: Egw € ®(n) and Epw < w. So Egw = Mgpw,
for some Mg € 9. Lemma 3.1 implies E» = Mg, and so Fg € M. Therefore
Mm=4u,. 0

We now prove the convexity of the set U(.%), whose members are matrix products
as (1.2), and determine the set of its extreme points.

THEOREM 3.4. Given a nested family & of intervals of {1,...,n}, the set I(.F)
is convex, and {Eg : X C .F} is the set of U(F)’s extreme points.

Proof. By Theorem 3.2 we only need to prove that (%) is the convex hull of
the Eg, for " C #. We argue by induction on t = |#|. Let M;,..., M, be the
elements of .# which are maximal for inclusion. Without loss of generality, assume
M, =Fy,...,M, = F,. Define %, . ={X € .% : X C F;},fori=1,...,r. Clearly,
F = F1U---UZ,., and this union is disjoint. In the first place suppose r = 1, that is
Fi 2 [FAU---UF]. By induction, d({Fs, ..., F;}) =conv{Eqy : Z C{Fs,...,F:}}.
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We therefore have

W)= |J [I+Q-a)Er] -U{F,....F})
a€l0,1]

U [e8({F....F})+(1—a)Er]

a€l0,1]
= conv <{EF1} U {E@ : X C{Fy,... ,Ft}}>

conv{Ey : % C F}.

ar

This settles the case r = 1. We now assume r > 2. By induction, $(.%#;) = conv{Eg; :
Z; € Z;}. The proof is finished in the following two lines:

[7]
(8]
(9]
(10]

(11]

UW(F) @u(%) = @CODV{E%i : 2 C F}

i=1

= conv@{Eggi 2 CF )} =conv{Eg : & CF}. O
i=1
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