SOME SUBPOLYTOPES OF THE BIRKHOFF POLYTOPE*

EDUARDO MARQUES DE SÁ[†]

Abstract. Some special subsets of the set of uniformly tapered doubly stochastic matrices are considered. It is proved that each such subset is a convex polytope and its extreme points are determined. A minimality result for the whole set of uniformly tapered doubly stochastic matrices is also given. It is well known that if x and y are nonnegative vectors of \mathbb{R}^n and x is weakly majorized by y, there exists a doubly substochastic matrix S such that x = Sy. A special choice for such S is exhibited, as a product of doubly stochastic and diagonal substochastic matrices of a particularly simple structure.

Key words. Doubly-stochastic matrices, Inequalities, Polytopes, Majorization.

AMS subject classifications. 15A39, 52B11.

1. Introduction. A square, nonnegative matrix with row and column sums equal to 1 is called *doubly stochastic*. There is an extensive literature on Ω_n , the set of doubly stochastic matrices of order n. The name Birkhoff polytope given to Ω_n comes from a famous theorem of G. Birkhoff [1] who showed that Ω_n is a polytope whose vertices are the $n \times n$ permutation matrices.

For any interval F of $\{1, \ldots, n\}$, of cardinality q, i.e., a set of the form $F = \{r+1, \ldots, r+q\}$ (for some $r, 0 \le r < n$) let E_F be the $n \times n$ matrix

$$E_F := I_r \oplus J_q \oplus I_{n-r-q},$$

where J_q is the $q \times q$ matrix with all entries = 1/q. An interval partition of $\{1, \ldots, n\}$, is a partition $\mathscr{P} = \{P_1, \ldots, P_s\}$ of $\{1, \ldots, n\}$ into disjoint, nonempty intervals P_i . For such \mathscr{P} , we let

$$E_{\mathscr{P}} := E_{P_1} E_{P_2} \cdots E_{P_s}. \tag{1.1}$$

The set \mathfrak{U}_n of the so-called uniformly tapered doubly stochastic matrices was introduced in [7, 11] by means of a set of linear inequalities. Theorem 1 of [9] asserts that \mathfrak{U}_n is the convex hull of all matrices $E_{\mathscr{P}}$. We shall prove that all $E_{\mathscr{P}}$ are vertices of \mathfrak{U}_n , and settle a minimality property of \mathfrak{U}_n . Note that $E_{\mathscr{P}}$ is the barycenter of the face of Ω_n consisting of all doubly stochastic matrices whose (i,j)-entry is 0 if the (i,j)-entry of $E_{\mathscr{P}}$ is 0. The facial structure of Ω_n has been thoroughly studied in [2, 3, 4, 5], however, the sub-polytopes of Ω_n we shall consider are not faces of Ω_n .

A nested family of intervals of $\{1, ..., n\}$ is a set $\mathscr{F} = \{F_1, ..., F_t\}$ of intervals of $\{1, ..., n\}$, such that any two intervals in the family either have an empty intersection,

^{*} Received by the editors 22 December 2005. Accepted for publication 4 January 2006. Handling Editor: João Filipe Queiró.

[†]Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal (emsa@mat.uc.pt). Member of the research unit Centro de Matemática da Universidade de Coimbra/Fundação para a Ciência e a Tecnologia (CMUC/FCT).

2 Eduardo M. Sá

or one of them is contained in the other. Note that, in these conditions, the matrices E_{F_1}, \ldots, E_{F_t} commute. We define $\mathfrak{U}(\mathscr{F})$ as the set of all $n \times n$ matrices of the form

$$\prod_{i=1}^{t} \left[\alpha_i I + (1 - \alpha_i) E_{F_i} \right], \tag{1.2}$$

where $\alpha_1, \ldots, \alpha_t$ run over [0,1], independently of each other. We shall prove that $\mathfrak{U}(\mathscr{F})$ is a subpolytope of \mathfrak{U}_n , and determine its vertices.

We denote by $\mathfrak{D}(n)$ the set of all $x \in \mathbb{R}^n$, such that $x_1 \ge \cdots \ge x_n$, and $\mathfrak{D}_+(n)$ is the set of all nonnegative vectors of $\mathfrak{D}(n)$. We adopt the following majorization symbols: for $x, y \in \mathbb{R}^n$, we write $x \le_w y$ whenever

$$x'_1 + \dots + x'_k \le y'_1 + \dots + y'_k$$
, for all $k \in \{1, \dots, n\}$, (1.3)

where z'_1, \ldots, z'_k denotes the non-increasing rearrangement of $z \in \mathbb{R}^n$; and we write $x \preccurlyeq y$ if (1.3) holds with equality for k = n. In [9], the reader may find the following refinement of a well-known theorem of Hardy, Littlewood and Pólya [8]: if $x, y \in \mathfrak{D}(n)$ satisfy $x \preccurlyeq y$, there exists $R \in \mathfrak{U}_n$ such that x = Ry, together with three proofs of this result. In section 2, we show that the third of these proofs, due to D.Z. Djokovic (see [9, p. 325]) may be conveniently adapted to give a little bit more than the referred refinement. Then we extend that result to the case of weak majorization.

2. Nested Families and Majorization. PROPOSITION 2.1. For any \mathscr{F} , a nested family of intervals of $\{1,\ldots,n\}$, $\mathfrak{U}(\mathscr{F})$ is a subset of \mathfrak{U}_n .

Proof. Let us expand the polynomial

$$f(u_1, \dots, u_t) := \prod_{i=1}^t [\alpha_i + (1 - \alpha_i)u_i],$$

where the α_i are real numbers and the u_i are commutative variables, as a sum of monomials. The sum of all coefficients of f's monomials is $f(1,\ldots,1)$, which obviously equals 1. So (1.2) is a convex combination of the products $E_{X_1}\cdots E_{X_s}$, for $0\leqslant s\leqslant t$ and $X_1,\ldots,X_s\in \mathscr{F}$. Note that, if $X\supseteq Y$, then $E_XE_Y=E_YE_X=E_X$. Thus we only have to consider products $E_{X_1}\cdots E_{X_s}$ for pairwise disjoint sets X_1,\ldots,X_s . Therefore (1.2) lies in \mathfrak{U}_n , and so $\mathfrak{U}(\mathscr{F})\subseteq \mathfrak{U}_n$. \square

The proof of the following theorem is essentially due to D. Djokovic [9, p. 325].

THEOREM 2.2. Let $x, y \in \mathfrak{D}(n)$ satisfy $x \leq y$. There exists a nested family of intervals of $\{1, \ldots, n\}$, and a matrix $R \in \mathfrak{U}(\mathscr{F})$, such that x = Ry.

Proof. We consider the two cases of D.Z. Djokovic's proof [9, p. 325]. In Case 1, it is assumed there is k < n such that $x_1 + \cdots + x_k = y_1 + \cdots + y_k$. By induction, there exist a nested family \mathscr{F}' of intervals of $\{1,\ldots,k\}$, a nested family \mathscr{F}'' of intervals of $\{1,\ldots,n-k\}$, and there exist $R' \in \mathfrak{U}(\mathscr{F}')$ and $R'' \in \mathfrak{U}(\mathscr{F}'')$ such that x = Ry, with $R := R' \oplus R''$. Define

$$\mathscr{F} := \mathscr{F}' \cup (\mathscr{F}'' + k)$$
,

3

where $\mathscr{F}''+k$ is the family of all sets $\{i+k:i\in X\}$, for X running over \mathscr{F}'' . Clearly, \mathscr{F} is a nested family of intervals of $\{1,\ldots,n\}$. On the other hand, it is also clear that $R'\oplus I_{n-k}$ and $I_k\oplus R''$ both lie in $\mathfrak{U}(\mathscr{F})$; therefore, R lies in $\mathfrak{U}(\mathscr{F})$ as well. So we are done with Case 1. In Case 2, D.Z. Djokovic proves that $x=R\left[\beta I+(1-\beta)E_{\{1,\ldots,n\}}\right]y$, where R is obtained as in Case 1. In our situation, this means R lies in $\mathfrak{U}(\mathscr{F})$ for some nested family \mathscr{F} of intervals. Note that $\mathscr{F}\cup\{\{1,\ldots,n\}\}$ is also a nested family of intervals. So the theorem holds in this case as well. \square

Theorem 2.2 gives us a representation of matrix R as a product of type (1.2), of t doubly stochastic matrices of simple structure, where t is the cardinality of \mathscr{F} . On the other hand, the only sets $F_i \in \mathscr{F}$ which are relevant in (1.2) are those having cardinality at least 2. A straightforward argument, left to the reader, shows that any maximal nested family of intervals of $\{1, \ldots, n\}$ has precisely n-1 elements of cardinality at least 2. So, n-1 is an upper bound to the number of relevant factors in R's factorization (1.2).

It is well known [10, p. 27] that if $x, y \in \mathfrak{D}_+(n)$ satisfy $x \leq_w y$, then x = Sy for some doubly sub-stochastic matrix S. In the following theorem we give a factorization for a special choice of S, in the spirit of Theorem 2.2.

We shall use the following notation: for each $p \in \{1, ..., n\}$, Δ_p is the $n \times n$ diagonal matrix

$$\Delta_p := \operatorname{Diag}(\underbrace{1,1,\ldots,1}_p,0,0,\ldots,0).$$

THEOREM 2.3. Let $x \in \mathfrak{D}_+(n)$ be a vector whose distinct coordinates are $\chi_1 > \cdots > \chi_s$. Suppose m_i is the number of times χ_i occurs in x. If $y \in \mathfrak{D}_+(n)$ satisfies $x \leq_w y$, then the following conditions hold:

(I) There exist real numbers $\theta_1, \ldots, \theta_s$ in the interval [0,1], a nested family \mathscr{F} on $\{1,\ldots,n\}$ and a matrix R in $\mathfrak{U}(\mathscr{F})$, such that x=DRy, where D is the diagonal matrix

$$D := \prod_{i=1}^{s} \left[\theta_i I + (1 - \theta_i) \Delta_{m_1 + \dots + m_i} \right]. \tag{2.1}$$

(II) The following entities exist: a positive integer p, real numbers $\sigma_1, \ldots, \sigma_p$ in the interval [0,1], nested families, $\mathscr{F}_1, \ldots, \mathscr{F}_p$, of intervals of $\{1,\ldots,n\}$, and matrices $R_1 \in \mathfrak{U}(\mathscr{F}_1), \ldots, R_p \in \mathfrak{U}(\mathscr{F}_p)$, such that $x = [D_p R_p \cdots D_2 R_2 D_1 R_1] y$, where

$$D_i := \sigma_i I + (1 - \sigma_i) \Delta_{n - m_s}$$
, for $i = 1, ..., s$. (2.2)

Proof. For each $z \in \mathbb{R}^n$ let $\Sigma(z) := z_1 + \cdots + z_n$. For each $t \in \mathbb{R}$ let $x(t) \in \mathfrak{D}(n)$ be the vector with *i*-th entry $\max\{x_i,t\}$. Clearly $x(t) \geq x$ for all t, with equality iff $t \leq x_n$. $\Sigma(x(t))$ is a continuous function, and it is strictly increasing with t, for $t \geq x_n$. As $x \leq_w y$, we have $\Sigma(x) = \Sigma(x(x_n)) \leq \Sigma(y) \leq \Sigma(x(y_1))$. So there is a

4 Eduardo M. Sá

unique $\tau \geqslant x_n$ such that $\Sigma(x(\tau)) = \Sigma(y)$. We prove

$$\sum_{i=1}^{k} [y_i - x(\tau)_i] \geqslant 0, \qquad (2.3)$$

for $k=1,\ldots,n-1$. If $\tau \geqslant x_1$, then $x(\tau)=(\tau,\ldots,\tau)$ and (2.3) is obvious. Now assume $\tau < x_1$, and let $v := \sup\{i : x_i > \tau\}$. Note that $1 \le v < n$. As $x_i(\tau) = x_i$ for $i \in \{1, \dots, v\}$, (2.3) is true for $k \in \{1, \dots, v\}$. So we are left with the case v < k < n.

$$\sum_{i=1}^{k} [y_i - x(\tau)_i] = \sum_{i=k+1}^{n} (\tau - y_i).$$
 (2.4)

On the other hand, as $x \leq_w y$ and $(y_i - \tau)_{i=1}^n$ in non-increasing, we have

$$0 = \Sigma(y) - \Sigma(x(\tau)) = \sum_{i=1}^{v} (y_i - x_i) + \sum_{i=v+1}^{n} (y_i - \tau)$$

$$\geqslant \sum_{i=v+1}^{n} (y_i - \tau) \geqslant \frac{n-v}{n-k} \sum_{i=k+1}^{n} (y_i - \tau). \tag{2.5}$$

So (2.4) is nonnegative. This proves (2.3). Therefore $x \leq x(\tau) \leq y$. By Theorem 2.2 we know that

$$x(\tau) = Ry\,, (2.6)$$

where $R \in \mathfrak{U}(\mathscr{F})$ for some nested family of intervals, \mathscr{F} . From now on we assume that x and y lie in $\mathfrak{D}_{+}(n)$.

Proof of (I). If $x = x(\tau)$, then (I) holds with D := I, i.e. with $\theta_i := 1$ for $i=1,\ldots,s$. Now assume $x\neq x(\tau)$. Let $u:=\min\{i:x_i<\tau\}$. Then define $\theta_i:=1$ for $i=1,\ldots,u-1,\,\theta_u:=\chi_u/\tau$ and $\theta_j:=\chi_j/\chi_{j-1}$ for $j=u+1,\ldots,s.$ We clearly have $x = Dx(\tau)$, for D as given in (2.1). So (I) holds.

Proof of (II). The proof is easy when s = 1, i.e. when all entries of x are equal. For, we define $p:=1, \sigma_1:=x_n/\tau$ if $\tau>0$ and $\sigma_1:=0$ if $\tau=0$ (note that in this case $x = x(\tau)$). Then put $R_1 := R$, the matrix of (2.6). With these definitions (II) holds. We now work out the case $s \ge 2$. For any $z \in \mathbb{R}^n$, let $\kappa(z)$ be the smallest integer greater than $[\Sigma(z) - \Sigma(x)]/(m_s \chi_{s-1})$. In particular

$$\kappa(z)m_s\chi_{s-1} \geqslant \Sigma(z) - \Sigma(x). \tag{2.7}$$

The proof goes by induction on $\kappa(y)$. Note that $\kappa(y) = \kappa(x(\tau))$. We have two cases. Case 1: when $m_s \tau \geqslant \Sigma(y) - \Sigma(x)$. Define p := 2,

$$\sigma_1 := \frac{m_s \tau - \Sigma(y) + \Sigma(x)}{m_s \tau},$$

5

 $\sigma_2 := 0$ and $R_1 := R$, the matrix of (2.6). Moreover, let D_i be as given in (2.2) and let $y' := D_1 x(\tau)$. As $\Sigma(y') = \Sigma(x(\tau)) - m_s \tau(1 - \sigma_1)$, some easy computations show $\Sigma(y') = \Sigma(x)$. This identity may be written as:

$$\sum_{i=1}^{n-m_s} x(\tau)_i + m_s \tau \sigma_1 = \sum_{i=1}^{n-m_s} x_i + m_s \tau.$$
 (2.8)

As $\sigma_1 \leq 1$, this implies, for each $k \in \{1, \ldots, m_s\}$:

$$\sum_{i=1}^{n-m_s} x(\tau)_i + k\tau \sigma_1 \geqslant \sum_{i=1}^{n-m_s} x_i + k\tau.$$
 (2.9)

Taking into account that $x(\tau) \ge x$, (2.8)-(2.9) show that $x \le y'$. So, for some nested family of intervals \mathscr{F}_2 , there exists $R_2 \in \mathfrak{U}(\mathscr{F}_2)$ such that $x = R_2 y'$. Therefore $x = [D_2 R_2 D_1 R_1] y$ and (II) holds. CASE 2: when $m_s \tau < \Sigma(y) - \Sigma(x)$. Here, we let $\sigma_1 := 0$ and D_1 be as in (2.2). The vector $y' := D_1 x(\tau)$ clearly satisfies $\Sigma(y') = \Sigma(y) - m_s \tau > \Sigma(x)$. It is now easy to show that

$$x \preccurlyeq_w y'. \tag{2.10}$$

On the other hand,

$$0 < \Sigma(x(\tau)) - \Sigma(x) - m_s \tau = \sum_{i=1}^s m_i \cdot \max\{0, \tau - \chi_i\} - m_s \tau$$

$$\leq n \cdot \max\{0, \tau - \chi_{s-1}\}.$$

Therefore $\tau > \chi_{s-1}$. Taking (2.7) into account we obtain:

$$\Sigma(y') - \Sigma(x) = \Sigma(y) - \Sigma(x) - m_s \tau$$

$$\leq \kappa(y) m_s \chi_{s-1} - m_s \tau < [\kappa(y) - 1] m_s \chi_{s-1}.$$

This yields $\kappa(y') \leq \kappa(y) - 1$, and this, taken together with (2.10), allows us to use induction: there exist nested families of intervals, $\mathscr{F}'_1, \ldots, \mathscr{F}'_q$, matrices $R'_1 \in \mathfrak{U}(\mathscr{F}'_1), \ldots, R'_q \in \mathfrak{U}\mathscr{F}'_q$ and diagonal matrices, D'_1, \ldots, D'_q , of the type of (2.2), such that $x = [D'_q R'_q \cdots D'_1 R'_1] y'$. Therefore

$$x = [D'_a R'_a \cdots D'_1 R'_1 D_1 R] y$$

and the proof is done. \square

Incidentally, in the course of proof, we showed the existence of a z such that $x \leq z \leq y$. This is a result of [6] (see also [10, p. 123] and references therein). However, we got a little bit more: that we may choose z of the form $x(\tau)$. We point out that our inductive proof of Theorem 2.3(II) also yields an upper bound for the number, p, of factors $D_i R_i$, namely $p \leq \kappa(y) + 1$. This gives an indication on the complexity of the procedure given by the proof.

6 Eduardo M. Sá

3. Extreme Points. There exist 2^{n-1} distinct interval partitions of $\{1, \ldots, n\}$, and so this is the cardinality of the set $\{E_{\mathscr{P}}\}$ of all matrices defined in (1.1). Theorem 1 of [9] says that $\{E_{\mathscr{P}}\}$ contains the set of all extreme points of \mathfrak{U}_n . Our aim now is to prove that any $E_{\mathscr{P}}$ is an extreme point of \mathfrak{U}_n .

LEMMA 3.1. Let $w \in \mathbb{R}^n$ be a vector satisfying $w_1 > \cdots > w_n$, R an element of \mathfrak{U}_n and \mathscr{G} an interval partition of $\{1,\ldots,n\}$. The identity $Rw = E_{\mathscr{G}}w$ implies $R = E_{\mathscr{G}}$.

Proof. By Theorem 1 of [9], R is a convex combination of the $E_{\mathscr{P}}$, for all partitions \mathscr{P} , i.e., $R = \sum \lambda_{\mathscr{P}} E_{\mathscr{P}}$, for some nonnegative coefficients $\lambda_{\mathscr{P}}$ which sum up 1. As $Rw = E_{\mathscr{G}}w$,

$$E_{\mathscr{G}}w = \sum \lambda_{\mathscr{D}}E_{\mathscr{D}}w. \tag{3.1}$$

The second proof of Theorem 2 of [9] shows that the 2^{n-1} vectors $E_{\mathscr{P}}w$ are pairwise distinct, and are the extreme points of $\{x \in \mathfrak{D}(n) : x \leq w\}$. Therefore (3.1) implies that all $\lambda_{\mathscr{P}}$ are 0, except $\lambda_{\mathscr{G}}$ that equals 1. Thus $R = E_{\mathscr{G}}$ as required. \square

Theorem 3.2. For any interval partition \mathscr{G} , $E_{\mathscr{G}}$ is an extreme point of \mathfrak{U}_n .

Proof. Pick any $E_{\mathscr{G}}$ and write it as a convex combination of the $E_{\mathscr{P}}$. Then an equation like (3.1) arises. The argument under (3.1) now proves that $E_{\mathscr{G}}$ is not a convex combination of the *other* generators $E_{\mathscr{P}}$ of \mathfrak{U}_n . This means $E_{\mathscr{G}}$ is an extreme point of \mathfrak{U}_n . \square

THEOREM 3.3. \mathfrak{U}_n is minimal among all sets \mathfrak{M} of $n \times n$ matrices satisfying the conditions: \mathfrak{M} is convex, and, if $x, y \in \mathfrak{D}(n)$ satisfy $x \leq y$, there exists $M \in \mathfrak{M}$ such that x = My.

Proof. Assume $\mathfrak{M} \subseteq \mathfrak{U}_n$ satisfies the given conditions. With w as in Lemma 3.1 we have, for any interval partition $\mathscr{P} \colon E_{\mathscr{P}} w \in \mathfrak{D}(n)$ and $E_{\mathscr{P}} w \preccurlyeq w$. So $E_{\mathscr{P}} w = M_{\mathscr{P}} w$, for some $M_{\mathscr{P}} \in \mathfrak{M}$. Lemma 3.1 implies $E_{\mathscr{P}} = M_{\mathscr{P}}$, and so $E_{\mathscr{P}} \in \mathfrak{M}$. Therefore $\mathfrak{M} = \mathfrak{U}_n$. \square

We now prove the convexity of the set $\mathfrak{U}(\mathscr{F})$, whose members are matrix products as (1.2), and determine the set of its extreme points.

THEOREM 3.4. Given a nested family \mathscr{F} of intervals of $\{1,\ldots,n\}$, the set $\mathfrak{U}(\mathscr{F})$ is convex, and $\{E_{\mathscr{X}}:\mathscr{X}\subseteq\mathscr{F}\}$ is the set of $\mathfrak{U}(\mathscr{F})$'s extreme points.

Proof. By Theorem 3.2 we only need to prove that $\mathfrak{U}(\mathscr{F})$ is the convex hull of the $E_{\mathscr{X}}$, for $\mathscr{X} \subseteq \mathscr{F}$. We argue by induction on $t = |\mathscr{F}|$. Let M_1, \ldots, M_r be the elements of \mathscr{F} which are maximal for inclusion. Without loss of generality, assume $M_1 = F_1, \ldots, M_r = F_r$. Define $\mathscr{F}_i := \{X \in \mathscr{F} : X \subseteq F_i\}$, for $i = 1, \ldots, r$. Clearly, $\mathscr{F} = \mathscr{F}_1 \cup \cdots \cup \mathscr{F}_r$, and this union is disjoint. In the first place suppose r = 1, that is $F_1 \supseteq [F_1 \cup \cdots \cup F_t]$. By induction, $\mathfrak{U}(\{F_2, \ldots, F_t\}) = \operatorname{conv}\{E_{\mathscr{X}} : \mathscr{X} \subseteq \{F_2, \ldots, F_t\}\}$.

Birkhoff Polytope

We therefore have

$$\mathfrak{U}(\mathscr{F}) = \bigcup_{\alpha \in [0,1]} \left[\alpha I + (1-\alpha)E_{F_1} \right] \cdot \mathfrak{U}(\{F_2, \dots, F_t\})$$

$$= \bigcup_{\alpha \in [0,1]} \left[\alpha \mathfrak{U}(\{F_2, \dots, F_t\}) + (1-\alpha)E_{F_1} \right]$$

$$= \operatorname{conv} \left(\{E_{F_1}\} \cup \{E_{\mathscr{X}} : \mathscr{X} \subseteq \{F_2, \dots, F_t\} \} \right)$$

$$= \operatorname{conv} \{E_{\mathscr{Y}} : \mathscr{Y} \subseteq \mathscr{F} \}.$$

This settles the case r=1. We now assume $r \geq 2$. By induction, $\mathfrak{U}(\mathscr{F}_i) = \operatorname{conv}\{E_{\mathscr{X}_i} : \mathscr{X}_i \subseteq \mathscr{F}_i\}$. The proof is finished in the following two lines:

$$\begin{split} \mathfrak{U}(\mathscr{F}) &= \bigoplus_{i=1}^r \mathfrak{U}(\mathscr{F}_i) = \bigoplus_{i=1}^r \mathrm{conv}\{E_{\mathscr{X}_i} : \mathscr{X}_i \subseteq \mathscr{F}_1\} \\ &= \mathrm{conv} \bigoplus_{i=1}^r \{E_{\mathscr{X}_i} : \mathscr{X}_i \subseteq \mathscr{F}_i\} = \mathrm{conv}\{E_{\mathscr{X}} : \mathscr{X} \subseteq \mathscr{F}\}. \quad \Box \end{split}$$

REFERENCES

- [1] G. Birkhoff. Tres Observaciones sobre el Algebra Lineal. Univ. Nac. de Tucumán Rev. Sér. A, 5:147–151, 1946.
- [2] R. Brualdi and P. Gibson. Convex Polyhedra of Doubly Stochastic Matrices, I. Applications of the Permanent Function. J. Combinatorial Theory Ser. A, 22:194–230, 1977.
- [3] ——. Convex Polyhedra of Doubly Stochastic Matrices, II. Graph of Ω_n . J. Combinatorial Theory Ser. B, 22:175–198, 1977.
- [4] ——. Convex Polyhedra of Doubly Stochastic Matrices, III. Affine and Combinatorial Properties of Ω_n . J. Combinatorial Theory Ser. A, 22:338–351, 1977.
- [5] ——. Convex Polyhedra of Doubly Stochastic Matrices, IV. Linear Algebra Appl., 15:153–172, 1976.
- [6] Ky Fan. Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators. Proc. Nat. Acad. Sci. USA, 37:760–766, 1951.
- [7] E.A. Guillemin. On the Analysis and Synthesis of Single-Element-Kind Networks. IRE Trans., vol. CT-7:303-312, 1960.
- [8] G. Hardy, F. Littlewood, and G. Pólya. *Inequalities*. Cambridge University Press, London,
- [9] A.F. Hoffman. A Special Class of Doubly Stochastic Matrices. Aequationes Math., 2:319–326, 1969.
- [10] A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications. Academic Press. New York, 1979.
- [11] L. Weinberg. A Survey of Linear Graphs: Fundamentals and Applications to Network Theory. Matrix Tensor Quart., 14:81–89 and 14:103–115, 1963/64.

7