SOME SUBPOLYTOPES OF THE BIRKHOFF POLYTOPE*

EDUARDO MARQUES DE SÁ ${ }^{\dagger}$

Abstract

Some special subsets of the set of uniformly tapered doubly stochastic matrices are considered. It is proved that each such subset is a convex polytope and its extreme points are determined. A minimality result for the whole set of uniformly tapered doubly stochastic matrices is also given. It is well known that if x and y are nonnegative vectors of \mathbb{R}^{n} and x is weakly majorized by y, there exists a doubly substochastic matrix S such that $x=S y$. A special choice for such S is exhibited, as a product of doubly stochastic and diagonal substochastic matrices of a particularly simple structure.

Key words. Doubly-stochastic matrices, Inequalities, Polytopes, Majorization.

AMS subject classifications. 15A39, 52B11.

1. Introduction. A square, nonnegative matrix with row and column sums equal to 1 is called doubly stochastic. There is an extensive literature on Ω_{n}, the set of doubly stochastic matrices of order n. The name Birkhoff polytope given to Ω_{n} comes from a famous theorem of G. Birkhoff [1] who showed that Ω_{n} is a polytope whose vertices are the $n \times n$ permutation matrices.

For any interval F of $\{1, \ldots, n\}$, of cardinality q, i.e., a set of the form $F=$ $\{r+1, \ldots, r+q\}$ (for some $r, 0 \leqslant r<n$) let E_{F} be the $n \times n$ matrix

$$
E_{F}:=I_{r} \oplus J_{q} \oplus I_{n-r-q},
$$

where J_{q} is the $q \times q$ matrix with all entries $=1 / q$. An interval partition of $\{1, \ldots, n\}$, is a partition $\mathscr{P}=\left\{P_{1}, \ldots, P_{s}\right\}$ of $\{1, \ldots, n\}$ into disjoint, nonempty intervals P_{i}. For such \mathscr{P}, we let

$$
\begin{equation*}
E_{\mathscr{P}}:=E_{P_{1}} E_{P_{2}} \cdots E_{P_{s}} . \tag{1.1}
\end{equation*}
$$

The set \mathfrak{U}_{n} of the so-called uniformly tapered doubly stochastic matrices was introduced in [7, 11] by means of a set of linear inequalities. Theorem 1 of [9] asserts that \mathfrak{U}_{n} is the convex hull of all matrices $E_{\mathscr{P}}$. We shall prove that all $E_{\mathscr{P}}$ are vertices of \mathfrak{U}_{n}, and settle a minimality property of \mathfrak{U}_{n}. Note that $E_{\mathscr{P}}$ is the barycenter of the face of Ω_{n} consisting of all doubly stochastic matrices whose (i, j)-entry is 0 if the (i, j)-entry of $E_{\mathscr{P}}$ is 0 . The facial structure of Ω_{n} has been thoroughly studied in $[2,3,4,5]$, however, the sub-polytopes of Ω_{n} we shall consider are not faces of Ω_{n}.

A nested family of intervals of $\{1, \ldots, n\}$ is a set $\mathscr{F}=\left\{F_{1}, \ldots, F_{t}\right\}$ of intervals of $\{1, \ldots, n\}$, such that any two intervals in the family either have an empty intersection,

[^0]or one of them is contained in the other. Note that, in these conditions, the matrices $E_{F_{1}}, \ldots, E_{F_{t}}$ commute. We define $\mathfrak{U}(\mathscr{F})$ as the set of all $n \times n$ matrices of the form
\[

$$
\begin{equation*}
\prod_{i=1}^{t}\left[\alpha_{i} I+\left(1-\alpha_{i}\right) E_{F_{i}}\right] \tag{1.2}
\end{equation*}
$$

\]

where $\alpha_{1}, \ldots, \alpha_{t}$ run over $[0,1]$, independently of each other. We shall prove that $\mathfrak{U}(\mathscr{F})$ is a subpolytope of \mathfrak{U}_{n}, and determine its vertices.

We denote by $\mathfrak{D}(n)$ the set of all $x \in \mathbb{R}^{n}$, such that $x_{1} \geqslant \cdots \geqslant x_{n}$, and $\mathfrak{D}_{+}(n)$ is the set of all nonnegative vectors of $\mathfrak{D}(n)$. We adopt the following majorization symbols: for $x, y \in \mathbb{R}^{n}$, we write $x \preccurlyeq w y$ whenever

$$
\begin{equation*}
x_{1}^{\prime}+\cdots+x_{k}^{\prime} \leqslant y_{1}^{\prime}+\cdots+y_{k}^{\prime}, \quad \text { for all } k \in\{1, \ldots, n\} \tag{1.3}
\end{equation*}
$$

where $z_{1}^{\prime}, \ldots, z_{k}^{\prime}$ denotes the non-increasing rearrangement of $z \in \mathbb{R}^{n}$; and we write $x \preccurlyeq y$ if (1.3) holds with equality for $k=n$. In [9], the reader may find the following refinement of a well-known theorem of Hardy, Littlewood and Pólya [8]: if $x, y \in \mathfrak{D}(n)$ satisfy $x \preccurlyeq y$, there exists $R \in \mathfrak{U}_{n}$ such that $x=R y$, together with three proofs of this result. In section 2, we show that the third of these proofs, due to D.Z. Djokovic (see [9, p. 325]) may be conveniently adapted to give a little bit more than the referred refinement. Then we extend that result to the case of weak majorization.
2. Nested Families and Majorization. Proposition 2.1. For any \mathscr{F}, a nested family of intervals of $\{1, \ldots, n\}, \mathfrak{U}(\mathscr{F})$ is a subset of \mathfrak{U}_{n}.

Proof. Let us expand the polynomial

$$
f\left(u_{1}, \ldots, u_{t}\right):=\prod_{i=1}^{t}\left[\alpha_{i}+\left(1-\alpha_{i}\right) u_{i}\right]
$$

where the α_{i} are real numbers and the u_{i} are commutative variables, as a sum of monomials. The sum of all coefficients of f 's monomials is $f(1, \ldots, 1)$, which obviously equals 1. So (1.2) is a convex combination of the products $E_{X_{1}} \cdots E_{X_{s}}$, for $0 \leqslant s \leqslant t$ and $X_{1}, \ldots, X_{s} \in \mathscr{F}$. Note that, if $X \supseteq Y$, then $E_{X} E_{Y}=E_{Y} E_{X}=E_{X}$. Thus we only have to consider products $E_{X_{1}} \cdots E_{X_{s}}$ for pairwise disjoint sets X_{1}, \ldots, X_{s}. Therefore (1.2) lies in \mathfrak{U}_{n}, and so $\mathfrak{U}(\mathscr{F}) \subseteq \mathfrak{U}_{n}$. $\mathbf{\square}$

The proof of the following theorem is essentially due to D. Djokovic [9, p. 325].
Theorem 2.2. Let $x, y \in \mathfrak{D}(n)$ satisfy $x \preccurlyeq y$. There exists a nested family of intervals of $\{1, \ldots, n\}$, and a matrix $R \in \mathfrak{U}(\mathscr{F})$, such that $x=R y$.

Proof. We consider the two cases of D.Z. Djokovic's proof [9, p. 325]. In Case 1, it is assumed there is $k<n$ such that $x_{1}+\cdots+x_{k}=y_{1}+\cdots+y_{k}$. By induction, there exist a nested family \mathscr{F}^{\prime} of intervals of $\{1, \ldots, k\}$, a nested family $\mathscr{F}^{\prime \prime}$ of intervals of $\{1, \ldots, n-k\}$, and there exist $R^{\prime} \in \mathfrak{U}\left(\mathscr{F}^{\prime}\right)$ and $R^{\prime \prime} \in \mathfrak{U}\left(\mathscr{F}^{\prime \prime}\right)$ such that $x=R y$, with $R:=R^{\prime} \oplus R^{\prime \prime}$. Define

$$
\mathscr{F}:=\mathscr{F}^{\prime} \cup\left(\mathscr{F}^{\prime \prime}+k\right),
$$

where $\mathscr{F}^{\prime \prime}+k$ is the family of all sets $\{i+k: i \in X\}$, for X running over $\mathscr{F}^{\prime \prime}$. Clearly, \mathscr{F} is a nested family of intervals of $\{1, \ldots, n\}$. On the other hand, it is also clear that $R^{\prime} \oplus I_{n-k}$ and $I_{k} \oplus R^{\prime \prime}$ both lie in $\mathfrak{U}(\mathscr{F})$; therefore, R lies in $\mathfrak{U}(\mathscr{F})$ as well. So we are done with Case 1. In Case 2, D.Z. Djokovic proves that $x=R\left[\beta I+(1-\beta) E_{\{1, \ldots, n\}}\right] y$, where R is obtained as in Case 1. In our situation, this means R lies in $\mathfrak{U}(\mathscr{F})$ for some nested family \mathscr{F} of intervals. Note that $\mathscr{F} \cup\{\{1, \ldots, n\}\}$ is also a nested family of intervals. So the theorem holds in this case as well.

Theorem 2.2 gives us a representation of matrix R as a product of type (1.2), of t doubly stochastic matrices of simple structure, where t is the cardinality of \mathscr{F}. On the other hand, the only sets $F_{i} \in \mathscr{F}$ which are relevant in (1.2) are those having cardinality at least 2. A straightforward argument, left to the reader, shows that any maximal nested family of intervals of $\{1, \ldots, n\}$ has precisely $n-1$ elements of cardinality at least 2 . So, $n-1$ is an upper bound to the number of relevant factors in R 's factorization (1.2).

It is well known [10, p. 27] that if $x, y \in \mathfrak{D}_{+}(n)$ satisfy $x \preccurlyeq{ }_{w} y$, then $x=S y$ for some doubly sub-stochastic matrix S. In the following theorem we give a factorization for a special choice of S, in the spirit of Theorem 2.2.

We shall use the following notation: for each $p \in\{1, \ldots, n\}, \Delta_{p}$ is the $n \times n$ diagonal matrix

$$
\Delta_{p}:=\operatorname{Diag}(\underbrace{1,1, \ldots, 1}_{p}, 0,0, \ldots, 0) .
$$

Theorem 2.3. Let $x \in \mathfrak{D}_{+}(n)$ be a vector whose distinct coordinates are $\chi_{1}>$ $\cdots>\chi_{s}$. Suppose m_{i} is the number of times χ_{i} occurs in x. If $y \in \mathfrak{D}_{+}(n)$ satisfies $x \preccurlyeq_{w} y$, then the following conditions hold:
(I) There exist real numbers $\theta_{1}, \ldots, \theta_{s}$ in the interval $[0,1]$, a nested family \mathscr{F} on $\{1, \ldots, n\}$ and a matrix R in $\mathfrak{U}(\mathscr{F})$, such that $x=D R y$, where D is the diagonal matrix

$$
\begin{equation*}
D:=\prod_{i=1}^{s}\left[\theta_{i} I+\left(1-\theta_{i}\right) \Delta_{m_{1}+\cdots+m_{i}}\right] \tag{2.1}
\end{equation*}
$$

(II) The following entities exist: a positive integer p, real numbers $\sigma_{1}, \ldots, \sigma_{p}$ in the interval $[0,1]$, nested families, $\mathscr{F}_{1}, \ldots, \mathscr{F}_{p}$, of intervals of $\{1, \ldots, n\}$, and matrices $R_{1} \in \mathfrak{U}\left(\mathscr{F}_{1}\right), \ldots, R_{p} \in \mathfrak{U}\left(\mathscr{F}_{p}\right)$, such that $x=\left[D_{p} R_{p} \cdots D_{2} R_{2} D_{1} R_{1}\right] y$, where

$$
\begin{equation*}
D_{i}:=\sigma_{i} I+\left(1-\sigma_{i}\right) \Delta_{n-m_{s}}, \text { for } i=1, \ldots, s \tag{2.2}
\end{equation*}
$$

Proof. For each $z \in \mathbb{R}^{n}$ let $\Sigma(z):=z_{1}+\cdots+z_{n}$. For each $t \in \mathbb{R}$ let $x(t) \in \mathfrak{D}(n)$ be the vector with i-th entry $\max \left\{x_{i}, t\right\}$. Clearly $x(t) \geqslant x$ for all t, with equality iff $t \leqslant x_{n}$. $\Sigma(x(t))$ is a continuous function, and it is strictly increasing with t, for $t \geqslant x_{n}$. As $x \preccurlyeq{ }_{w} y$, we have $\Sigma(x)=\Sigma\left(x\left(x_{n}\right)\right) \leqslant \Sigma(y) \leqslant \Sigma\left(x\left(y_{1}\right)\right)$. So there is a
unique $\tau \geqslant x_{n}$ such that $\Sigma(x(\tau))=\Sigma(y)$. We prove

$$
\begin{equation*}
\sum_{i=1}^{k}\left[y_{i}-x(\tau)_{i}\right] \geqslant 0 \tag{2.3}
\end{equation*}
$$

for $k=1, \ldots, n-1$. If $\tau \geqslant x_{1}$, then $x(\tau)=(\tau, \ldots, \tau)$ and (2.3) is obvious. Now assume $\tau<x_{1}$, and let $v:=\sup \left\{i: x_{i}>\tau\right\}$. Note that $1 \leqslant v<n$. As $x_{i}(\tau)=x_{i}$ for $i \in\{1, \ldots, v\},(2.3)$ is true for $k \in\{1, \ldots, v\}$. So we are left with the case $v<k<n$. Clearly

$$
\begin{equation*}
\sum_{i=1}^{k}\left[y_{i}-x(\tau)_{i}\right]=\sum_{i=k+1}^{n}\left(\tau-y_{i}\right) \tag{2.4}
\end{equation*}
$$

On the other hand, as $x \preccurlyeq w y$ and $\left(y_{i}-\tau\right)_{i=1}^{n}$ in non-increasing, we have

$$
\begin{align*}
0=\Sigma(y)-\Sigma(x(\tau)) & =\sum_{i=1}^{v}\left(y_{i}-x_{i}\right)+\sum_{i=v+1}^{n}\left(y_{i}-\tau\right) \\
& \geqslant \sum_{i=v+1}^{n}\left(y_{i}-\tau\right) \geqslant \frac{n-v}{n-k} \sum_{i=k+1}^{n}\left(y_{i}-\tau\right) \tag{2.5}
\end{align*}
$$

So (2.4) is nonnegative. This proves (2.3). Therefore $x \leqslant x(\tau) \preccurlyeq y$. By Theorem 2.2 we know that

$$
\begin{equation*}
x(\tau)=R y \tag{2.6}
\end{equation*}
$$

where $R \in \mathfrak{U}(\mathscr{F})$ for some nested family of intervals, \mathscr{F}. From now on we assume that x and y lie in $\mathfrak{D}_{+}(n)$.

Proof of (I). If $x=x(\tau)$, then (I) holds with $D:=I$, i.e. with $\theta_{i}:=1$ for $i=1, \ldots, s$. Now assume $x \neq x(\tau)$. Let $u:=\min \left\{i: x_{i}<\tau\right\}$. Then define $\theta_{i}:=1$ for $i=1, \ldots, u-1, \theta_{u}:=\chi_{u} / \tau$ and $\theta_{j}:=\chi_{j} / \chi_{j-1}$ for $j=u+1, \ldots, s$. We clearly have $x=D x(\tau)$, for D as given in (2.1). So (I) holds.

Proof of (II). The proof is easy when $s=1$, i.e. when all entries of x are equal. For, we define $p:=1, \sigma_{1}:=x_{n} / \tau$ if $\tau>0$ and $\sigma_{1}:=0$ if $\tau=0$ (note that in this case $x=x(\tau))$. Then put $R_{1}:=R$, the matrix of (2.6). With these definitions (II) holds. We now work out the case $s \geqslant 2$. For any $z \in \mathbb{R}^{n}$, let $\kappa(z)$ be the smallest integer greater than $[\Sigma(z)-\Sigma(x)] /\left(m_{s} \chi_{s-1}\right)$. In particular

$$
\begin{equation*}
\kappa(z) m_{s} \chi_{s-1} \geqslant \Sigma(z)-\Sigma(x) \tag{2.7}
\end{equation*}
$$

The proof goes by induction on $\kappa(y)$. Note that $\kappa(y)=\kappa(x(\tau))$. We have two cases.
CASE 1: when $m_{s} \tau \geqslant \Sigma(y)-\Sigma(x)$. Define $p:=2$,

$$
\sigma_{1}:=\frac{m_{s} \tau-\Sigma(y)+\Sigma(x)}{m_{s} \tau}
$$

$\sigma_{2}:=0$ and $R_{1}:=R$, the matrix of (2.6). Moreover, let D_{i} be as given in (2.2) and let $y^{\prime}:=D_{1} x(\tau)$. As $\Sigma\left(y^{\prime}\right)=\Sigma(x(\tau))-m_{s} \tau\left(1-\sigma_{1}\right)$, some easy computations show $\Sigma\left(y^{\prime}\right)=\Sigma(x)$. This identity may be written as:

$$
\begin{equation*}
\sum_{i=1}^{n-m_{s}} x(\tau)_{i}+m_{s} \tau \sigma_{1}=\sum_{i=1}^{n-m_{s}} x_{i}+m_{s} \tau \tag{2.8}
\end{equation*}
$$

As $\sigma_{1} \leqslant 1$, this implies, for each $k \in\left\{1, \ldots, m_{s}\right\}$:

$$
\begin{equation*}
\sum_{i=1}^{n-m_{s}} x(\tau)_{i}+k \tau \sigma_{1} \geqslant \sum_{i=1}^{n-m_{s}} x_{i}+k \tau \tag{2.9}
\end{equation*}
$$

Taking into account that $x(\tau) \geqslant x,(2.8)-(2.9)$ show that $x \preccurlyeq y^{\prime}$. So, for some nested family of intervals \mathscr{F}_{2}, there exists $R_{2} \in \mathfrak{U}\left(\mathscr{F}_{2}\right)$ such that $x=R_{2} y^{\prime}$. Therefore $x=\left[D_{2} R_{2} D_{1} R_{1}\right] y$ and (II) holds. CASE 2: when $m_{s} \tau<\Sigma(y)-\Sigma(x)$. Here, we let $\sigma_{1}:=0$ and D_{1} be as in (2.2). The vector $y^{\prime}:=D_{1} x(\tau)$ clearly satisfies $\Sigma\left(y^{\prime}\right)=\Sigma(y)-m_{s} \tau>\Sigma(x)$. It is now easy to show that

$$
\begin{equation*}
x \preccurlyeq w y^{\prime} . \tag{2.10}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
0<\Sigma(x(\tau))-\Sigma(x)-m_{s} \tau & =\sum_{i=1}^{s} m_{i} \cdot \max \left\{0, \tau-\chi_{i}\right\}-m_{s} \tau \\
& \leqslant n \cdot \max \left\{0, \tau-\chi_{s-1}\right\}
\end{aligned}
$$

Therefore $\tau>\chi_{s-1}$. Taking (2.7) into account we obtain:

$$
\begin{aligned}
\Sigma\left(y^{\prime}\right)-\Sigma(x) & =\Sigma(y)-\Sigma(x)-m_{s} \tau \\
& \leqslant \kappa(y) m_{s} \chi_{s-1}-m_{s} \tau<[\kappa(y)-1] m_{s} \chi_{s-1}
\end{aligned}
$$

This yields $\kappa\left(y^{\prime}\right) \leqslant \kappa(y)-1$, and this, taken together with (2.10), allows us to use induction: there exist nested families of intervals, $\mathscr{F}_{1}^{\prime}, \ldots, \mathscr{F}_{q}^{\prime}$, matrices $R_{1}^{\prime} \in$ $\mathfrak{U}\left(\mathscr{F}_{1}^{\prime}\right), \ldots, R_{q}^{\prime} \in \mathfrak{U} \mathscr{F}_{q}^{\prime}$ and diagonal matrices, $D_{1}^{\prime}, \ldots, D_{q}^{\prime}$, of the type of (2.2), such that $x=\left[D_{q}^{\prime} R_{q}^{\prime} \cdots D_{1}^{\prime} R_{1}^{\prime}\right] y^{\prime}$. Therefore

$$
x=\left[D_{q}^{\prime} R_{q}^{\prime} \cdots D_{1}^{\prime} R_{1}^{\prime} D_{1} R\right] y
$$

and the proof is done.
Incidentally, in the course of proof, we showed the existence of a z such that $x \leqslant z \preccurlyeq y$. This is a result of [6] (see also [10, p. 123] and references therein). However, we got a little bit more: that we may choose z of the form $x(\tau)$. We point out that our inductive proof of Theorem 2.3(II) also yields an upper bound for the number, p, of factors $D_{i} R_{i}$, namely $p \leqslant \kappa(y)+1$. This gives an indication on the complexity of the procedure given by the proof.
3. Extreme Points. There exist 2^{n-1} distinct interval partitions of $\{1, \ldots, n\}$, and so this is the cardinality of the set $\left\{E_{\mathscr{P}}\right\}$ of all matrices defined in (1.1). Theorem 1 of [9] says that $\left\{E_{\mathscr{P}}\right\}$ contains the set of all extreme points of \mathfrak{U}_{n}. Our aim now is to prove that any $E_{\mathscr{P}}$ is an extreme point of \mathfrak{U}_{n}.

Lemma 3.1. Let $w \in \mathbb{R}^{n}$ be a vector satisfying $w_{1}>\cdots>w_{n}, R$ an element of \mathfrak{U}_{n} and \mathscr{G} an interval partition of $\{1, \ldots, n\}$. The identity $R w=E_{\mathscr{G}} w$ implies $R=E_{\mathscr{G}}$.

Proof. By Theorem 1 of [9], R is a convex combination of the $E_{\mathscr{P}}$, for all partitions \mathscr{P}, i.e., $R=\sum \lambda_{\mathscr{P}} E_{\mathscr{P}}$, for some nonnegative coefficients $\lambda_{\mathscr{P}}$ which sum up 1. As $R w=E_{\mathscr{G}} w$,

$$
\begin{equation*}
E_{\mathscr{G}} w=\sum \lambda_{\mathscr{P}} E_{\mathscr{P}} w . \tag{3.1}
\end{equation*}
$$

The second proof of Theorem 2 of [9] shows that the 2^{n-1} vectors $E_{\mathscr{P}} w$ are pairwise distinct, and are the extreme points of $\{x \in \mathfrak{D}(n): x \preccurlyeq w\}$. Therefore (3.1) implies that all $\lambda_{\mathscr{P}}$ are 0 , except $\lambda_{\mathscr{G}}$ that equals 1 . Thus $R=E_{\mathscr{G}}$ as required.

Theorem 3.2. For any interval partition \mathscr{G}, Eg is an extreme point of \mathfrak{U}_{n}.
Proof. Pick any $E_{\mathscr{G}}$ and write it as a convex combination of the $E_{\mathscr{P}}$. Then an equation like (3.1) arises. The argument under (3.1) now proves that $E_{\mathscr{G}}$ is not a convex combination of the other generators $E_{\mathscr{P}}$ of \mathfrak{U}_{n}. This means $E_{\mathscr{G}}$ is an extreme point of \mathfrak{U}_{n}. $\mathrm{\square}$

THEOREM 3.3. \mathfrak{U}_{n} is minimal among all sets \mathfrak{M} of $n \times n$ matrices satisfying the conditions: \mathfrak{M} is convex, and, if $x, y \in \mathfrak{D}(n)$ satisfy $x \preccurlyeq y$, there exists $M \in \mathfrak{M}$ such that $x=M y$.

Proof. Assume $\mathfrak{M} \subseteq \mathfrak{U}_{n}$ satisfies the given conditions. With w as in Lemma 3.1 we have, for any interval partition $\mathscr{P}: E_{\mathscr{P}} w \in \mathfrak{D}(n)$ and $E_{\mathscr{P}} w \preccurlyeq w$. So $E_{\mathscr{P}} w=M_{\mathscr{P}} w$, for some $M_{\mathscr{P}} \in \mathfrak{M}$. Lemma 3.1 implies $E_{\mathscr{P}}=M_{\mathscr{P}}$, and so $E_{\mathscr{P}} \in \mathfrak{M}$. Therefore $\mathfrak{M}=\mathfrak{U}_{n}$.

We now prove the convexity of the set $\mathfrak{U}(\mathscr{F})$, whose members are matrix products as (1.2), and determine the set of its extreme points.

Theorem 3.4. Given a nested family \mathscr{F} of intervals of $\{1, \ldots, n\}$, the set $\mathfrak{U}(\mathscr{F})$ is convex, and $\left\{E_{\mathscr{X}}: \mathscr{X} \subseteq \mathscr{F}\right\}$ is the set of $\mathfrak{U}(\mathscr{F})$'s extreme points.

Proof. By Theorem 3.2 we only need to prove that $\mathfrak{U}(\mathscr{F})$ is the convex hull of the $E_{\mathscr{X}}$, for $\mathscr{X} \subseteq \mathscr{F}$. We argue by induction on $t=|\mathscr{F}|$. Let M_{1}, \ldots, M_{r} be the elements of \mathscr{F} which are maximal for inclusion. Without loss of generality, assume $M_{1}=F_{1}, \ldots, M_{r}=F_{r}$. Define $\mathscr{F}_{i}:=\left\{X \in \mathscr{F}: X \subseteq F_{i}\right\}$, for $i=1, \ldots, r$. Clearly, $\mathscr{F}=\mathscr{F}_{1} \cup \cdots \cup \mathscr{F}_{r}$, and this union is disjoint. In the first place suppose $r=1$, that is $F_{1} \supseteq\left[F_{1} \cup \cdots \cup F_{t}\right]$. By induction, $\mathfrak{U}\left(\left\{F_{2}, \ldots, F_{t}\right\}\right)=\operatorname{conv}\left\{E_{\mathscr{X}}: \mathscr{X} \subseteq\left\{F_{2}, \ldots, F_{t}\right\}\right\}$.

We therefore have

$$
\begin{aligned}
\mathfrak{U}(\mathscr{F}) & =\bigcup_{\alpha \in[0,1]}\left[\alpha I+(1-\alpha) E_{F_{1}}\right] \cdot \mathfrak{U}\left(\left\{F_{2}, \ldots, F_{t}\right\}\right) \\
& =\bigcup_{\alpha \in[0,1]}\left[\alpha \mathfrak{U}\left(\left\{F_{2}, \ldots, F_{t}\right\}\right)+(1-\alpha) E_{F_{1}}\right] \\
& =\operatorname{conv}\left(\left\{E_{F_{1}}\right\} \cup\left\{E_{\mathscr{X}}: \mathscr{X} \subseteq\left\{F_{2}, \ldots, F_{t}\right\}\right\}\right) \\
& =\operatorname{conv}\left\{E_{\mathscr{Y}}: \mathscr{Y} \subseteq \mathscr{F}\right\} .
\end{aligned}
$$

This settles the case $r=1$. We now assume $r \geqslant 2$. By induction, $\mathfrak{U}\left(\mathscr{F}_{i}\right)=\operatorname{conv}\left\{E_{\mathscr{X}_{i}}\right.$: $\left.\mathscr{X}_{i} \subseteq \mathscr{F}_{i}\right\}$. The proof is finished in the following two lines:

$$
\begin{aligned}
\mathfrak{U}(\mathscr{F}) & =\bigoplus_{i=1}^{r} \mathfrak{U}\left(\mathscr{F}_{i}\right)=\bigoplus_{i=1}^{r} \operatorname{conv}\left\{E_{\mathscr{X}_{i}}: \mathscr{X}_{i} \subseteq \mathscr{F}_{1}\right\} \\
& =\operatorname{conv} \bigoplus_{i=1}^{r}\left\{E_{\mathscr{X}_{i}}: \mathscr{X}_{i} \subseteq \mathscr{F}_{i}\right\}=\operatorname{conv}\left\{E_{\mathscr{X}}: \mathscr{X} \subseteq \mathscr{F}\right\}
\end{aligned}
$$

REFERENCES

[1] G. Birkhoff. Tres Observaciones sobre el Algebra Lineal. Univ. Nac. de Tucumán Rev. Sér. A, 5:147-151, 1946.
[2] R. Brualdi and P. Gibson. Convex Polyhedra of Doubly Stochastic Matrices, I. Applications of the Permanent Function. J. Combinatorial Theory Ser. A, 22:194-230, 1977.
[3] ——. Convex Polyhedra of Doubly Stochastic Matrices, II. Graph of Ω_{n}. J. Combinatorial Theory Ser. B, 22:175-198, 1977.
[4] Convex Polyhedra of Doubly Stochastic Matrices, III. Affine and Combinatorial Properties of Ω_{n}. J. Combinatorial Theory Ser. A, 22:338-351, 1977.
[5] _. Convex Polyhedra of Doubly Stochastic Matrices, IV. Linear Algebra Appl., 15:153172, 1976.
[6] Ky Fan. Maximum Properties and Inequalities for the Eigenvalues of Completely Continuous Operators. Proc. Nat. Acad. Sci. USA, 37:760-766, 1951.
[7] E.A. Guillemin. On the Analysis and Synthesis of Single-Element-Kind Networks. IRE Trans., vol. CT-7:303-312, 1960.
[8] G. Hardy, F. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, London, 1952.
[9] A.F. Hoffman. A Special Class of Doubly Stochastic Matrices. Aequationes Math., 2:319-326, 1969.
[10] A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications. Academic Press, New York, 1979.
[11] L. Weinberg. A Survey of Linear Graphs: Fundamentals and Applications to Network Theory. Matrix Tensor Quart., 14:81-89 and 14:103-115, 1963/64.

[^0]: * Received by the editors 22 December 2005. Accepted for publication 4 January 2006. Handling Editor: João Filipe Queiró.
 ${ }^{\dagger}$ Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal (emsa@mat.uc.pt). Member of the research unit Centro de Matemática da Universidade de Coimbra/Fundação para a Ciência e a Tecnologia (CMUC/FCT).

