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MATRICES AND GRAPHS IN EUCLIDEAN GEOMETRY∗

MIROSLAV FIEDLER†

Abstract. Some examples of the interplay between matrix theory, graph theory and n-dimensio-
nal Euclidean geometry are presented. In particular, qualitative properties of interior angles in
simplices are completely characterized. For right simplices, a relationship between the tree of legs
and the circumscribed Steiner ellipsoids is proved.
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1. Gram matrices. As is well known, the Gram matrix G(S) of an ordered
system S = (a1, . . . , am) of vectors in a Euclidean n-space En is the matrix G(S) =
[〈ai, aj〉], where 〈u, v〉 means the inner product of the vectors u and v.

Gram matrices form a natural link between positive semidefinite matrices and
systems of vectors in a Euclidean space because of the following:

Theorem 1.1. Every positive semidefinite matrix is a Gram matrix of some
system of vectors S in some Euclidean space. The rank of the matrix G(S) is equal
to the dimension of the smallest Euclidean space containing S.

In addition, every linear relationship among the vectors in S is reflected in the
same linear relationship among the rows of G(S), and conversely.

Let us present an example.
Theorem 1.2. Let A = [aij ] be a positive semidefinite matrix with row sums

zero. Then

2 max
i

√
aii ≤

∑
i

√
aii.

Proof. Let n be the order of A. By Theorem 1.1, there exist in some Euclidean
space (its dimension is at least the rank of A) vectors u1, . . . , un, such that 〈ui, uj〉 =
aij for i, j = 1, . . . , n. Since the row sums of A are zero, the vectors ui satisfy∑

i ui = 0.
Thus for every k ∈ {1, . . . , n}, the lengths satisfy

|uk| = |
∑
j �=k

uj |

≤
∑
j �=k

|uj|
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so that

2|uk| ≤
∑

j

|uj|.

Therefore,

2 max
i

|ui| ≤
∑

i

|ui|.

Since aii = |ui|2, the result follows.
The following is well known:
Theorem 1.3. If A = [aij ] and B = [bij ] are positive definite matrices of the

same oder, then their Hadamard product A ◦B = [aijbij ] is also positive definite.
If A and B are positive semidefinite, then A ◦B is positive semidefinite as well.
No direct geometric consequences of this result are known. We intend to mention

a special one.
If A is a positive definite matrix, then, by Theorem 1.3, A ◦A−1 is also positive

definite. One can even prove:
Theorem 1.4. ([4]) If A is positive definite, then A◦A−1−I is positive semidef-

inite and its row sums are equal to zero. If A = [aij ], A−1 = [αij ], then

aiiαii ≥ 1 for all i(1.1)

and

2 max
i

√
aiiαii − 1 ≤

∑
i

√
aiiαii − 1.(1.2)

Proof. Since
[

A I
I A−1

]

is positive semidefinite (of rank n if A has order n), the same holds for
[

A−1 I
I A

]
.

Therefore, their Hadamard product
[

A ◦A−1 I
I A ◦A−1

]

is also positive semidefinite which implies, after a little thought, that all eigenvalues
of A◦A−1 are at least one and A◦A−1−I is positive semidefinite. It is easily checked
that for any nonsingular matrix A, (AT ◦A−1)e = e, where e is the column vector of
all ones. This concludes the proof of the first part. The second part follows then by
applying Theorem 1.2.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 14, pp. 51-58, September 2005

www.math.technion.ac.il/iic/ela



ELA

Euclidean Geometry 53

Observe that both conditions in Theorem 1.4 involve the diagonal entries of both
matrices A and A−1 only. It was shown ([5]) that the best possible condition between
the diagonal entries of A and A−1 is (in addition to (1.1))

2 max
i

(
√
aiiαii − 1) ≤

∑
i

(
√
aiiαii − 1).

This last result has interesting geometrical consequences:
Theorem 1.5. ([5]) Let the vectors u1, . . . un, v1, . . . , vn form a pair of biorthogo-

nal bases (i.e., the inner product of ui and vj is the Kronecker delta δij) in a Euclidean
n-space En. Then for the lengths,

|ui||vi| ≥ 1, i = 1, . . . , n,

2 max
i

(|ui||vi| − 1) ≤
∑

i

(|ui||vi| − 1).

Conversely, if nonnegative numbers α1, . . . , αn, β1, . . . , βn satisfy

αiβi ≥ 1, i = 1, . . . , n,

2 max
i

(αiβi − 1) ≤
∑

i

(αiβi − 1),

then there exists in En a pair of biorthogonal bases ui, vj, such that

|ui| = αi, |vi| = βi, i = 1, . . . , n.

We recall here somewhat modified conditions from [5] when equality is attained.
Theorem 1.6. Let A = [aij ] be an n × n positive definite matrix, n ≥ 2, let

A−1 = [αij ]. Then the following are equivalent:
1.

√
annαnn − 1 =

n−1∑
i=1

(
√
aiiαii − 1).

2.

aij√
aii

√
ajj

=
αij√

αii
√
αjj

, i, j = 1, . . . , n− 1,

ain√
aii

√
ann

= − αin√
αii

√
αnn

, i = 1, . . . , n− 1.
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3. A is diagonally similar to

C =
[

I1 + ωccT c
cT 1 + ωcT c

]
,

where c is a real vector with n− 1 coordinates and

ω =

√
1 + cT c− 1

cT c

if c 
= 0; if c = 0, ω = 0.

2. Euclidean simplices. An n-simplex in En is a generalization of the triangle
in the plane and the tetrahedron in the three-dimensional space. It is determined by
its n+ 1 vertices, say, A1, . . . , An+1, has

(
n+1

2

)
edges AiAj , i 
= j, (n−1)-dimensional

faces ωi (opposite Ai), etc.
We denote by φij the (dihedral) interior angles between ωi and ωj .
In matrix theory, completion problems are now very popular. Let us mention one

for the lengths of edges in an n-simplex. What are necessary and sufficient conditions
for the lengths of some set of segments {lij, (i, j) ∈ S} that they can serve as lengths
of edges AiAj of some n-simplex? (For instance, strict triangle inequalities have to
hold for every “closed” triplet, and a strict “polygonal inequality” for every closed
polygon.)

Similarly as in matrix theory, graphs play an important role here.
Theorem 2.1. ([3]). A set of assigned lengths {lij} can serve as the set of lengths

of edges AiAj of an n-simplex if and only if it is the set of lengths of edges of such
simplex all interior angles of which opposite to missing edges are right.

The following characterization of the lengths of all edges of the simplex is worth
mentioning:

Theorem 2.2. (Menger, Schoenberg, see [1]). The numbers eij can serve as
squares of the lengths of edges between Ai and Aj, if and only if eii = 0 for all i, and

∑
i,j

eijxixj < 0, whenever
∑

i

xi = 0.

This is equivalent to the condition that the matrix

M0 =
[

0 eT

e M

]
,(2.1)

where e is the column vector of all ones and M = [eij ] (the Menger matrix) is elliptic,
i.e. has one eigenvalue positive and the remaining negative.

The following crucial fact is presented without proof and will be used in the
sequel.

Theorem 2.3. ([3], [7]) The inverse of the matrix M0 is then a (− 1
2 )-multiple

of the matrix

Q0 =
[

q00 qT
0

q0 Q

]
,(2.2)
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where the matrix Q is the Gram matrix of the outer normals in the above mentioned
n-simplex (in a certain way normalized in order that the sum of the normals be zero).

As is well known, there is an intimate relationship between the irreducibility of a
symmetric matrix and the connectedness of the corresponding (undirected) graph:

Theorem 2.4. Let A = [aik] be an n × n symmetric matrix, G = (N,E) its
graph, where N = {1, . . . , n}and E the set of unordered pairs (i, k), i 
= k, for which
aik 
= 0. Then A is irreducible (i.e. for no simultaneous permutation of rows and

columns having the form
[

A1 0
0 A2

]
with non-void A1 and A2) if and only if the

graph G is connected.
A real matrix A can always be (uniquely) written as A = A+ + A−, where A+

contains the positive entries of A, having zeros elsewhere, and A− contains all negative
entries of A, having zeros elsewhere. Let us call A+ (respectively, A−) the positive
(respectively,negative) part of A.

Theorem 2.5. ([2], [7]) Suppose A is a real symmetric positive semidefinite n×n
matrix with rank n− 1 and such that Ae = 0 (e as above). Then the negative part of
A is irreducible.

Conversely, if C is a nonpositive irreducible symmetric n × n matrix with zero
diagonal entries, then there exists a real symmetric positive semidefinite matrix A
with rank n − 1, such that its negative part is C. In addition, the positive part can
have any symmetric zero - nonzero structure.

Proof. Suppose A− is reducible, A = [aik]; then N = {1, . . . , n} can be decom-
posed, i. e. N = N1 ∪N2, N1 ∩N2 = ∅, N1 
= ∅, N2 
= ∅, in such a way that

aik ≥ 0 for i ∈ N1, k ∈ N2.

Since Ae = 0, we have

0 =
∑

i∈N1,k∈N

aik

=
∑

i∈N1,k∈N1

aik +
∑

i∈N1,k∈N2

aik.

Thus both -nonnegative- terms are zero, we obtain a contradiction with the positive
definiteness of A since the first summand is the value (Ay, y) for the non-zero vector
y = (yi), yi = 1 if i ∈ N1, yi = 0 otherwise.

To prove the converse, let C be given. Define a diagonal matrix D0 such that
(D0 + C)e = 0 and set D0 + C = Q. Then Q is a symmetric irreducible M -matrix of
rank n−1, thus positive semidefinite. Choose now any symmetric nonnegative matrix,
A1, with zero entries in all nonzero off-diagonal positions of C, and otherwise arbitrary
zero - nonzero pattern. Let D1 be the diagonal matrix for which (D1 + A1)e = 0.

Since all principal minors of Q of order less than n are positive, there exists an
ε > 0 such that the matrix

A = Q + ε(D1 + A1)
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will still have this property and, in addition, the row-sums of A are zero. The matrix
A clearly satisfies all conditions prescribed.

We can now formulate an important geometrical application:
Theorem 2.6. ([2]) Let us color each edge AiAj of an n-simplex with vertices

A1, . . . , An+1 by one of the following three colors:
red, if the opposite interior angle φij is acute;
blue, if the opposite interior angle φij is obtuse;
white, if the opposite interior angle φij is right.
Then, the set of red edges connects all the vertices of the simplex.
Conversely, if we color all edges of an n-simplex by three colors red, blue and

white in such a way that the red edges connect all vertices, then there exists such
deformation of the simplex that opposite red edges there are acute, opposite blue edges
obtuse and opposite white edges right interior angles.

Proof. If we assign to the given simplex the matrices M0 and Q0 from (2.1) and
(2.2), then the matrix Q = [qij ] as Gram matrix of the outer normals has the property
that qij < 0, qij = 0, or qij > 0, according to whether the interior angle φij is acute,
right, or obtuse. (Indeed, the angle spanned by outer normals is π − φij .) Theorem
2.5 applied to the matrix Q yields the result.

This result has many consequences:

Theorem 2.7. Every n-simplex has at least n acute interior angles.
Theorem 2.8. There are n-simplices which have exactly n acute interior angles

and all the remaining
(
n
2

)
interior angles right. The red edges span a tree over the

vertices of the simplex.
We called such simplices right simplices in [2].

3. Right simplices. We recall here the main properties of right simplices and
add a new one.

Theorem 3.1. ([2]). The red edges (opposite acute angles) are mutually perpen-
dicular.

In accordance with the right triangle, we call these edges legs.
Hence:
Theorem 3.2. The tree of legs can be completed to an (n-dimensional) box

(i.e., a rectangular parallelepiped); its center of symmetry is thus the circumcenter of
the simplex.

Remark 3.3. A particularly interesting example is the Schlaefli simplex when
the tree of legs is a path.

We recall here its main properties.
Theorem 3.4. Every face of a Schlaefli simplex is also a Schlaefli simplex.

The Schlaefli simplex is the only simplex all 2-dimensional faces of which are right
triangles. The circumcenter is the middle point of the longest edge.

In the case of the right simplex, the matrix Q from (2.2) is an acyclic matrix in
the sense of [6]. We can thus apply a theorem from [6] which describes sign-patterns
of eigenvectors of such matrix in terms of those edges -so called negative- of the
corresponding tree for which the coordinates of the eigenvector have different signs.
In our terms, the assertion from [6] gives:
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Theorem 3.5. Let y be an eigenvector of Q. If all coordinates of y are different
from zero, then the corresponding eigenvalue λ of Q is simple, and there are as many
eigenvalues of Q smaller than λ as is the number of negative edges with respect to y.

To find the geometric interpretation of the eigenvalues and eigenvectors of Q,
let us remind that for every n-simplex, there exists a distinguished circumscribed
ellipsoid (circumscribed means that it contains all vertices of the simplex), the so
called Steined circumscribed ellipsoid) which has its center in the centroid and the
tangent hyperplane at every vertex is parallel to the opposite face. In fact, it is the
affine image of the circumscribed hypersphere in the affine transformation of a regular
n-simplex into the given simplex. It is easily seen that the equation of the Steiner
circumscribed ellipsoid S in barycentric coordinates with respect to the simplex is

(
∑

i

xi)2 −
∑

i

x2
i = 0.

Indeed, the tangent hyperplane at the vertex Ak is then
∑
i�=k

xi = 0

and the polar of the centroid (1, . . . , 1) is
∑

i xi = 0, thus the hyperplane at infinity.
To find the directions of the axes, we use the fact that the pole with respect to Q of
a hyperplane containing the centroid is the orthogonal direction to that hyperplane.
Let thus

∑
i αixi = 0 be the equation of a hyperplane α and let

∑
i αi = 0. The

orthogonal direction

di =
∑

j

qijαj(3.1)

is the axis direction if and only if its polar with respect to S

∑
i

di

∑
i

xi −
∑

i

dixi = 0

coincides with the hyperplane α:
∑

j

dj − di = ξαi,

or, since
∑

j dj = 0,

−di = ξαi.

By (3.1),
∑

j

qijαj = λαi
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for

λ = −ξ.

Thus, the column vector (α1, . . . , αn+1)T is an eigenvector of Q. Suppose now
that (p, q) is an edge of the tree and that αpαq < 0. Then the leg between Ap and Aq

contains an intersection point with the hyperplane α as its interior point. We now
use the result proved in [7]: The halfaxis of the Steiner ellipsoid corresponding to an
eigenvalue λ of Q (and hence corresponding to the hyperplane α) is proportional to
the reciprocal of λ.

We obtain:
Theorem 3.6. Let Σ be a right n-simplex. Let α be such hyperplane orthogonal

to an axis of the Steiner circumscribed ellipsoid of Σ which does not contain any vertex
of Σ. Then the corresponding halfaxis is the kth largest if and only if α intersects the
tree of the legs of Σ in exactly k points. In addition, there is no other halfaxis of the
Steiner circumscribed ellipsoid having the same length.

Remark 3.7. In fact, it follows by a continuity argument that one can allow the
hyperplane α to contain a vertex of Σ in which exactly two legs meet. This vertex is
then counted as a single intersection with the tree of legs.
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