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SPECTRAL GRAPH THEORY AND THE INVERSE EIGENVALUE
PROBLEM OF A GRAPH∗

LESLIE HOGBEN†

Abstract. Spectral Graph Theory is the study of the spectra of certain matrices defined from a
given graph, including the adjacency matrix, the Laplacian matrix and other related matrices. Graph
spectra have been studied extensively for more than fifty years. In the last fifteen years, interest has
developed in the study of generalized Laplacian matrices of a graph, that is, real symmetric matrices
with negative off-diagonal entries in the positions described by the edges of the graph (and zero in
every other off-diagonal position).

The set of all real symmetric matrices having nonzero off-diagonal entries exactly where the graph
G has edges is denoted by S(G). Given a graph G, the problem of characterizing the possible spectra
of B, such that B ∈ S(G), has been referred to as the Inverse Eigenvalue Problem of a Graph. In
the last fifteen years a number of papers on this problem have appeared, primarily concerning trees.

The adjacency matrix and Laplacian matrix of G and their normalized forms are all in S(G).
Recent work on generalized Laplacians and Colin de Verdière matrices is bringing the two areas
closer together. This paper surveys results in Spectral Graph Theory and the Inverse Eigenvalue
Problem of a Graph, examines the connections between these problems, and presents some new
results on construction of a matrix of minimum rank for a given graph having a special form such
as a 0,1-matrix or a generalized Laplacian.

Key words. Spectral Graph Theory, Minimum Rank, Generalized Laplacian, Inverse Eigenvalue
Problem, Colin de Verdière matrix.
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1. Spectral Graph Theory. Spectral Graph Theory has traditionally used
the spectra of specific matrices associated with the graph, such as the adjacency
matrix, the Laplacian matrix, or their normalized forms, to provide information about
the graph. For certain families of graphs it is possible to characterize a graph by
the spectrum (of one of these matrices). More generally, this is not possible, but
useful information about the graph can be obtained from the spectra of these various
matrices. There are also important applications to other fields such as chemistry.
Here we present only a very brief introduction to this extensive subject. The reader is
referred to several books, such as [10], [9], [11], [6], for a more thorough discussion
and lists of references to original papers.

We begin by defining terminology and introducing notation. Throughout this
discussion, all matrices will be real and symmetric. The ordered spectrum (the list of
eigenvalues, repeated according to multiplicity in nondecreasing order) of an n × n
matrix B will be denote denoted σ(B) = (β1, . . . , βn) with β1 ≤ . . . ≤ βn.

A graph G means a simple undirected graph (no loops, no multiple edges), whose
vertices are positive integers. The order of G is the number of vertices. The degree
of vertex k, degG k, is the number of edges incident with k. The graph G is regular
of degree r if every vertex has degree r. The graph G − v is the result of deleting

∗Received by the editors 8 July 2004. Accepted for publication 19 January 2005. Handling Editor:
Stephen J. Kirkland.

†Dept of Mathematics, Iowa State University, Ames, IA 50011, USA (lhogben@iastate.edu).

12

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 14, pp. 12-31, January 2005



ELA

Spectral Graph Theory and the Inverse Eigenvalue Problem 13

vertex v and all its incident edges from G. If S is a subset of the vertices of G, the
subgraph induced by S is the result of deleting the complement of S from G, i.e.,
〈S〉 = G − S̄. A tree is a connected graph with no cycles. We usually restrict our
attention to connected graphs, because each connected component can be analyzed
separately.

• Pn is a path on n vertices.
• Cn is a cycle on n vertices.
• Kn is the complete graph on n vertices.
• K1,n is a star on n+1 vertices, i.e., a complete bipartite graph on sets of 1
and n vertices.

• Wn+1 is a wheel on n+1 vertices, i.e., a graph obtained by joining one addi-
tional vertex to every vertex of Cn.

Let G be a graph with vertices {1, . . . , n}. We will discuss the following matrices
associated with G.

• The adjacency matrix, A = [aij ], where aij = 1 if {i, j} is an edge of G and
aij = 0 otherwise. Let σ(A) = (α1, . . . , αn).

• The diagonal degree matrix, D = diag(degG 1, . . . ,degGn).
• The normalized adjacency matrix, Â =

√D−1 A √D−1
, where√D = diag(

√
degG 1, . . . ,

√
degGn). Let σ(Â) = (α̂1, . . . , α̂n).

• The Laplacian matrix, L = D −A. Let σ(L) = (λ1, . . . , λn).
• The normalized Laplacian matrix, L̂ =

√D−1
(D −A) √D−1

= I − Â. Let
σ(L̂) = (λ̂1, . . . , λ̂n).

• The signless Laplacian matrix, |L| = D +A. Let σ(|L|) = (µ1, . . . , µn).
• The normalized signless Laplacian matrix,
|̂L| = √D−1

(D +A) √D−1
= I + Â. Let σ(|̂L|) = (µ̂1, . . . , µ̂n).

Example 1.1. For the wheel on five vertices, shown in Figure 1.1, the matrices
A, Â, L, L̂, |L|, |̂L| and their spectra are

A =



0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0


, Â =




0 1
2
√

3
1

2
√

3
1

2
√

3
1

2
√

3
1

2
√

3
0 1

3 0 1
3

1
2
√

3
1
3 0 1

3 0
1

2
√

3
0 1

3 0 1
3

1
2
√

3
1
3 0 1

3 0


,

σ(A) = (−2, 1−√
5, 0, 0, 1 +

√
5), σ(Â) = (− 2

3 ,− 1
3 , 0, 0, 1),

L =




4 −1 −1 −1 −1
−1 3 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 −1 0 −1 3


, L̂ =




1 −1
2
√

3
−1

2
√

3
−1

2
√

3
−1

2
√

3−1
2
√

3
1 − 1

3 0 − 1
3

−1
2
√

3
− 1

3 1 − 1
3 0

−1
2
√

3
0 − 1

3 1 − 1
3

−1
2
√

3
− 1

3 0 − 1
3 1


,

σ(L) = (0, 3, 3, 5, 5), σ(L̂) = (0, 1, 1, 4
3 ,

5
3 ),
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Fig. 1.1. Wheel on 5 vertices.

|L| =



4 1 1 1 1
1 3 1 0 1
1 1 3 1 0
1 0 1 3 1
1 1 0 1 3


, |̂L| =




1 1
2
√

3
1

2
√

3
1

2
√

3
1

2
√

3
1

2
√

3
1 1

3 0 1
3

1
2
√

3
1
3 1 1

3 0
1

2
√

3
0 1

3 1 1
3

1
2
√

3
1
3 0 1

3 1


,

σ(|L|) = (1, 9−√
17

2 , 3, 3, 9+
√

17
2 ), σ(|̂L|) = (1

3 ,
2
3 , 1, 1, 2).

Since L̂ = I − Â and |̂L| = I + Â, if the spectrum of any one of Â, L̂, |̂L|,
is known, the spectrum of any of the others is readily computed. If G is regular of
degree r then Â = 1

r A, L = rI – A, |L| = rI + A, so if the spectrum of any one of
A, Â, L, L̂, |L|, |̂L| is known so are the spectra of all of these matrices.

The matrices A, Â, |L|, |̂L| are all non-negative, and if G is connected, they are
all irreducible. The Perron-Frobenius Theorem [18] provides the following information
about an irreducible non-negative matrix B (where ρ(B) denotes the spectral radius,
i.e., maximum absolute value of an eigenvalue of B).

1. ρ(B) > 0.
2. ρ(B) is an eigenvalue of B.
3. ρ(B) is algebraically simple as an eigenvalue of B.
4. There is a positive vector x such that Bx = ρ(B)x.

Let B be a symmetric non-negative matrix. Eigenvectors for distinct eigenvalues of B
are orthogonal. If B has a positive eigenvector x for eigenvalue β, then any eigenvector
for a different eigenvalue cannot be positive, and so β = ρ(B). Let e = [1, 1, . . . , 1]T .
Then since Â √

De =
√
De, ρ(Â) = 1, and ρ(|̂L|) = 2.

The matrices A, D, Â, L, L̂, |L|, |̂L| are also connected via the incidence matrix.
The (vertex-edge) incidence matrix N of graph G with n vertices and m edges is

the n × m 0,1-matrix with rows indexed by the vertices of G and columns indexed
by the edges of G, such that the v, e entry of N is 1 (respectively, 0) if edge e is
(respectively, is not) incident with vertex v. Then

NN T = D +A = |L| and |̂L| = (
√D−1 N ) (

√D−1N )T .
An orientation of graph G is the assignment of a direction to each edge, converting
edge {i, j} to either arc (i, j) or arc (j, i). The oriented incidence matrix N ′ of an
oriented graph G′ with n vertices and m arcs is the n × m 0,1,-1-matrix with rows
indexed by the vertices of G and columns indexed by the arcs of G such that the
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v, (w, v)-entry of N ′ is 1, the v, (v, w)-entry of N ′ is -1, and all other entries are 0. If
G′ is any orientation of G and N ′ is the oriented incidence matrix then

N ′N ′T = D −A = L and L̂ = (
√D−1 N ′) (

√D−1N ′)T .
So L, |L|, L̂, |̂L| are all positive semidefinite, and so have non-negative eigenvalues.

The inertia of a matrix B is the ordered triple (i+, i−, i0), where i+ is the number
of positive eigenvalues of B, i− is the number of negative eigenvalues of B, and i0 is
the number of zero eigenvalues of B. By Sylvester’s Law of Inertia [18], the inertia
of L is equal to the inertia of L̂. Since L̂ + |̂L| = 2I, the following facts have been
established, provided G is connected.

1. σ(|̂L|) ⊂ [0, 2] and µ̂n = 2 with eigenvector
√
De.

2. σ(Â) ⊂ [−1, 1] and α̂n = 1 with eigenvector
√
De.

3. σ(L̂) ⊂ [0, 2] and λ̂1 = 0 with eigenvector
√
De.

4. λ1 = 0.
If G is not connected, the multiplicity of 0 as an eigenvalue of L is the number

of connected components of G. For each of the matrices A, Â, |L|, |̂L|, L, L̂ the
spectrum is the union of the spectra of the components.

If A is the adjacency matrix of the line graph L(G) of G (cf. [15]), then
N TN = 2I +A. It follows from the Singular Value Decomposition Theorem [18] that
the non-zero eigenvalues of NN T and N TN are the same (including multiplicities).
Thus the spectrum of |L| is readily determined from that of the adjacency matrix
of L(G). Since N TN is positive semidefinite, the least eigenvalue of the adjacency
matrix of L(G) is greater than or equal to -2. See [15] for further discussion of line
graphs and graphs with adjacency matrix having all eigenvalues greater than or equal
to -2.

We now turn our attention to information about the graph that can be extracted
from the spectra of these matrices. This is the approach typically taken in Spectral
Graph Theory.

The following parameters of graph G are determined by the spectrum of the
adjacency matrix or, equivalently, by its characteristic polynomial
p(x) = xn + an−2x

n−2 + . . .+ a1x+ a0 (note an−1 = 0 since tr A = 0).

1. the number of edges of G = -an−2 = trA2

2 =
∑

α2
i

2

2. the number of triangles of G = -an−3
2 = trA3

6 =
∑

α3
i

6 .
The first equality in each of these statements is obtained by viewing the coefficient

of p(x) as the sum of the principal minors of order k, the second is obtained by
considering walks, and the third is obtained by using the fact that a real symmetric
matrix is unitarily similar to a diagonal matrix.

Unfortunately these results do not extend cleanly to longer cycles, as can be seen
by considering the 4-cycle.

One use of spectral graph theory is to assist in determining whether two graphs are
isomorphic. If two graphs have different spectra (equivalently, different characteristic
polynomials) then clearly they are not isomorphic. However, non-isomorphic graphs
can be cospectral. Figure 1.2 shows two graphs having the same spectrum for the
adjacency matrix.
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Fig. 1.2. Cospectral graphs with p(x) = −1 + 4 x + 7 x2 − 4 x3 − 7 x4 + x6.

A graph G is called spectrally determined if any graph with the same spectrum is
isomorphic to G. Of course, one must identify the matrix (e.g., adjacency, Laplacian,
etc.) from which the spectrum is taken. Examples of graphs that are spectrally
determined by the adjacency matrix [11]:

• Complete graphs.
• Empty graphs.
• Graphs with one edge.
• Graphs missing only 1 edge.
• Regular graphs of degree 2.
• Regular graphs of degree n− 3, where n is the order of the graph.

However, “most” trees are not spectrally determined, in the sense that as n goes
to infinity, the proportion of trees on n vertices that are determined by the spectrum
of the adjacency matrix goes to 0 [28]; see also [11]. A recent survey of results on
cospectral graphs and spectrally determined graphs can be found in [12].

There are many other graph parameters for which information can be extracted
from the spectra of the various matrices associated with a graph. Here we mention
only two examples, the vertex connectivity and the diameter.

A vertex cutset of G is a subset of vertices of G whose deletion increases the
number of connected components of G. The vertex connectivity of G, κ0, is the
minimum number of vertices in a vertex cutset (for a graph that is not the complete
graph). The second smallest eigenvalue of the Laplacian L, λ2, is called the algebraic
connectivity of G.

Theorem 1.2. [14]; see also [15] If G is not Kn, the vertex connectivity is greater
than or equal to the algebraic connectivity, i.e., λ2 ≤ κ0.

The distance between two vertices in a graph is the length of (i.e., number of
edges in) the shortest path between them. The diameter of a graph G, diam(G), is
maximum distance between any two vertices of G.

Theorem 1.3. [5] The diameter of a connected graph G is less than the number
of distinct eigenvalues of the adjacency matrix of G.

For trees, this result extends to all the matrices whose pattern of nonzero entries
is described by the graph, as we shall discuss in the next section. There are also
several other diameter results involving the Laplacian and normalized Laplacian, see
for example [6].
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2. The Inverse Eigenvalue Problem of a Graph. Spectral Graph Theory
originally focused on specific matrices, such as the adjacency matrix or the Lapla-
cian matrix, whose entries are determined by the graph, with the goal of obtaining
information about the graph from the matrices. In contrast, the Inverse Eigenvalue
Problem of a Graph seeks to determine information about the possible spectra of
the real symmetric matrices whose pattern of nonzero entries is described by a given
graph.

We need some additional definitions and notation. For a symmetric real n × n
matrix B, the graph of B, G(B), is the graph with vertices {1, . . . , n} and edges
{{i, j}| bij �= 0 and i �= j}. Note that the diagonal of B is ignored in determining
G(B).

Example 2.1. For the matrix B =



0 1 0 0
1 3.1 −1.5 2
0 −1.5 1 1
0 2 1 0


, G(B) is shown in

Figure 2.1.

Fig. 2.1. The graph G(B) for B in Example 2.1.

Let Sn be the set of real symmetric n× n matrices. For G a graph with vertices
{1, . . . , n}, define S(G) = {B ∈ Sn| G(B) = G}. Note that A, Â, |L|, |̂L|, L,
L̂ ∈ S(G). The Inverse Eigenvalue Problem of a Graph is to characterize the possible
spectra of matrices in S(G).

The multiplicity of β as an eigenvalue of B ∈ Sn is denoted by mB(β). The
eigenvalue β is simple if mB(β) = 1. The maximum multiplicity of G is
M(G) = max{mB(β)| β ∈ σ(B), B ∈ S(G)}, and the minimum rank of G is
mr(G) = min{rankB| B ∈ S(G)}. Since mB(0) = dimkerB, it is clear that
M(G) + mr(G) = n. If H is an induced subgraph of G then mr(H) ≤ mr(G).

If G is not connected, then any matrix B ∈ S(G) is block diagonal, with the
diagonal blocks corresponding to the connected components of G, and the spectrum
of B is the union of the spectra of the diagonal blocks. Thus we usually restrict our
attention to connected graphs.

Characterizations of graphs of order n having minimum rank 1, 2, and n – 1 have
been obtained. For any graph G, a matrix B ∈ S(G) with rank B ≤ n – 1 can always
be obtained by taking C ∈ S(G), γ ∈ σ(C), and B = C − γI. Thus, for any graph G,
mr(G) ≤ n – 1. If B ∈ S(Pn), by deleting the first row and last column, we obtain an
upper triangular n− 1× n− 1 submatrix with nonzero diagonal, so rank B ≥ n− 1.
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Thus mr(Pn) = n – 1.
Theorem 2.2. [13] If for all B ∈ S(G), all eigenvalues of B are simple, then

G = Pn. Equivalently, mr(G) = n− 1 implies G = Pn.
For any graph G that has an edge, any matrix in S(G) has at least two nonzero

entries, so mr(G) ≥ 1. By examining the rank 1 matrix J (all of whose entries are
1), we see that mr(Kn) = 1. If G is connected, then for any matrix B ∈ S(G), there
is no row consisting entirely of zeros. Any rank 1 matrix B with no row of zeros has
all entries nonzero, and thus G(B) = Kn. Thus, for G a connected graph of order
greater than one, mr(G) = 1 is equivalent to G = Kn.

Fig. 2.2. Forbidden induced subgraphs for mr(G) = 2.

Theorem 2.3. [4] A connected graph G has mr(G) ≤ 2 if and only if G does
not contain as an induced subgraph any of: P4, K3,3,3 (the complete tripartite graph),
GBHL1 or GBHL2 (shown in Figure 2.2).

Additional characterizations of graphs having minimum rank 2 can be found in
[4].

Recall that for any graph G, the diameter of G is less than the number of distinct
eigenvalues of the adjacency matrix of G (cf. Theorem 1.3), and the proof extends
to show diam(G) is less than the number of distinct eigenvalues of any non-negative
matrix B ∈ S(G). If T is a tree and B ∈ S(T ), it is possible to find a real number γ
and a 1,-1-diagonal matrix S such that STS−1 + γI is non-negative. Thus, we have
the following theorem.

Theorem 2.4. [25] If T is a tree, for any B ∈ S(T ), the diameter of T is less
than the number of distinct eigenvalues of B.

There are many examples of trees T for which the minimum number of distinct
eigenvalues is diam(T ) + 1. Barioli and Fallat [1] gave an example of a tree for which
the minimum number of distinct eigenvalues is strictly greater than this bound. Since
n− (M(G)− 1) ≥ the minimum number of distinct eigenvalues, for a tree T ,
diam(T ) ≤ mr(T ).

Most of the progress for trees is based on the Parter-Wiener Theorem and the
interlacing of eigenvalues. If B is an n×n matrix, B(k) is the (n−1)× (n−1) matrix
obtained from B by deleting row and column k. If B ∈ S(G), then B(k) ∈ S(G− k).
Let B ∈ Sn and k ∈ {1, . . . , n}. If the eigenvalues of B are β1 ≤ β2 . . . ≤ βn and the
eigenvalues of B(k) are θ1 ≤ θ2 ≤ . . . ≤ θn−1, then by the Interlacing Theorem [18]
β1 ≤ θ1 ≤ β2 ≤ θ2 . . . ≤ βn−1 ≤ θn−1 ≤ βn.

Corollary 2.5. If β ∈ σ(B), mB(k)(β) ∈ {mB(β)− 1,mB(β),mB(β) + 1}.
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We say k is a Parter-Wiener (PW) vertex of B for eigenvalue β if mB(k)(β) =
mB(β)+1; k is a strong PW vertex of B for β if k is a PW vertex of B for β and β is
an eigenvalue of at least three components of G(B)− k. The next theorem is referred
to as the Parter-Wiener Theorem.

Theorem 2.6. [27], [29], [22] If T is a tree, B ∈ S(T ) and mB(β) ≥ 2, then
there is a strong PW vertex of B for β.

Corollary 2.7. If T is a tree, B ∈ S(T ) and σ(B) = (β1, . . . , βn), then β1 and
βn are simple eigenvalues.

The set of high degree vertices of G is H(G) = {k ∈ V (G)| degGk ≥ 3}. Only
high degree vertices can be strong PW vertices.

Example 2.8. The star on n+1 vertices, K1,n, has only one high degree vertex,
say vertex 1. Thus this vertex must be the strong PW vertex for any multiple eigen-
value of B with G(B) = K1,n. By choosing the diagonal elements of B for 2, . . . , n+1
to be 0, we obtain mB(1)(0) = n and so mB(0) = n − 1 and mr(K1,n) = 2. (In this
case the other two eigenvalues are necessarily simple.)

As many people have observed, the Parter-Wiener Theorem need not be true for
graphs that are not trees.

Example 2.9. For A the adjacency matrix of C4, mA(0) = 2 but there is no
PW vertex since C4 − k is P3 for any vertex k.

We define two more parameters of a graph that are related to maximum mul-
tiplicity and minimum rank. The path cover number of G, P (G), is the minimum
number of vertex disjoint paths occurring as induced subgraphs of G that cover all
the vertices of G, and ∆(G) = max{p− q | there is a set of q vertices whose deletion
leaves p paths}. These parameters are equal for trees, but not for all graphs.

Theorem 2.10. [19] For any tree T , M(T ) = P (T ) = ∆(T ). For any graph G,
∆(G) ≤ M(G).

Theorem 2.11. [2] For any graph G, ∆(G) ≤ P (G).
The relationship between M(G) and P (G) is less clear.
Example 2.12. The wheel on 5 vertices, W5, shown in Figure 1.1, has

P (W5) = 2 by inspection, and mr(W5) = 2 (by Theorem 2.3), so
M(W5) = 3 > P (W5).

Example 2.13. In [2], it is established that the penta-sun, H5, shown in Fig-
ure 2.3, has P (H5) = 3 > M(H5) = 2. More information on graphs for which
P (G) > M(G) can be found in [2] and [3].

We now consider what combinations of eigenvalues and multiplicities are possible
for trees. Since the first and last eigenvalue of a matrix whose graph is a tree must
be simple, clearly the order is important in determining which lists of eigenvalues and
multiplicities are possible. If the distinct eigenvalues of B are β̆1 < . . . < β̆r with
multiplicities m1, . . . ,mr, respectively, then (m1, . . . ,mr) is called the ordered multi-
plicity list of B. There has been extensive study of the possible ordered multiplicity
lists of trees.

Theorem 2.14. [13], [20], [21] The possible ordered multiplicity lists of the follow-
ing families of trees have been determined. Furthermore, if there is a matrix B ∈ S(G)
with distinct eigenvalues β̆1 < . . . < β̆r having multiplicities m1, . . . ,mr, then for any
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Fig. 2.3. The penta-sun H5.

real numbers γ1 < . . . < γr, there is a matrix in S(G) having eigenvalues γ1, . . . , γr

with multiplicities m1, . . . ,mr.
• Paths.
• Double Paths.
• Stars
• Generalized Stars
• Double Generalized Stars.

Thus for any of these graphs, determination of the possible ordered multiplicity lists
of the graph is equivalent to the solution of the Inverse Eigenvalue Problem of the
graph.

However, Barioli and Fallat [1] established that sometimes there are restrictions
on which real numbers can appear as the eigenvalues for an attainable ordered mul-
tiplicity list.

Fig. 2.4. A tree for which an ordered multiplicity list is possible only for certain real numbers.

Example 2.15. For the tree TBF shown in Figure 2.4, the spectrum of the
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adjacency matrix is σ(A) = (−√
5,−√

2,−√
2, 0, 0, 0, 0,

√
2,
√
2,
√
5), so the ordered

multiplicity list of A is (1, 2, 4, 2, 1). But the trace technique in [1] shows that if B ∈
S(TBF ) has the five distinct eigenvalues β̆1 < β̆2 < β̆3 < β̆4 < β̆5 with multiplicities
mB(β̆1) = mB(β̆5) = 1,mB(β̆2) = mB(β̆4) = 2,mB(β̆3) = 4, then β̆1+β̆5 = β̆2+β̆4.

3. Generalized Laplacians and the Colin de Verdière Number µ(G).
The symmetric matrix L = [lij ] is a generalized Laplacian matrix of G if for all i, j
with i �= j, lij < 0 if i and j are adjacent in G and lij = 0 if i and j are nonadjacent.
Clearly L and L̂ are generalized Laplacians. Note that if L is a generalized Laplacian
then −L has non-negative off-diagonal elements, and so there is a real number c
such that cI − L is non-negative. Thus, if G is connected, by the Perron-Frobenius
Theorem, the least eigenvalue of L is simple. Much recent work in Spectral Graph
Theory with generalized Laplacians is based on Colin de Verdière matrices and the
Colin de Verdière number µ(G). This graph parameter was introduced by Colin de
Verdière in 1990 ([7] in English). A thorough introduction to this important subject
is provided by [17]. Here we list only a few of the definitions and results, following
the treatment in [17].

The matrix L is a Colin de Verdière matrix for graph G if
1. L is a generalized Laplacian matrix of G.
2. L has exactly one negative eigenvalue (of multiplicity 1).
3. (Strong Arnold Property) If X is a symmetric matrix such that LX = 0 and

xi,j �= 0 implies i �= j and i, j is not an edge of G, then X = 0.
The Colin de Verdière number µ(G) is the maximum multiplicity of 0 as an eigenvalue
of a Colin de Verdière matrix. A Colin de Verdière matrix realizing this maximum
is called optimal. Note that condition (2) ensures that µ(G) is the multiplicity of
λ2(L) for an optimal Colin de Verdière matrix. The Strong Arnold Property is the
requirement that certain manifolds intersect transversally. See [17] for more details.

Clearly µ(G) ≤ M(G), since any Colin de Verdière matrix is in S(G). There are
many examples, such as Example 3.1 below, of matrices in S(G) where this inequality
is strict, due to the failure of the Strong Arnold Property for matrices realizingM(G).

Example 3.1. The star K1,n has M(K1,n) = n − 1 and this multiplicity is
attained (for eigenvalue 0) by the adjacency matrix. For n > 3 (if the high degree
vertex is 1), the matrix X = (e2 − e3)(e4 − e5)T + (e4 − e5)(e2 − e3)T shows that A
does not have the Strong Arnold Property. In fact, µ(K1,n) = 2 (provided n > 2)
[17].

A contraction of the graph G is obtained by identifying two adjacent vertices of
G, suppressing any loops or multiple edges that arise in this process. A minor of
G arises by performing a series of deletions of edges, deletions of isolated vertices,
and/or contraction of edges. Colin de Verdière showed that µ is minor-monotone.

Theorem 3.2. [7]; see also [17]. If H is a minor of G then µ(H) ≤ µ(G).
The Strong Arnold Property is essential to this minor-monotonicity, as the fol-

lowing example shows.
Example 3.3. Consider the graph GBHL2 shown in Figure 2.2. From [4],

mr(GBHL2) = 3, soM(GBHL2) = 2, but deletion of the edge that joins the two degree
2 vertices produces K1,4 and M(K1,4) = 3.
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The Robertson-Seymour theory of graph minors asserts that the family of graphs
G with µ(G) ≤ k can be characterized by a finite set of forbidden minors [17]. Colin
de Verdière; Robertson, Seymour and Thomas; and Lovász and Schrijver have used
this to establish the following characterizations.

Theorem 3.4. [7], [17]
1. µ(G) ≤ 1 if and only if G is a disjoint union of paths.
2. µ(G) ≤ 2 if and only if G is outerplanar.
3. µ(G) ≤ 3 if and only if G is planar.
4. µ(G) ≤ 4 if and only if G is linklessly embeddable.
A graph is planar if it can be drawn in the plane without crossing edges. A

graph is outerplanar if it has such a drawing with a face that contains all vertices.
An embedding of a graph G into R

3 is linkless if no disjoint cycles in G are linked in
R

3. A graph is linklessly embeddable if it has a linkless embedding. See [17] for more
detail.

Theorem 3.5. [15] Let L be a generalized Laplacian matrix of the graph G with
σ(L) = (ω1, ω2, . . . , ωn). If G is 2-connected and outerplanar then mL(ω2) ≤ 2. If G
is 3-connected and planar then mL(ω2) ≤ 3.

4. Connections and New Results. Clearly there are close connections be-
tween the recent work in Spectral Graph Theory on generalized Laplacians, and the
Inverse Eigenvalue Problem of a Graph. Matrices attaining M(G) for eigenvalue 0
are central to this connection. Equivalently, we are concerned with matrices attaining
the minimum rank of G. In particular, generalized Laplacian matrices realizing the
minimum rank of G are of interest.

We now turn to the question of whether we can realize the minimum rank of G
by a matrix in S(G) having some special form such as:

• the adjacency matrix A,
• a 0,1- matrix,
• A+D for D a diagonal matrix,
• a generalized Laplacian of G.

Observation 4.1. For any graph G:
• The adjacency matrix A is a 0,1-matrix.
• Any 0, 1-matrix A ∈ S(G) is of the form A+D for D a diagonal matrix.
• For D a diagonal matrix, −(A+D) is a generalized Laplacian of G.
• Finding a matrix of minimum rank in S(G) with off-diagonal elements non-
negative is equivalent to finding a generalized Laplacian of minimum rank.

There are very few graphs for which A realizes minimum rank. The star K1,n is
one such graph, but for the path Pn, A is nonsingular if n is even. We show that for
a tree, there is always a 0,1-matrix realizing minimum rank (equivalently, realizing
maximal multiplicity for eigenvalue 0). This answers a question raised by Zhongshan
Li [26].

Theorem 4.2. If T is a tree and A is its adjacency matrix, then there exists a
0, 1-diagonal matrix D such that mA+D(0) =M(T ), and thus rank(A+D) = mr(T ).

Proof. By [19],M(T ) = ∆(T ), i.e., there exists a setQ of q vertices such that T−Q
consists of p disjoint paths and p−q =M(T ). For each path, remove alternate interior
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vertices so that the result is isolated vertices (and one path with 2 vertices if the path
had an even number of vertices originally). Let Q∗ be the set of q∗ vertices consisting
of the original q vertices and the additional alternate interior vertices deleted. Then
Q∗ has the property that T − Q∗ consists of p∗ disjoint paths, each having 1 or 2
vertices, and p∗ − q∗ = M(T ). Choose the diagonal elements of D corresponding
to isolated vertices or to deleted vertices to be 0, and choose the diagonal elements
of D corresponding to 2-vertex paths to be 1. Then 0 is an eigenvalue of each of
the p∗ paths and, by interlacing, mA+D(0) ≥ p∗ − q∗ = M(T ) ≥ mA+D(0). Thus
rank(A+D) = n−mA+D(0) = n−M(T ) = mr(T ).

By using the algorithm of Johnson and Saiago [24] to produce the initial set Q of
vertices to delete, we obtain the following algorithm for producing a 0,1-matrix A+D
of minimum rank among matrices in S(T ). As in [24], δT (v) = degT v − degH(T )v,
where H(T ) is the subgraph of T induced by the vertices of degree at least 3 in T .

Algorithm 4.3.
1. Set T ′ = T and Q = ∅.

Repeat:
a) Q′ = {v | δT ′(v) ≥ 2},
b) Set T ′ = T ′ −Q′.
c) Set Q = Q ∪Q′.
Until Q′ = ∅.
This determines Q.

2. In each path, remove alternate interior vertices and add these
vertices to Q to obtain Q∗.

3. Choose D = diag(d1, . . . , dn) where dk = 1 if k /∈ Q∗ and the path of
T −Q∗ containing k has 2 vertices; otherwise, dk = 0.

Fig. 4.1. Applying Algorithm 4.3 to a tree T.

Example 4.4. Figure 4.1 illustrates the application of Algorithm 4.3 to the tree
T . The vertices 6, 14, 17 are removed in the first iteration of step 1. The vertex 11 is
removed in the second iteration of step 1. The vertices 2, 4, 22 are removed in step 2
as alternate interior vertices. Thus Q∗ = {2, 4, 6, 11, 14, 17, 22}. The diagonal entries
associated with paths having two vertices, i.e., 9, 10, 18, 19, 23, 24, which are the black

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 14, pp. 12-31, January 2005



ELA

24 Leslie Hogben

vertices in Figure 4.1, are assigned 1, and all other diagonal entries (including those
corresponding to both shaded and unshaded vertices) are assigned 0. Thus with

D = diag(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1),
A+D is a 0, 1-matrix in S(T ) with rank(A+D) = 17 = mr(T ).

Algorithm 4.3 will produce the adjacency matrix of T if A attains the minimum
rank of T . Theorem 4.2 need not be true for graphs that are not trees, that is, we
cannot always find a 0,1-matrix in S(G) realizing minimum rank. In particular, it is
impossible for the 5-cycle.

Theorem 4.5. For any n-cycle Cn, n ≥ 3, rank(A − 2 cos( 2π
n )I) = n − 2 =

mr(Cn). Furthermore, there is a 0, 1-matrix D with rank(A + D) = mr(Cn) if and
only if n �= 5. Specifically, the diagonal matrices D listed below have this property.

0. If n ≡ 0 mod 4 then let D = diag(0, 0, . . . , 0), i.e., the adjacency matrix
realizes minimum rank.

1. If n ≡ 1 mod 4 and n ≥ 9 then let D = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, . . . , 0).
2. If n ≡ 2 mod 4 then let D = diag(1, 1, 1, 1, 1, 1, 0, 0, . . . , 0).
3. If n ≡ 3 mod 4 then let D = diag(1, 1, 1, 0, . . . , 0).
If n ≡ 0 mod 3 then D = I also works.
Proof. It is known [10] that the eigenvalues of A are 2 cos(2πk

n ) for k = 1, . . . , n.
Since cos(2π

n ) = cos(2π(n−1)
n ), it is clear that rank(A−2 cos( 2π

n )I) = n−2 ≥ mr(Cn).
Since Pn−1 is an induced subgraph of Cn, mr(Cn) ≥ n − 2, establishing the first
statement.

Direct examination of all 32 possibilities for the diagonal shows that all 0,1-
matrices in S(C5) are nonsingular and thus do not realize mr(C5) = 3.

For each general case, we exhibit two vectors z1 and z2 in the kernel of A + D.
Each vector has a repeatable block of 4 entries (or 3 entries for n ≡ 0 mod 3) that is
used as many times as necessary to obtain a vector of the right length. Such a block
will be denoted repeat[. . . ].
Determination of D based on congruence mod 4:

0. Let n ≡ 0 mod 4 and D = diag(0, 0, . . . , 0).
Then z1 = (repeat[−1, 0, 1, 0])T and z2 = (repeat[0,−1, 0, 1])T .

1. Let n ≡ 1 mod 4 and D = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, . . . , 0).
Then z1 = (−1, 1, 0,−1, 1, 0,−1, 1, 0, repeat[−1, 0, 1, 0])T and
z2 = (0,−1, 1, 0,−1, 1, 0,−1, 1, repeat[0,−1, 0, 1])T .

2. Let n ≡ 2 mod 4 and D = diag(1, 1, 1, 1, 1, 1, 0, 0, . . . , 0).
Then z1 = (−1, 1, 0,−1, 1, 0, repeat[−1, 0, 1, 0])T and
z2 = (0,−1, 1, 0,−1, 1, repeat[0,−1, 0, 1])T .

3. Let n ≡ 3 mod 4 and D = diag(1, 1, 1, 0, . . . , 0).
Then z1 = (−1, 1, 0, repeat[−1, 0, 1, 0])T and
z2 = (0,−1, 1, repeat[0,−1, 0, 1])T .

For n ≡ 0 mod 3, D = I, let z1 = (repeat[−1, 1, 0])T and z2 = (repeat[0,−1, 1])T .
Corollary 4.6. For every wheel Wn+1, n ≥ 4, there is a diagonal matrix D

such that rank(A+D) = mr(Wn+1).
Proof. The wheel Wn+1 can be constructed by joining vertex n+1 to each of the

vertices of Cn. Let Ã be the adjacency matrix of Cn. By Theorem 4.5, rank (Ã−dIn)
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The graph H The graph K2,2,2

Fig. 4.2.

= mr(Cn) for d = 2 cos(2π
n ). Let e be the vector all of whose entries are 1. Then

mr(Wn+1) ≤ rank
[ Ã − dIn e

eT n
2−d

]
= rank(Ã − dIn) = mr(Cn) ≤ mr(Wn+1).

We have seen that for G a cycle or wheel, we can find a diagonal matrix D such
that rank(A+D) = mr(G). However, the next example shows that for the graph H
shown in Figure 4.2, it is not possible to find a matrix in S(H) realizing the minimum
rank of H that has the form A +D. But for this graph H we are able to exhibit a
generalized Laplacian L of H with rank L = mr(H).

Example 4.7. Consider the graph H shown in Figure 4.2. By Theorem 2.3,
mr(H) = 2 (this is also demonstrated by the matrix L below). Let

B =




d1 1 1 1 1 1
1 d2 1 0 0 1
1 1 d3 1 1 0
1 0 1 d4 1 1
1 0 1 1 d5 1
1 1 0 1 1 d6



. Assume that it is possible to find di such that

rankB = 2. Let ri denote the ith row of B. Since r3 and r4 are clearly independent,
every other row must be expressible as a linear combination of these two. Applying
this to r5 yields d4 = d5 = 1. Applying this to r6 yields d3 = d6 = 0. With these
values of d3 and d4, attempting to express r1 as a linear combination of r3 and r4
produces a contradiction. However, we can realize minimum rank with the generalized

Laplacian matrix L =




−15 −1 −3 −4 −4 −3
−1 1 −1 0 0 −1
−3 −1 0 −1 −1 0
−4 0 −1 −1 −1 −1
−4 0 −1 −1 −1 −1
−3 −1 0 −1 −1 0



, for which

σ(L) = (−8− 6
√
3, 0, 0, 0, 0,−8+ 6

√
3).

The next example shows that it is not always possible to find a generalized Lapla-
cian L of that realizes minimum rank. This answers a question raised by the author
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[16].
Example 4.8. Consider the graph K2,2,2 shown in Figure 4.2.

The matrix B =




0 1 1 0 1 1
1 −3 −2 1 0 −1
1 −2 −1 1 1 0
0 1 1 0 1 1
1 0 1 1 3 2
1 −1 0 1 2 1



∈ S(K2,2,2) has rank B = 2.

Now let matrix M ∈ S(K2,2,2). Det[1, 2, 3; 4, 5, 6] = m15m26m34 +m16m24m35,
so if M is non-negative, Det[1, 2, 3; 4, 5, 6] > 0 and rank M ≥ 3. Thus the minimum
rank of K2,2,2 can not be realized by a matrix in S(K2,2,2) with non-negative off-
diagonal entries. Equivalently, the minimum rank of K2,2,2 can not be realized by a
generalized Laplacian.

Even though it is not always possible to find a matrix realizing minimum rank
that has one of the special forms adjacency matrix (i.e., 0,1-matrix with all diagonal
entries 0), 0,1-matrix, adjacency matrix + diagonal matrix, generalized Laplacian
matrix, there are many graphs for which it is possible. The next two theorems offer
ways to obtain matrices of special form realizing minimum rank for graphs that have
a cut-vertex, that is the vertex in a singleton cutset. As in [2], the rank spread of v in
G, rv(G) = mr(G) – mr(G − v). Let v be a cut-vertex of G and let G̃i, i = 1, . . . , h
be the components of G − v. Let Gi be the subgraph of G induced by v and the
vertices of G̃i. G is called the vertex-sum of G1, . . . , Gh and it is shown in [2] that
rv(G) = min

{∑h
i=1 rv(Gi), 2

}
.

Theorem 4.9. Suppose the graph G is the vertex-sum at v of the graphs Gi, for
i = 1, . . . , h, and rv(G) = 2. Let G̃i = Gi − v. If there exist matrices Ã1, . . . , Ãh such
that for i = 1, . . . , h,

• Ãi ∈ S(G̃i),
• rank Ãi = mr(G̃i),
• Ãi is of type X ,

then there exists a matrix A with
• A ∈ S(G),
• rank A = mr(G),
• A is of type X

for X any of the following types of matrix: adjacency matrix, 0,1-matrix, sum of a
diagonal matrix and the adjacency matrix, generalized Laplacian matrix.

Proof. Without loss of generality, assume v = 1, the vertices of G̃1 are next,
followed by the vertices of G̃2, etc. Since r1(G) = 2, mr(G) = mr(G− 1) + 2 =∑

mr(G̃i) + 2. Let Ã = Ã1 ⊕ . . .⊕ Ãh. Clearly Ã ∈ S(G− 1), rank Ã = mr(G− 1),

and if Ãi is of type X for all i, then so is Ã. Define A =
[
0 bT

b Ã

]
where bi = t if

{i, 1} is an edge of G and bi = 0 otherwise. Choose t = 1 if X is the class of adjacency
matrices, 0,1-matrices or sums of a diagonal matrix with an adjacency matrix, and
t = −1 if X is the class of generalized Laplacians. Clearly A ∈ S(G) and A is of type
X . Further, rank A ≤ rank Ã+ 2 = mr(G− 1) + 2 = mr(G) ≤ rankA, so rank A =
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mr(G).
We illustrate this theorem in the next two examples.

Fig. 4.3. A graph to which Theorem 4.9 can be applied to produce a generalized Laplacian of
minimum rank.

Example 4.10. For the graph G shown in Figure 4.3, vertex 7 is a cut-vertex.
The components of G− 7 are the induced subgraphs 〈1, 2, 3, 4, 5, 6〉, 〈8, 9〉, 〈10〉, and
〈11, 12, 13〉, having minimum ranks 2, 1, 0, and 2, respectively. Since mr(〈7, 10〉) =
1 and mr(〈10〉) = 0, r7(〈7, 10〉) = 1. Similarly, r7(〈7, 8, 9〉) = 1. Since rv(G) =
min

{∑h
i=1 rv(Gi), 2

}
, r7(G) = 2. Thus mr(G) = (2 + 1 + 0 + 2) + 2 = 7. We

can apply Theorem 4.9, Example 4.7, and Algorithm 4.3 to produce a generalized
Laplacian L having rank L = 7. The matrix produced is

L =




−15 −1 −3 −4 −4 −3 0 0 0 0 0 0 0
−1 1 −1 0 0 −1 0 0 0 0 0 0 0
−3 −1 0 −1 −1 0 −1 0 0 0 0 0 0
−4 0 −1 −1 −1 −1 0 0 0 0 0 0 0
−4 0 −1 −1 −1 −1 0 0 0 0 0 0 0
−3 −1 0 −1 −1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 −1 0 −1 0 −1 0
0 0 0 0 0 0 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0 0 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 −1 0




.

Example 4.11. For the graph G shown in Figure 4.4, vertex 8 is a cut-vertex
of G. We show r8(G) = 2: Let G1 = 〈8, 10, 11, 12, 13, 14, 15〉; mr(G1) = 5 because
G1 �= P7 and P6 is an induced subgraph of G1. The minimum rank of the six cycle
〈10, 11, 12, 13, 14, 15〉 is 4, so r8(G1) = 1. Since r8(〈8, 9〉) = 1, r8(G) = 2.

The components of G− 8 are G2 = 〈1, 2, 3, 4, 5, 6, 7〉, 〈9〉, and the six cycle. Since
we can produce 0, 1-matrices of minimum rank for the the six cycle (by Theorem 4.5,
we can use all 1s on the diagonal) and 〈9〉 (use 0), if we can find a 0, 1-matrix for
G2, we can apply Theorem 4.9. Vertex 1 is a cut-vertex of G2. Since r1(〈1, 6, 7〉) = 1
and r1(〈1, 5〉) = 1, r1(G2) = 2, so we can apply Theorem 4.9 to find a 0, 1-matrix of
minimum rank for G2. The diagonal entries chosen are 0, 1, 1, 1, 0, 1, 1.
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Fig. 4.4. A graph to which Theorem 4.9 can be applied to produce a 0, 1-matrix of minimum rank.

When we apply Theorem 4.9 to the sum at vertex 8, the diagonal matrix produced
is D = diag(0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1).

We can check that for this D, A + D is a minimum rank matrix by verifying
rank(A+D) = 10 and showing this is the minimum rank of G. Since the components
of G2 − 1 are 〈2, 3, 4〉, 〈5〉, and 〈6, 7〉, having minimum ranks 1, 0, and 1, respectively,
and r1(G2) = 2, mr(G2) = 4. Since the components of G− 8 are G2, 〈9〉, and the six
cycle, having minimum ranks 4, 0, and 4, respectively, and r8(G) = 2, mr(G) = 10.

Theorem 4.12. Suppose the graph G is the vertex-sum at v of the graphs Gi,
for i = 1, . . . , h and rv(G) = 0. If there exist matrices A1, . . . , Ah such that for
i = 1, . . . , h,

• Ai ∈ S(Gi),
• rank Ai = mr(Gi),
• Ai is of type X ,

then there exists a matrix A with
• A ∈ S(G),
• rank A = mr(G),
• A is of type X

for X one of the classes: adjacency matrix, sum of a diagonal matrix and the adja-
cency matrix, generalized Laplacian matrix.

Proof. Since by [2], rv(G) = min{∑ rv(Gi), 2}, and rv(G) = 0, clearly
rv(Gi) = 0 for i = 1, . . . , h. Thus mr(Gi) = mr(Gi − v) for i = 1, . . . , h. Then
mr(G) = mr(G− v) + 0 =

∑
mr(Gi − v) =

∑
mr(Gi).

For i = 1, . . . , h, let Ăi be the n× n matrix obtained from Ai by embedding it in
the appropriate place (setting all other entries 0). Let A = Ă1 + . . .+ Ăh. If Ai ∈ X
for all i, then so is A (the only entry that is the sum of more than one nonzero entry
is the v, v-entry). And rank A ≤ ∑

rank Ai =
∑

mr(Gi) = mr(G) ≤ rank A, so
rank A = mr(G).

We illustrate this theorem in the next example.
Example 4.13. The graph G shown in Figure 4.5 is the vertex-sum at 4 of the in-

duced subgraphs 〈1, 2, 3, 4〉 and G1 = 〈4, 5, 6, 7, 8, 9, 10, 11, 12〉. Since mr(〈1, 2, 3, 4〉) =
2 = mr(〈1, 2, 3〉), r4(〈1, 2, 3, 4〉) = 0. To show r4(G1) = 0, we compute mr(G1) and
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Fig. 4.5. A graph to which Theorem 4.12 can be applied to produce a matrix of minimum rank
that is the sum of the adjacency matrix and a diagonal matrix.

mr(G1 − 4).
The graph G1 is the vertex sum at 6 of 〈4, 5, 6, 7, 8〉, 〈6, 9, 10〉, and 〈6, 11, 12〉.

Since mr(〈4, 5, 6, 7, 8〉) = mr(〈4, 5, 7, 8〉) = 3, r6(〈4, 5, 6, 7, 8〉) = 0. Similarly,
mr(〈6, 9, 10〉) = 1, r6(〈6, 9, 10〉) = 0, mr(〈6, 11, 12〉) = 1, and r6(〈6, 11, 12〉) = 0. Thus,
r6(G1) = 0 and mr(G1) = 5.

Likewise, G1−4 is the vertex sum at 6 of 〈5, 6〉, 〈6, 7, 8〉, 〈6, 9, 10〉, and 〈6, 11, 12〉.
Since mr(〈5, 6〉) = 1 and mr(〈5〉) = 0, r6(〈5, 6〉) = 1. Similarly, r6(〈6, 7, 8〉) = 1, so
r6(G1−4) = 2. Thus, mr(G1−4) =mr(〈5〉)+ mr(〈7, 8〉)+ mr(〈9, 10〉)+ mr(〈11, 12〉)+
r6(G1 − 4) = 5. Since mr(G1) = mr(G1 − 4), r4(G1) = 0.

Thus, mr(G) =mr(G1−4)+ mr(〈1, 2, 3〉)+r4(G) = 7. We can apply Theorem 4.12
(twice) and Theorem 4.5 to produce a diagonal matrix D such that rank A+D = 7.
The matrix A+D is built from

A1 =



0 0 1 1
0 0 1 1
1 1 1 1
1 1 1 1


 ∈ S(〈1, 2, 3, 4〉),

A2 =




1−√
5

2 1 0 0 1
1 1−√

5
2 1 0 0

0 1 1−√
5

2 1 0
0 0 1 1−√

5
2 1

1 0 0 1 1−√
5

2


 ∈ S(〈4, 5, 6, 7, 8〉),

and A3 = A4 =


 1 1 1
1 1 1
1 1 1


 ∈ S(〈6, 9, 10〉) = S(〈6, 11, 12〉).

Note A1 and A2 will overlap on vertex 4, and A2, A3 and A4 overlap on vertex 6.
The diagonal matrix produced is
D = (0, 0, 1, 1 + 1−√

5
2 , 1−√

5
2 , 2 + 1−√

5
2 , 1−√

5
2 , 1−√

5
2 , 1, 1, 1, 1).

Just as we were able to apply a theorem more than once (Theorem 4.9 in Example
4.11, and Theorem 4.12 in Example 4.13), we could apply both theorems (successively)
to a single example, perhaps more than once.
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[10] D. M. Cvetcović, M. Doob, and H. Sachs Spectra of Graphs. Academic Press, Inc., New York,
1980.
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