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Abstract. Let G be a weighted graph. Let v be a vertex of G and let Gv
ω denote the graph

obtained by adding a vertex u and an edge {v, u} with weight ω to G. Then the algebraic connectivity
µ(Gv

ω) of Gv
ω is a nondecreasing function of ω and is bounded by the algebraic connectivity µ(G) of

G. The question of when lim
ω→∞µ(Gv

ω) is equal to µ(G) is considered and answered in the case that

G is a tree.
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1. Introduction. A weighted graph on n vertices is an undirected simple graph
G on n vertices such that with each edge e of G, there is an associated positive number
ω(e) which is called the weight of e.

The Laplacian matrix of a weighted graph G on n vertices is the n × n matrix
L(G) = L = (lij), where for each i, j = 1, . . . , n,

lij =




−ω(e) if i �= j and e = {i, j},
0 if i �= j and i is not adjacent to j,∑

k �=i lik if i = j.

Clearly L is a singular M -matrix and positive semide�nite, so λ1(L) = 0, where
for a symmetric matrix A we arrange the eigenvalues in nondecreasing order

λ1(A) ≤ λ2(A) ≤ . . .

Fiedler [3] showed that λ2(L) is positive i� G is connected and called it the
algebraic connectivity of G. The algebraic connectivity of G will be denoted by µ(G).

In this paper G always denotes a connected weighted graph without loops.

Let G be a graph with n vertices. Let v be a vertex of G and let Gv
ω be the graph

with n + 1 vertices obtained by adding to G a vertex u and an edge e = {v, u} with
weight ω.
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Theorem 1.1. The algebraic connectivity µ(Gv
ω) is a nondecreasing function of

ω and for every ω and n > 1

µ(Gv
ω) ≤ µ(G).

Proof. Let Lω be the Laplacian matrix of Gv
ω and let 0 < ω1 ≤ ω2. Then

B = Lω2 − Lω1 is a singular rank one positive semide�nite matrix. By [7, Th. 4.3.1]

λk(Lω1) ≤ λk(Lω2) for k = 1 . . . n,

and for k = 2, µ(Gv
ω1

) ≤ µ(Gv
ω2

).

To show that µ(Gv
ω) is bounded, write Lω as the sum of two block matrices

Lω =




L(G) 0

0 0


 +




0 0

0
ω −ω
−ω ω


 ,

where L(G) is n×n and the left upper zero block in the second matrix is (n−1)×(n−1).
By [7, Th. 4.3.4 (a), the case k = 2],

µ(Gv
ω) = λ2(Lω) ≤ λ3(L(G) ⊕ (0))

= λ2(L(G)) = µ(G).

Remark 1.2. The theorem is essentially a consequence of Cor. 4.2 of [6]. It is
proved for trees in [8].

Example 1.3. For the complete graphs Kn, n > 1, with all weights equal to 1

lim
ω→∞µ((Kn)v

ω) =
n + 1

2
< n = µ(Kn).

Example 1.4. For the cycles Cn, n > 2, with weights equal to 1

lim
ω→∞µ((Cn)v

ω) = µ(Cn+1) < µ(Cn).

Example 1.5. Let G be the graph obtained from K4 by deleting an edge and
let all the weights of G be equal to 1. If the degree of v is 3,

lim
ω→∞µ(Gv

ω) = 2 = µ(G).

If the degree of v is 2

lim
ω→∞µ(Gv

ω) < µ(G).

Since µ(Gv
ω) is bounded by µ(G), it is natural to ask when does

lim
ω→∞µ(Gv

ω) = µ(G).

We answer this question in Section 3, in the case that G is a tree. The needed
background on the algebraic connectivity of trees is described in Section 2.
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2. Results on trees. Our paper relies heavily on the work of [12] so in this
section we describe their main results and basic background on trees needed for these
results and for the next section. In some cases we change the notation of [12].

Theorem 2.1. [4, Th. 3.11] Let T be a weighted tree with Laplacian matrix L
and algebraic connectivity µ. Let y be an eigenvector of L associated with µ. Then

exactly one of the following two cases occur:

(a) Some entry of y is 0.
(b) All entries of y are nonzero.

In the �rst case there exists a unique vertex c such that yc = 0 and c is adjacent to

a vertex d with yd �= 0. In the second case there is a unique pair of vertices i and j
adjacent in T such that yiyj < 0.

Definition 2.2. A weighted tree T is said to be of type I with a characteristic
vertex c if case (a) of Theorem 2.1 holds, and of type II with characteristic vertices i
and j in case (b). We use also the notation Ic in the �rst case and IIi,j in the second
case.

The name characteristic vertices was coined in [11] by R. Merris who showed that
if µ is not a simple eigenvalue, then all the corresponding eigenvectors yield the same
type of tree and the same characteristic vertices.

Definition 2.3. Let v be a vertex of a tree T . Let Lv be the matrix obtained
by deleting the row and column of the Laplacian matrix of T that correspond to v.
The matrix Mv,T := L−1

v is called the bottleneck matrix of T at v.
In [9] and [10], it is shown that the entry of Mv,T that corresponds to the vertices

k and l is

mkl =
∑ 1

ω(g)

where the summation is on all edges g that lie on the intersection of the path between
k and v and the path between l and v. The matrix Mv,T is permutationally similar
to a block diagonal matrix, where the number of blocks is the degree of v and each
block is a positive matrix which corresponds to a unique branch at v.

For vertices u, v of a tree T let v → u denote the branch of T at v, that contains u.
We denote by Mv→u,T the block of Mv,T that corresponds to v → u, and by Mv �→u,T

the matrix obtained from Mv,T by deleting the rows and the columns corresponding
to Mv→u,T .

Definition 2.4. A diagonal block of Mv,T whose spectral radius is equal to
ρ(Mv,T ), where ρ(A) denotes the spectral radius of the matrix A, is called a Perron
block and the corresponding branch of T at v is called a Perron branch.

Theorem 2.5. [9, Cor. 2.1] Let T be a weighted tree. Then T is of type I with a

characteristic vertex c, if and only if at c, T has more than one Perron branch.

In this case, µ(T ), the algebraic connectivity of T is equal to 1
ρ(Mc,T ) .

Let e be an edge of a graph G. Replace the weight at e by ω and denote the
resulting graph by Ge

ω . Observe that since e = {v, u} is a pendant edge of Gv
ω , then

(Gv
ω)e

ω = Gv
ω. Let G

e
∞ denote the family of weighted graphs {Ge

ω, ω > 0}, and let Gv
∞

denote the family of weighted graphs {Gv
ω, ω > 0}.
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Theorem 2.6. [12, Corollary 1.1] Let T be a weighted tree and let e be an edge

of T . Then there exists a positive number ω0 such that all the trees T e
ω, ω0 < ω < ∞,

are of the same type and have the same characteristic vertices.

The following de�nitions are used in [12].
Definition 2.7. The family of trees T e

∞ is a type I tree at in�nity with charac-
teristic vertex c if there exists an ω0 > 0 such that for all ω ∈ [ω0,∞), T e

ω is of type
Ic. Similarly, T e

∞ is a type II tree at in�nity with characteristic vertices i and j if
there exists an ω0 > 0 such that for all ω ∈ [ω0,∞), T e

ω is of type IIi,j .
We now can state the main result of [12].
Theorem 2.8. [12, Th.1.8] Let e = {v, u} be an edge that is not a pendant edge

of a tree T . Let T1 and T2 be the resulting components arising from the deletion of

e. Suppose v ∈ T1, u ∈ T2 and µ(T1) ≤ µ(T2). Then lim
ω→∞µ(T e

ω) = µ(T1) i� T1 is a

tree of type I with a characteristic vertex, say, c, and one of the following conditions

holds:

(a) T e
∞ is of type I with a characteristic vertex c.

(b) c is incident to e and ρ(Mu,T2) ≤ 1
µ(T1) .

We conclude the background results with the analogue of Theorem 2.5 for type
II trees and two propositions that will be used in proving the main result.

Theorem 2.9. [9, Th.1] A weighted tree T is of type II i� at every vertex T has

a unique Perron branch. If the characteristic vertices, i and j, of T are joined by an

edge of weight θ, then there exists a number 0 < γ < 1, such that

ρ(Mi→j,T − γ

θ
J) = ρ(Mj→i,T − 1 − γ

θ
J), and

µ(T ) =
1

ρ(Mi→j,T − γ
θ J)

=
1

ρ(Mj→i,T − 1−γ
θ J)

,

where J denotes an all ones matrix.

Proposition 2.10. [8, Cor. 1.1] The characteristic vertices of T v
ω lie on the path

between the characteristic vertices of T and u.
Proposition 2.11. [12, Claim 3.2] Let T be a tree. Let {ik, jk} be edges in T

with weights αk, for k = 1, 2 , such that the path from i1 to j2 contains j1 and i2, and
let 0 < γ1, γ2 < 1. Then

ρ(Mj1→i1,T − γ1

α1
J) < ρ(Mj1→i1,T ) < ρ(Mj2→i2,T − γ2

α2
J).

3. Assigning an arbitrarily large weight to a pendant edge of a tree. In
this section we consider the case where T is a tree and u is a pendant vertex of T ∪ e
where e = {v, u} and v ∈ T .

In some sense the question in this case may be considered as a special case of
the discussion in [12]. To do this, {u} is to be considered as a "tree with algebraic
connectivity ∞" and the spectral radius of an empty matrix has to be de�ned (for
example as 0).
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Our discussion is based on the analysis of the limits of the bottleneck matrices of
T v

ω when ω increases to ∞; namely

Mv,T v
ω

= Mv,T ⊕
(

1
ω

)
,

Mu,T v
ω

= (Mv,T ⊕ (0)) +
1
ω
J

and if s �= v is a vertex of T ,

Ms,T v
ω

=
(

Ms,T M (v)

M (v)t mvv + 1
ω

)
,

where M (v) is the column of Ms,T corresponding to v and mvv is the diagonal entry
of Ms,T , corresponding to v. In particular, for all the branches of T at s that do
not contain v, the diagonal blocks of Ms,T v

ω
and of Ms,T are the same. Denoting

lim
ω→∞Ms,T v

ω
by Ms,T v∞ we see that for s /∈ e

Ms,T v∞ =


 Ms,T M (v)

M (v)t mvv


 (3.1)

and

Mv,T v∞ = Mu,T v∞ = Mv,T ⊕ (0). (3.2)

The reader should not be confused by the fact that T v
∞ denotes a family of trees

while Ms,T v∞ denotes a single matrix (up to permutation similarity).

Example 3.1.

◦
1/2a

��
��

��
�

◦ 1

c
◦ ω

v
◦

u

◦ 1/2b

�������

Mv,T v∞ = Mu,T v∞ =




3 1 1 0
1 3 1 0
1 1 1 0
0 0 0 0


 ,

Mc,T v∞ =




2 0 0 0
0 2 0 0
0 0 1 1
0 0 1 1


 ,
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Ma,T v∞ = Mb,T v∞ =




4 2 2 2
2 2 2 2
2 2 3 3
2 2 3 3


 .

Remark 3.2. The matrices Ms,T v∞ are of course singular, but they do contain
information on limω→∞ µ(T v

ω).
As in the case of nonsingular bottleneck matrices we call the diagonal blocks of

Ms,T v∞ whose spectral radius is maximal, Perron blocks. The corresponding branches
of T v

ω do not depend on ω; they will be called the Perron branches of the family T v∞.

Lemma 3.3. If Ms,T v∞ has more than one Perron block, then

lim
ω→∞µ(T v

ω) =
1

ρ(Ms,T v∞)
.

Proof. Consider the principal submatrix Ls,T v
ω
obtained from the Laplacian ma-

trix of T v
ω by deleting the row and column corresponding to s. Then

Ms,T v∞ = lim
ω→∞(Ls,T v

ω
)−1.

By [7, Th. 4.3.15] for r = n− 1, k = 1 and k = 2,

λ1(Ls,T v
ω
) ≤ µ(T v

ω) ≤ λ2(Ls,T v
ω
),

so

lim
ω→∞λ1(Ls,T v

ω
) ≤ lim

ω→∞µ(T v
ω) ≤ lim

ω→∞λ2(Ls,T v
ω
),

Since Ms,T v∞ has at least two Perron blocks we obtain

lim
ω→∞λ2(Ls,T v

ω
) = lim

ω→∞λ1(Ls,T v
ω
) = ρ(Ms,T v∞).

Remark 3.4. If there exists an ω0 such that two of the Perron blocks of Ms,T v∞
are Perron blocks of Ms,T v

ω
for ω ≥ ω0 then

λ2(Ls,T v
ω
) = λ1(Ls,T v

ω
) for ω ≥ ω0.

Lemma 3.5. Let s be a vertex of T . Suppose Ms,T v∞ has at least two Perron

blocks and let t be another vertex of T . Then

ρ(Mt,T v∞) > ρ(Ms,T v∞)
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Proof. By assumption, the family T v
∞ has at least two Perron branches at s, so

one of them, say s → x, does not contain t. Let t → s be the branch at t that contains
s. Then it contains the branch s → x, and we obtain

ρ(Mt,T v∞) ≥ ρ(Mt→s,T v∞) > ρ(Ms→x,T v∞) = ρ(Ms,T v∞),

where the strict inequality follows from [1, Cor. 2.1.5] and the fact that Ms→x,T v∞ is
a submatrix of Mt→s,T v∞ , which is positive.

Corollary 3.6. There is at most one vertex, say c, such that Mc,T v∞ has more

than one Perron block.

Definition 3.7. In the case that there is a vertex c such that Mc,T v∞ has more
than one Perron block, we will say that the family of trees T v

∞ is a trii (tree in in�nity)
of type Ic. If no such c exists we say that T v

∞ is a trii of type II.
Remark 3.8.

(a) If the trees T v
ω are of type Ic for all su�ciently large ω, then the family T v

∞
is a trii of type Ic (and also a type I tree at in�nity with characteristic vertex c). In
other words, if T v∞ is a trii of type II, then for all ω large enough, T v

ω are trees of type
II.

(b) Suppose the trees T v
ω are of type IIp,q for all su�ciently large ω, then by the

representation of Lω in the proof of Theorem 1.1 and by Theorem 2.1, {p, q} cannot
be the pendant edge {v, u}.

(c) It is possible that T v
ω are of type II for all su�ciently large ω (so T v∞ is a

type II tree at in�nity) but T v
ω is a trii of type I; see Lemma 3.10 and Subcase 4 of

Example 3.13 in the following discussion.
Remark 3.9. The proof of Lemma 3.5 shows that if T is a tree of type I with a

characteristic vertex c, then for any other vertex s of T

ρ(Ms,T ) > ρ(Mc,T ).

(This has already been established in Proposition 2 of [9].)
Consider Theorem 2.9 where T v

ω is of type IIi,j and the weight of the edge {i, j}
is θ. Then for every ω (su�ciently large) there exist a number γω, between 0 and 1,
such that

µ(T v
ω) =

1
ρ(Mi→j,T v

ω
− γω

θ J)
=

1
ρ(Mj→i,T v

ω
− 1−γω

θ J)
.

What happens to the the number γω when ω goes to ∞? We claim that lim
ω→∞ γω

exists. Indeed, one of the branches corresponding to Mi→j,T v
ω
and Mj→i,T v

ω
does not

contain u. Suppose it is the second, so Mj→i,T v
ω

= Mj→i,T . The numbers µ(T v
ω)

increase to a limit, see Theorem 1.1, so the numbers ρ(Mj→i,T v
ω
− 1−γω

θ J) decrease to
a limit , which means that the numbers 1-γω increase to a limit. This limit is at most
1 since 0 < γω < 1.

Lemma 3.10. If the trees T v
ω are of type II, with characteristic vertices i, j for

ω0 < ω < ∞, and if γ = lim
ω→∞ γω = 0, where ρ(Mi→j,T v

ω
− γω

θ J) = ρ(Mj→i,T v
ω
− 1−γω

θ J)
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and θ is the weight of the edge {i, j}, then T v
∞ is a trii of type Ii. Similarly, if γ = 1

then T v
∞ is a trii of type Ij .

Proof. Mj→i,T v∞ = (Mi�j,T v∞ ⊕ (0)) + 1
θJ so if γ = 0, then ρ(Mi→j,T v∞) =

ρ(Mj→i,T v∞ − 1
θJ) = ρ(Mi�j,T v∞) so T e

∞ is a trii of type Ii.
Corollary 3.11. If the trees T v

ω are of type II and if T v
∞ is a trii of type II,

then 0 < γ = lim
ω→∞ γω < 1.

Remark 3.12. The tree T can be a tree of type I with a characteristic vertex,
say c, or a tree of type II. In the �rst case there are 3 possibilities:

1 T v∞ is a trii of type Ic,
2 T v

∞ is a trii of type Is, where s �= c,
3 T v

∞ is a trii of type II.
In the second case there are two possibilities:
4 T v∞ is a trii of type Is for some s,
5 T v

∞ is a trii of type II.

The following example demonstrates that all �ve subcases are possible.
Example 3.13.

Subcase 1

◦
x

��
��

��
�

◦ 1

c
◦ ω

v
◦

u

◦
x

�������
0 < x ≤ 1

2 .

Here

Mc,T v
ω

=




1/x 0 0 0
0 1/x 0 0
0 0 1 1
0 0 1 1 + 1

ω


 ,

so for x < 1
2 , T

v
∞ is a tree of type I with a characteristic vertex c and for x = 1

2, it is
only a trii of type Ic.

Another example is when c = v

◦
x

��
��

��
�

◦ ω

c
◦

u

◦
x

�������
.
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Subcase 2

◦
x

��
��

��
�

◦ 10

c
◦ 1

s
◦ ω

v
◦
u

◦
x

�������

where

ρ




 1/x+ 0.1 0.1 0.1

0.1 1/x+ 0.1 0.1
0.1 0.1 0.1





 = 2.

Subcase 3

◦
x

��
��

��
�

◦ 1

c
◦ ω

v
◦

u

◦
x

�������
1
2 < x ≤ 1,

or

◦ 1 ◦ 1

c
◦ ω

v
◦.

Subcase 4

◦ 1 ◦ x ◦ 1

s
◦ ω

v
◦, ρ

[(
1 + 1/x 1/x

1/x 1/x

)]
= 2.

Subcase 5
Here we suggest 3 examples:

◦
x

��
��

��
�

◦ 1 ◦ ω ◦

◦
x

�������
x > 1,

◦ x ◦ 1 ◦ ω ◦
x /∈ {1/2, 1},
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◦
1

��
��

��
�

◦ ω

v
◦

u

◦
x

�������
x �= 1.

We are now ready to state and prove the main result.

Theorem 3.14. Let T be a tree. Then

lim
ω→∞µ(T v

ω) = µ(T ) (3.3)

if and only if

(a) T is a tree of type I with characteristic vertex say c,
and

(b) ρ(Mc→u,T v∞) ≤ ρ(Mc,T ) = 1
µ(T ) .

Proof. We prove the theorem by considering the �ve subcases of Remark 3.12,
and showing that (3), (a) and (b) hold in Subcase 1 and only in this case, i.e. if and
only if T and T v

∞ are of type Ic for some vertex c.
Subcase 1: Obviously (a) holds. From (1) and (2) follows that ρ(Mc,T v

ω
) ≥

ρ(Mc,T ). But if T and T v
ω are of type Ic, then equality holds. Thus

ρ(Mc→u,T v∞) ≤ ρ(Mc,T ),

proving (b), and

µ(T ) =
1

ρ(Mc,T )
=

1
ρ(Mc,T v

ω
)

= lim
ω→∞µ(T v

ω),

proving (3). This completes the proof in Subcase 1.
If T is a tree of type Ic and (b) holds, then it follows easily that T v

ω is a trii of
type Ic. Therefore (b) does not hold in Subcases 2 and 3, while (a) obviously does
not hold in Subcases 4 and 5. Now we will prove that (3) does not hold in the last
four subcases.

Subcase 2: We have to show that (3) does not hold. Indeed

µ(T ) =
1

ρ(Mc,T )
>

1
ρ(Ms,T )

=
1

ρ(Ms,T v
ω
)
, by Lemma 3.5

= lim
ω→∞µ(T v

ω) , by Lemma 3.3.

Subcase 3: By Remark 3.8(a) the trees T v
ω are for su�ciently large ω of type II,

say of type IIp,q, see Theorem 2.6, and the edge {p, q} of T has weight θ, by Remark
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3.8(b) it does not depend on ω. Without loss of generality, p lies on the path between
q and c.

By Proposition 2.10 the vertices p and q lie on the path between c and u. Let i
be a neighbor of c such that c, p and q lie on the path between i and u and c → i is a
Perron branch of T . Then we obtain

lim
ω→∞µ(T v

ω) = lim
ω→∞

1
ρ(Mq→p,T v

ω
− γω

θ J)
, by Theorem 2.9,

= lim
ω→∞

1
ρ(Mq→p,T − γω

θ J)
, since q → p is in T ,

=
1

ρ(Mq→p,T − γ
θJ)

, where 0 < γ < 1, by Corollary 3.11,

<
1

ρ(Mc→i,T )
, by Proposition 2.11,

=
1

ρ(Mc,T )
, since c → i is a Perron branch of T,

= µ(T ) , since T is of type Ic,

so (3) does not hold.
Subcase 4: Here again we have to show that (3) does not hold. Suppose T is of

type IIij , where j lies on the path from i to u. Let θ and γ be as in Theorem 2.9.
Since T v

ω is a trii of type Is, the by Proposition 2.10, s lies on the path from i to u.
Therefore

lim
ω→∞µ(T v

ω) = lim
ω→∞

1
ρ(Ms→i,T v

ω
)

= lim
ω→∞

1
ρ(Ms→i,T )

≤ 1
ρ(Mj→i,T )

<
1

ρ(Mj→i,T − γ
θJ)

= µ(T ).

Subcase 5: Here T is of, say, type IIij and for ω large enough, T v
ω are of, say, type

IIpq, where by Proposition 2.10, we may take, without loss of generality, p and q to
lie between i and q. Let θ and γ be as in Theorem 2.9 for the edge {i, j} in T and

let θ̂ and γω be the corresponding pair for the edge {p, q} in T v
ω . Observe that θ̂ does

not depend on ω by Remark 3.8(b). Let γ̂ = limω→∞ γω. By Corollary 3.13 we have
0 < γ < 1. Now

lim
ω→∞µ(T v

ω) = lim
ω→∞

1
ρ(Mq→p,T v

ω
− γω

θ̂
J)

= lim
ω→∞

1
ρ(Mq→p,T − γω

θ̂
J)

=
1

ρ(Mq→p,T − γ̂

θ̂
J)

<
1

ρ(Mj→i,T − γ
θJ)

= µ(T ),

where the inequality follows from Proposition 2.11.

Acknowledgments. We are indebted to Mr. Felix Goldberg [5] for suggesting
Example 1.5 which shows that G does not have to be a tree for lim

ω→∞µ(Gv
ω) = µ(G)
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to hold. The question of when does lim
ω→∞µ(Gv

ω) = µ(G), when G is a general graph,

seems to be much more di�cult than the one in the case that G is a tree. We
are grateful to the referee for his or her important remarks and for suggesting that
Propositions 1.3 and 1.4, as well as Lemma 2.2 of [2], may be useful in dealing with
the general case.
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