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ALGEBRAIC CONNECTIVITY OF TREES WITH A PENDANT
EDGE OF INFINITE WEIGHT*

A. BERMANT AND K.-H. FORSTER!

Abstract. Let G be a weighted graph. Let v be a vertex of G and let G, denote the graph
obtained by adding a vertex u and an edge {v, u} with weight w to G. Then the algebraic connectivity
u(G?) of G, is a nondecreasing function of w and is bounded by the algebraic connectivity p(G) of
G. The question of when u)liﬁmoo u(G?) is equal to u(G) is considered and answered in the case that

G is a tree.
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1. Introduction. A weighted graph on n vertices is an undirected simple graph
G on n vertices such that with each edge e of G, there is an associated positive number
w(e) which is called the weight of e.

The Laplacian matriz of a weighted graph G on n vertices is the n x n matrix
L(G) = L = (l;;), where for each ¢,j =1,...,n,

—w(e) if i#£j and e={i,j},
lij=44 0 if i#j and iis not adjacent to 7,
Zk:,éi lip if i=7j.

Clearly L is a singular M-matrix and positive semidefinite, so A;(L) = 0, where
for a symmetric matrix A we arrange the eigenvalues in nondecreasing order

M(A) < Aa(4) < ...
Fiedler [3] showed that A(L) is positive iff G is connected and called it the
algebraic connectivity of G. The algebraic connectivity of G will be denoted by u(G).
In this paper G always denotes a connected weighted graph without loops.
Let G be a graph with n vertices. Let v be a vertex of G and let G, be the graph
with n 4 1 vertices obtained by adding to G a vertex v and an edge e = {v,u} with
weight w.
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THEOREM 1.1. The algebraic connectivity 1(G?)) is a nondecreasing function of
w and for every w and n > 1

w(Gy) < u(G).

Proof. Let L, be the Laplacian matrix of GY, and let 0 < w; < wy. Then
B = L, — L, is a singular rank one positive semidefinite matrix. By [7, Th. 4.3.1]

Me(Lw,) < Ae(Lw,) fork=1...n,
and for k =2, u(GY) < u(GY,).
To show that ©(GY) is bounded, write L,, as the sum of two block matrices
L(G) 0 0 0
L, = +
0

0 0 —w  w

where L(G) is nxn and the left upper zero block in the second matrix is (n—1)x(n—1).
By [7, Th. 4.3.4 (a), the case k = 2],

p(GS) = da(Ly) < A3(L(G) @ (0))
=N(L(@)) =pG). O

REMARK 1.2. The theorem is essentially a consequence of Cor. 4.2 of [6]. It is

proved for trees in [8].
ExaMPLE 1.3. For the complete graphs K,,n > 1, with all weights equal to 1

lim u((K)) = "5 < n = (K.

w
w—00

ExaMPLE 1.4. For the cycles C),,n > 2, with weights equal to 1
wh_{go 1((Cn)s) = 1(Crar) < p(Cr).

EXAMPLE 1.5. Let G be the graph obtained from K4 by deleting an edge and
let all the weights of G be equal to 1. If the degree of v is 3,

Jim p(GE) =2 = p(G).
If the degree of v is 2
Jim p(GE) < (@)
Since p(GY) is bounded by u(G), it is natural to ask when does
i p(G8) = (@),

We answer this question in Section 3, in the case that G is a tree. The needed
background on the algebraic connectivity of trees is described in Section 2.
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2. Results on trees. Our paper relies heavily on the work of [12] so in this
section we describe their main results and basic background on trees needed for these
results and for the next section. In some cases we change the notation of [12].

THEOREM 2.1. [4, Th. 3.11] Let T be a weighted tree with Laplacian matriz L
and algebraic connectivity . Let y be an eigenvector of L associated with . Then
ezxactly one of the following two cases occur:

(a) Some entry of y is 0.

(b) All entries of y are nonzero.

In the first case there exists a unique vertex ¢ such that y. = 0 and c is adjacent to
a vertex d with yq # 0. In the second case there is a unique pair of vertices i and j
adjacent in T such that y;y; < 0.

DEFINITION 2.2. A weighted tree T is said to be of type I with a characteristic
vertex c if case (a) of Theorem 2.1 holds, and of type II with characteristic vertices i
and j in case (b). We use also the notation I, in the first case and II; ; in the second
case.

The name characteristic vertices was coined in [11] by R. Merris who showed that
if p is not a simple eigenvalue, then all the corresponding eigenvectors yield the same
type of tree and the same characteristic vertices.

DEFINITION 2.3. Let v be a vertex of a tree T. Let L, be the matrix obtained
by deleting the row and column of the Laplacian matrix of 7" that correspond to v.
The matrix M, r:= L, ! is called the bottleneck matrix of T at v.

In [9] and [10], it is shown that the entry of M, 1 that corresponds to the vertices
k and [ is

1
=2 o)
where the summation is on all edges g that lie on the intersection of the path between
k and v and the path between [ and v. The matrix M, 7 is permutationally similar
to a block diagonal matrix, where the number of blocks is the degree of v and each
block is a positive matrix which corresponds to a unique branch at v.

For vertices u, v of a tree T let v — u denote the branch of T at v, that contains w.
We denote by M,,_,, 7 the block of M, 1 that corresponds to v — w, and by M4,
the matrix obtained from M, 1 by deleting the rows and the columns corresponding
to My*,u’T.

DEFINITION 2.4. A diagonal block of M, r whose spectral radius is equal to
p(My, 1), where p(A) denotes the spectral radius of the matrix A, is called a Perron
block and the corresponding branch of T at v is called a Perron branch.

THEOREM 2.5. [9, Cor. 2.1] Let T be a weighted tree. Then T is of type I with a
characteristic vertex c, if and only if at ¢, T has more than one Perron branch.

In this case, p(T'), the algebraic connectivity of T is equal to m.

Let e be an edge of a graph G. Replace the weight at e by w and denote the
resulting graph by G¢. Observe that since e = {v,u} is a pendant edge of G, then
(G?)e = GY. Let GS, denote the family of weighted graphs {G¢,w > 0}, and let G,
denote the family of weighted graphs {GY,w > 0}.
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THEOREM 2.6. [12, Corollary 1.1] Let T be a weighted tree and let e be an edge
of T. Then there exists a positive number wg such that all the trees T, wo < w < 00,
are of the same type and have the same characteristic vertices.

The following definitions are used in [12].

DEFINITION 2.7. The family of trees TS is a type I tree at infinity with charac-
teristic vertex c if there exists an wg > 0 such that for all w € [wg, 00), T is of type
I.. Similarly, TS is a type II tree at infinity with characteristic vertices ¢ and j if
there exists an wy > 0 such that for all w € [wg, 00), TS is of type I, ;.

We now can state the main result of [12].

THEOREM 2.8. [12, Th.1.8] Let e = {v,u} be an edge that is not a pendant edge
of a tree T'. Let Ty and Ty be the resulting components arising from the deletion of
e. Suppose v € Ty, u € Ty and pu(Th) < p(T2). Then wlln;o w(Te) = pw(Th) iff Th is a
tree of type I with a characteristic vertez, say, c, and one of the following conditions
holds:

(a) TS is of type I with a characteristic vertex c.

(b) c is incident to e and p(M, 1,) < ﬁ

We conclude the background results with the analogue of Theorem 2.5 for type
IT trees and two propositions that will be used in proving the main result.

THEOREM 2.9. [9, Th.1] A weighted tree T is of type II iff at every vertex T has
a unique Perron branch. If the characteristic vertices, i and j, of T are joined by an
edge of weight 0, then there exists a number 0 < v < 1, such that

1

p(Mi—>j,T — %J) = P(Mj—n‘,T — %J),and

1 1

w(T) = = =k
p(Mi—jr—3J)  p(Mj_sr — 52J)

where J denotes an all ones matriz.

PRrOPOSITION 2.10. [8, Cor. 1.1] The characteristic vertices of T lie on the path
between the characteristic vertices of T and u.

PROPOSITION 2.11. [12, Claim 3.2] Let T be a tree. Let {ix,jr} be edges in T
with weights oy, for k = 1,2 , such that the path from iy to jo contains j1 and iz, and
let 0 < vy1,7 < 1. Then

8! Y2
p(Mjl—Vh,T - a_lj) < p(Mjl—’il,T) < p(Mj2—>i2,T — a—2J)

3. Assigning an arbitrarily large weight to a pendant edge of a tree. In
this section we consider the case where T is a tree and u is a pendant vertex of T U e
where e = {v,u} and v € T

In some sense the question in this case may be considered as a special case of
the discussion in [12]. To do this, {u} is to be considered as a "tree with algebraic
connectivity oo" and the spectral radius of an empty matrix has to be defined (for
example as 0).
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Our discussion is based on the analysis of the limits of the bottleneck matrices of
T when w increases to oo; namely

1
MU,Tij = MU,T @ (_) ’
w

1
My = (Mo © (0)) + =
and if s # v is a vertex of T,

M M@
Ms,Tij - ( ]\4'(71)15 Moy + % ’

where M) is the column of M, 7 corresponding to v and m,,, is the diagonal entry
of Ms r, corresponding to v. In particular, for all the branches of T" at s that do
not contain v, the diagonal blocks of M57T3 and of M, are the same. Denoting
Jim M 7y by Mg,y we see that for s ¢e

M, M@
Mo = (3.1)
* MOty
and
]\411,T;’o = AIu,T;’o = M’U,T D (0) (32)

The reader should not be confused by the fact that T, denotes a family of trees
while M, 7. denotes a single matrix (up to permutation similarity).

ExXAMPLE 3.1.

3 1 1 0
1 3 1 0
Mv,Tgo == -Z\4u,Tg;o = 1 1 1 0 )
00 00
2 0 0 O
02 0 O
Mere =190 11 |
0 0 1 1
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4 2 2 2
2 2 2 2
Moy =Myry = | 9 9 5 3
2 2 3 3

REMARK 3.2. The matrices M v are of course singular, but they do contain
information on limy, oo p(72).

As in the case of nonsingular bottleneck matrices we call the diagonal blocks of
M; > whose spectral radius is maximal, Perron blocks. The corresponding branches
of T do not depend on w; they will be called the Perron branches of the family T .

LEMMA 3.3. If M v has more than one Perron block, then

1
lim u(7T') = ——.
S i) = 0, )

Proof. Consider the principal submatrix Ls 7» obtained from the Laplacian ma-
trix of T)Y by deleting the row and column corresponding to s. Then

MsyTgo = lim (LS’Ts)il.
By [7, Th. 4.3.15|forr =n—1,k =1 and k = 2,
A (L) < u(T) < Ao(Lszy),
S0

lim A (Ls7v) < lim p(7)) < lim Ao(Ls 7o),
« w—00 w—00 e

w—00

Since M&To”e has at least two Perron blocks we obtain

lim )\Q(LS,TLB) = lim )\I(LS7T£) = p(M&T;g)' O

w— 00 w— 00

REMARK 3.4. If there exists an wp such that two of the Perron blocks of M 1v
are Perron blocks of M; rv for w > wo then

)\2(L57T:})) = AI(LS,T;’) fOT w > wop.

LEMMA 3.5. Let s be a vertex of T. Suppose My 1o has at least two Perron
blocks and let t be another vertex of T. Then

p(My 1o ) > p(Ms 1v)
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Proof. By assumption, the family 77 has at least two Perron branches at s, so
one of them, say s — x, does not contain ¢t. Let ¢ — s be the branch at ¢ that contains
s. Then it contains the branch s — z, and we obtain

p(Mt,T;’C) > p(MtHS,TgO) > P(Msaz,Tgo) = p(MS,T;’C)a

where the strict inequality follows from [1, Cor. 2.1.5] and the fact that M, ., o is
a submatrix of MtHS,T;, which is positive. 0

COROLLARY 3.6. There is at most one vertex, say c, such that M. rv» has more
than one Perron block.

DEFINITION 3.7. In the case that there is a vertex ¢ such that M. 1o has more
than one Perron block, we will say that the family of trees T is a trii (tree in infinity)
of type Ic. If no such c exists we say that T2 is a trii of type IL

REMARK 3.8.

(a) If the trees T,V are of type I. for all sufficiently large w, then the family T2
is a trii of type I. (and also a type I tree at infinity with characteristic vertex ¢). In
other words, if T, is a trii of type II, then for all w large enough, 7)) are trees of type
IL.

(b) Suppose the trees T are of type II, , for all sufficiently large w, then by the
representation of L, in the proof of Theorem 1.1 and by Theorem 2.1, {p, ¢} cannot
be the pendant edge {v, u}.

(c) Tt is possible that T% are of type II for all sufficiently large w (so T2 is a
type II tree at infinity) but 7)Y is a trii of type I; see Lemma 3.10 and Subcase 4 of
Example 3.13 in the following discussion.

REMARK 3.9. The proof of Lemma 3.5 shows that if T" is a tree of type I with a
characteristic vertex ¢, then for any other vertex s of T'

P(MS,T) > P(Mc,T)~

(This has already been established in Proposition 2 of [9].)

Consider Theorem 2.9 where T} is of type II; ; and the weight of the edge {,j}
is . Then for every w (sufficiently large) there exist a number ~,,, between 0 and 1,
such that

1 1
w(T) = o = ey
pP(Mijrs =5 J)  p(Mj_iry — 53 J)

What happens to the the number v, when w goes to co? We claim that lim ~,

exists. Indeed, one of the branches corresponding to Miﬂijs and Mjﬁi,Tﬂ dué)esoonot
contain u. Suppose it is the second, so Mjﬁi,Tﬂ = M;_; . The numbers pu(T})
increase to a limit, see Theorem 1.1, so the numbers p(M; ;7o — 1_97” J) decrease to
a limit , which means that the numbers 1-v,, increase to a limit. This limit is at most
1 since 0 < 7, < 1.

LEMMA 3.10. If the trees T} are of type II, with characteristic vertices i,j for

wo < w < 0o, and if y = wlLrI;O Yo = 0, where p(M; ;1o — 32 J) = p(M;_; 70 — 1_97” J)
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and 0 is the weight of the edge {i,j}, then T is a trii of type I;. Similarly, if v =1
then T is a trii of type I;.

PTOOf. Mj—»i,T;’o = (Mi+j,TgQ (&) (0)) + %J so if v =0, then p(Mi—U’,T;’O) =
p(Mj i1y — %J) = p(Mi..jrs ) so TS, is a trii of type I;. a

COROLLARY 3.11. If the trees T,V are of type II and if T is a trii of type II,
then 0 < fy:wli_{r;ofyw < 1.

REMARK 3.12. The tree T can be a tree of type I with a characteristic vertex,
say c, or a tree of type II. In the first case there are 3 possibilities:
1 TY is a trii of type I,
2 TY is atrii of type I5, where s # ¢,
3 TY is a trii of type IL
In the second case there are two possibilities:
4 TY is a trii of type Is for some s,
5 T2 is atrii of type IL

The following example demonstrates that all five subcases are possible.
EXAMPLE 3.13.

Subcase 1
Here
1/ 0 0 0
_ 0 1/z 0 0
Mers=1| o 0 1 1 ’
o 0 1 1+2

so for x < 1, T is a tree of type I with a characteristic vertex ¢ and for x = - it is
only a trii of type I..
Another example is when ¢ = v
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Subcase 2

10 1 w

=0

where
1/z+0.1 0.1 0.1
P 0.1 1/z+0.1 0.1 = 2.
0.1 0.1 0.1
Subcase 3
or
1 1 w
O p > O
Subcase 4
1 z 1 w 1+ ]./l‘ ]./l‘ B
© s v % P |:< 1/I 1/$ =2
Subcase 5

Here we suggest 3 examples:

z ¢ {1/2,1},
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x # 1.

We are now ready to state and prove the main result.

THEOREM 3.14. Let T be a tree. Then

Jim p(T5) = w(T) (3.3)
if and only if
(a) T is a tree of type I with characteristic vertex say c,
and
(b) p(MC*VU‘,T;’O) < p(Mc,T) = M(LT)

Proof. We prove the theorem by considering the five subcases of Remark 3.12,
and showing that (3), (a) and (b) hold in Subcase 1 and only in this case, i.e. if and
only if T" and T2 are of type I, for some vertex c.

Subcase 1: Obviously (a) holds. From (1) and (2) follows that p(M.7v) >
p(M. ). But if T and T are of type I., then equality holds. Thus

p(MC—>u,T§Q) § p(MC,T)a

proving (b), and

1 1
T) = = = lim p(T)),
w(T) p(Mcer)  p(Mero) “’Hoou( )

proving (3). This completes the proof in Subcase 1.

If T is a tree of type I. and (b) holds, then it follows easily that T)! is a trii of
type Ic. Therefore (b) does not hold in Subcases 2 and 3, while (a) obviously does
not hold in Subcases 4 and 5. Now we will prove that (3) does not hold in the last
four subcases.

Subcase 2: We have to show that (3) does not hold. Indeed

1 1
w(T) = >
O = 0t~ p0Lr)
1
= ——— by Lemma 3.5
P(MS,Tg)

= lim wu(T)), by Lemma 3.3.
w—00

Subcase 3: By Remark 3.8(a) the trees TV are for sufficiently large w of type 17,
say of type I, 4, see Theorem 2.6, and the edge {p, ¢} of T" has weight 6, by Remark
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3.8(b) it does not depend on w. Without loss of generality, p lies on the path between
q and c.

By Proposition 2.10 the vertices p and ¢ lie on the path between ¢ and u. Let @
be a neighbor of ¢ such that ¢, p and ¢ lie on the path between ¢ and u and ¢ — i is a
Perron branch of T. Then we obtain

1

lim p(T)) = lim , by Theorem 2.9,
wmeo w=00 p(My—p 1y — %J)
1
= lim , since ¢ —» pisin T,
w00 p(My—pr — 5 J)
1
= , where 0 < v < 1, by Corollary 3.11,
p(Mg—p,r — %J)
1
< ——— , by Proposition 2.11,
p(Mc—>i,T)
1
= ———  since ¢ — ¢ is a Perron branch of T,
p(Me,r)

= u(T), since T is of type I,

0 (3) does not hold.

Subcase 4: Here again we have to show that (3) does not hold. Suppose T is of
type 11;;, where j lies on the path from ¢ to u. Let § and v be as in Theorem 2.9.
Since T7 is a trii of type I, the by Proposition 2.10, s lies on the path from i to w.

Therefore
lim p(7)) = lim ; = lim ;
Ww—00 w Ww—00 P(Ms—w',Tg) w—00 p(Mé—n,T)
1 1

< < =
p(Mj—ir) ~ p(Mj—ir —5J)

Subcase 5: Here T is of, say, type II;; and for w large enough, T3 are of, say, type
II,,, where by Proposition 2.10, we may take, without loss of generality, p and ¢ to
lie between i and ¢. Let 6 and « be as in Theorem 2.9 for the edge {7,j} in T and
let § and v, be the corresponding pair for the edge {p, ¢} in T)Y. Observe that 6 does
not depend on w by Remark 3.8(b). Let 4 = limy,_ o 7w- By Corollary 3.13 we have
0 <~v < 1. Now

1 1
lim p(T?) = lim = lim
w— 00 M( W) w—00 p(Mqu,TS — %"J) w—00 p(Mqu,T — %J)
1 1
= = < = IU’(T)’

p(My—pr—3J)  P(Mjisr = 5J)
where the inequality follows from Proposition 2.11. |

Acknowledgments. We are indebted to Mr. Felix Goldberg [5] for suggesting
Example 1.5 which shows that G does not have to be a tree for lim p(G?) = u(G)
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to hold. The question of when does lim u(GY) = u(G), when G is a general graph,
w—00

seems to be much more difficult than the one in the case that G is a tree. We
are grateful to the referee for his or her important remarks and for suggesting that
Propositions 1.3 and 1.4, as well as Lemma 2.2 of [2], may be useful in dealing with
the general case.
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