

## ON A CONJECTURE REGARDING CHARACTERISTIC POLYNOMIAL OF A MATRIX PAIR\*

C. M. DA FONSECA<sup>†</sup>

**Abstract.** For *n*-by-*n* Hermitian matrices A(>0) and B, define

$$\eta(A, B) = \sum_{S} \det A(S) \det B(S'),$$

where the summation is over all subsets of  $\{1, \ldots, n\}$ , S' is the complement of S, and by convention  $\det A(\emptyset) = 1$ . Bapat proved for n = 3 that the zeros of  $\eta(\lambda A, -B)$  and the zeros of  $\eta(\lambda A(23), -B(23))$  interlace. This result is generalized to a broader class of matrices.

Key words. Symmetric matrices, Cycles, Characteristic polynomial, Interlacing.

AMS subject classifications. 15A15, 15A42.

**1. Introduction.** Let  $A = (a_{ij})$  and  $B = (b_{ij})$  be matrices of order n. For index sets  $S \subset \{1, \ldots, n\}$ , we denote by A(S) the  $|S| \times |S|$  principal submatrix lying in the rows and columns indexed by S. We may also denote A(S') by  $A_S$ , with S' indexed the complement of S.

Define

$$\eta(A,B) := \sum_{S} \det A(S) \det B(S')$$

where the summation is over all subsets of  $\{1, \ldots, n\}$  and, by convention,  $\det A(\emptyset) = \det B(\emptyset) = 1$ . Notice that

(1.2) 
$$\eta(\lambda I_n, -B) = \det(\lambda I_n - B) ,$$

i.e.,  $\eta(\lambda I_n, -B)$  is the characteristic polynomial of B. It is well-known that, if B is Hermitian, then the roots of (1.2), the eigenvalues of B, are all real. Motivated by this result, Johnson [3] considered the polynomial (of degree n)

(1.3) 
$$\eta(\lambda A, -B) = \sum_{k=0}^{n} \sum_{|S|=k} (-1)^{n-k} \det A(S) \det B(S') \lambda^{k} ,$$

and stated the conjecture:

Conjecture 1.1 (Johnson [3]). If A and B are Hermitian and A is positive semidefinite, then the polynomial  $\eta(\lambda A, -B)$  has only real roots.

For a square matrix A, we write A > 0 to denote that A is positive definite. If all roots of the polynomial (1.3), say  $\lambda_{\ell}^{A}(B)$ , for  $\ell = 1, \ldots, n$ , are real, we assume that

<sup>\*</sup>Received by the editors 27 April 2005. Accepted for publication 25 May 2005. Handling Editor: Rayindra B. Bapat.

 $<sup>^\</sup>dagger Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, PORTUGAL (cmf@mat.uc.pt). This work was supported by CMUC - Centro de Matemática da Universidade Coimbra.$ 



158 C. M. da Fonseca

they have been arranged in increasing order  $\lambda_1^A(B) \leq \cdots \leq \lambda_n^A(B)$ . Bapat in [1] and Johnson in [4] conjectured:

Conjecture 1.2. If A > 0 and B are Hermitian, then  $\lambda_{\ell}^{A_1}(B_1)$ , for  $\ell = 1, \ldots, n-1$ , interlace  $\lambda_{\ell}^{A}(B)$ , for  $\ell = 1, \ldots, n$ , i.e.,

$$\lambda_{\ell}^{A}(B) \leq \lambda_{\ell}^{A_1}(B_1) \leq \lambda_{\ell+1}^{A}(B)$$
,  $\ell = 1, \dots, n-1$ .

Conjecture 1.1 has been verified for the case n=3 by Rublein in [5] in a very complicated way. On the other hand, Bapat in [1] gave concise solutions for the cases  $n \leq 3$ . Bapat also verified that Conjectures 1.1 and 1.2 are true when both A and B are tridiagonal. Recently, the author generalized these results for matrices whose graph is a tree [2].

In this note we generalize the result of Bapat when n=3 to matrices whose graph is a cycle.

For sake of simplicity we consider only symmetric matrices throughout. All the results can be easily generalized to Hermitian matrices.

**2. Results on tridiagonal matrices.** We define the weights of a symmetric matrix A as  $w_{ij}(A) = -a_{ij}^2$  if  $i \neq j$ , and  $w_{ii}(A) = a_{ii}$ . Sometimes we abbreviate to  $w_{ij}$ , with no mention of A.

LEMMA 2.1 (Bapat [1]). Let A and B be symmetric tridiagonal matrices and let  $S = \{1, 2\}$ . Then

(2.1) 
$$\eta(A,B) = \sum_{\ell \in S} (w_{1\ell}(A) + w_{1\ell}(B)) \eta(A_{1\ell}, B_{1\ell}) .$$

For tridiagonal matrices we also state the following result, which can be proved by induction.

Lemma 2.2. Let A and B be symmetric tridiagonal matrices of order n. Then

$$(2.2) \quad \eta(A,B)\eta(A_{1n},B_{1n}) = \eta(A_1,B_1)\eta(A_n,B_n) - (a_{12}^2 + b_{12}^2) \cdots (a_{n-1,n}^2 + b_{n-1,n}^2).$$

Notice that (2.2) holds up to permutation similarity.

**3.** An interlacing theorem. Bapat proved the veracity of Conjectures 1.1 and 1.2 in the case  $n \leq 3$ .

THEOREM 3.1 (Bapat [1]). Let A and B be Hermitian matrices of order 3 with A>0 and B has all nonzero subdiagonal entries. Then  $\eta(\lambda A, -B)$  has three real roots, say  $\lambda_1 < \lambda_2 < \lambda_3$ . Furthermore, if  $\mu_1 < \mu_2$  are the roots of  $\eta(\lambda A_1, -B_1)$ , then  $\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \lambda_3$ .

Consider symmetric matrices A and B such that  $a_{ij} = b_{ij} = 0$  for |i - j| > 1 and  $(i, j) \neq (1, n)$ . We say, for obvious reasons, that A and B are matrices whose graph is a cycle. The next result generalizes Lemma 2.1, since if  $w_{1,n} = 0$ , we get (2.1) with i = 1.

LEMMA 3.2. Let A and B be symmetric matrices whose graph is a cycle and set  $S = \{i-1, i, i+1\}$ . Then

$$(3.1) \ \eta(A,B) = \sum_{\ell \in S} (w_{i\ell}(A) + w_{i\ell}(B)) \eta(A_{i\ell}, B_{i\ell}) + 2(-1)^{n-1} (\prod_{\ell=1}^{n} a_{\ell,\ell+1} + \prod_{\ell=1}^{n} b_{\ell,\ell+1}),$$

with the convention (n, n + 1) = (1, n).

*Proof.* Let  $C = \{i-1, i+1\}$ . Considering the partition of all subsets of  $\{1, \ldots, n\}$ , define

$$\mathcal{A}_P = \{ S \mid i \in S, P \subset S, P' \cap S = \emptyset \}$$

and

$$C_P = \{ S \mid i \notin S, P \subset S, P' \cap S = \emptyset \} ,$$

for each subset P of C, where P' is the complement of P with respect to C. Evaluating det A(S) for each  $S \in \mathcal{A}_P$ , and det B(S') for each  $S \in \mathcal{C}_P$ , substituting in (1.3) the expressions obtained and finally rearranging the terms we get (3.1).  $\square$ 

Without loss of generality, set i = 1. Notice that  $A_i$  and  $B_i$  are permutation similar to tridiagonal matrices. Suppose that  $B_1$  is nonsingular and the subdiagonal entries of B are nonzero. From (3.1) we have

$$\eta(\lambda A, -B) = (\lambda a_{11} - b_{11})\eta(\lambda A_1, -B_1) 
+ (a_{12}, a_{1n})P(\lambda)(a_{12}, a_{1n})^t + (b_{12}, b_{1n})Q(\lambda)(b_{12}, b_{1n})^t,$$
(3.2)

where

$$(3.3) P(\lambda) = \begin{pmatrix} -\eta(\lambda A_{12}, -B_{12}) & (-)^{n-1}\lambda^{n-2}a_{23}\cdots a_{n-1,n} \\ (-)^{n-1}\lambda^{n-2}a_{23}\cdots a_{n-1,n} & -\eta(\lambda A_{1n}, -B_{1n}) \end{pmatrix}$$

and

(3.4) 
$$Q(\lambda) = \begin{pmatrix} -\eta(\lambda A_{12}, -B_{12}) & -b_{23} \cdots b_{n-1,n} \\ -b_{23} \cdots b_{n-1,n} & -\eta(\lambda A_{1n}, -B_{1n}) \end{pmatrix}.$$

Suppose that the conjectures are true for such matrices of order less than n-1 in the conditions above, and proceed by induction on n. By hypothesis,  $\eta(\lambda A_1, -B_1)$  has n-1 real roots, say  $\mu_1 < \mu_2 < \cdots < \mu_{n-1}$ , which strictly interlace the n-2 real roots of  $\eta(\lambda A_{12}, -B_{12})$  and the n-2 real roots of  $\eta(\lambda A_{1n}, -B_{1n})$ . Since  $\eta(\lambda A_{12}, -B_{12}), \eta(\lambda A_{1n}, -B_{1n}) \to \infty$  as  $\lambda \to \infty$ , the sign of  $\eta(\mu_k A_{12}, -B_{12})$  and of  $\eta(\mu_k A_{1n}, -B_{1n})$  must be  $(-)^{n-k-1}$ , for  $k=1,\ldots,n-1$ . Setting  $\lambda=\mu_k$  in (3.3), we have

$$\det P(\mu_k) = \eta(\mu_k A_{12} - B_{12}) \eta(\mu_k A_{1n} - B_{1n}) - \mu_k^{2n-4} a_{23}^2 \cdots a_{n-1,n}^2.$$

According to (2.2), since  $\eta(\mu_k A_1, -B_1) = 0$ , we have

$$sign \det P(\mu_k) = + .$$



160 C. M. da Fonseca

Analogously we can prove that sign det  $Q(\mu_k) = +$ . Therefore,  $P(\mu_k)$  and  $Q(\mu_k)$  are positive definite if n - k - 1 is odd, and negative definite if n - k - 1 is even. Hence

$$sign \eta(\mu_k A, -B) = (-)^{n-k} + (-)^{n-k}$$
$$= (-)^{n-k}, \qquad k = 1, \dots, n-1.$$

Since  $\eta(\lambda A, -B) \to (\pm)^n \infty$  as  $\lambda \to \pm \infty$ , it follows that  $\eta(\lambda A, -B)$  has a root in each of the intervals

$$(-\infty, \mu_1), (\mu_2, \mu_3), \ldots, (\mu_{n-2}, \mu_{n-1}), (\mu_{n-1}, \infty),$$

and therefore  $\eta(\lambda A, -B)$  has *n* distinct real roots, which strictly interlace  $\mu_1, \mu_2, \ldots, \mu_{n-1}$ . Relaxing now by a continuity argument the nondegeneracy of the nonsingularity  $B_1$ , we have:

THEOREM 3.3. Let A and B be Hermitian matrices whose graph is a given cycle, with A > 0 and  $b_{ij} \neq 0$  for |i - j| = 1. Then  $\eta(\lambda A, -B)$  has n distinct real roots, say

$$\lambda_1 < \lambda_2 < \cdots < \lambda_n$$
.

Furthermore, if

$$\mu_1 < \mu_2 < \dots < \mu_{n-1}$$

are the roots of  $\eta(\lambda A_i, -B_i)$ ,  $i = 1, \ldots, n$ , then

$$\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \cdots < \mu_{n-1} < \lambda_n$$
.

## 4. Example. Let us consider the Hermitian matrices

$$A = \begin{pmatrix} 3 & i & 0 & 1-i \\ -i & 2 & 1 & 0 \\ 0 & 1 & 4 & -2 \\ 1+i & 0 & -2 & 5 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -1 & 2 & 0 & 1 \\ 2 & 0 & i & 0 \\ 0 & -i & 0 & -2 \\ 1 & 0 & -2 & -1 \end{pmatrix}.$$

The matrix A is positive definite and

$$\eta(\lambda A, -B) = 16 - 32\lambda - 97\lambda^2 + 44\lambda^3 + 47\lambda^4$$

with roots

$$\lambda_1 = -1.8109$$
 $\lambda_2 = -0.5646$ 
 $\lambda_3 = 0.2895$ 
 $\lambda_4 = 1.1498$ 

On the other hand

$$\eta(\lambda A_2, -B_2) = -4 - 12\lambda + 28\lambda^2 + 40\lambda^3$$



Conjecture Regarding Characteristic Polynomial

161

with roots

$$\mu_1 = -0.9090 
\mu_2 = -0.2432 
\mu_3 = 0.4522$$

Hence

$$\lambda_1 \le \mu_1 \le \lambda_2 \le \mu_2 \le \mu_3 \le \lambda_4 \ .$$

Finally, note that  $\eta(\lambda A, -B)$  has as many positive and negative roots as the inertia of B (2, 2, 0); see [4, (2)].

## REFERENCES

- [1] R.B. Bapat. An interlacing theorem for tridiagonal matrices. *Linear Algebra Appl.*, 150:331–340, 1991.
- [2] C.M. da Fonseca. An interlacing theorem for matrices whose graph is a given tree. *J. Math. Sci.* (N.Y.), to appear.
- [3] C.R. Johnson. The permanent-on-top conjecture: A status report. Current Trends in Matrix Theory, pp. 167–174, 1987.
- [4] C.R. Johnson. A characteristic polynomial for matrix pairs. *Linear and Multilinear Algebra*, 25:289–290, 1989.
- [5] G. Rublein. On a conjecture of C. Johnson. Linear and Multilinear Algebra, 25:257–267, 1989.