SOLUTION OF LINEAR MATRIX EQUATIONS IN A
*CONGRUENCE CLASS

ROGER A. HORN*, VLADIMIR V. SERGEICHUK†, AND NAOMI SHAKED-MONDERER‡

Abstract. The possible *congruence classes of a square solution to the real or complex linear matrix equation \(AX = B \) are determined. The solution is elementary and self contained, and includes several known results as special cases, e.g., \(X \) is Hermitian or positive semidefinite, and \(X \) is real with positive definite symmetric part.

Key words. Linear matrix equations, *Congruence, Positive definite matrix, Positive semidefinite matrix, Hermitian part, Symmetric part.

AMS subject classifications. 15A04, 15A06, 15A21, 15A57, 15A63.

1. Introduction. Let \(F \) be either \(\mathbb{R} \) or \(\mathbb{C} \), let \(F^{p \times q} \) denote the vector space (over \(F \)) of \(p \)-by-\(q \) matrices with entries in \(F \), and let \(A, B \in F^{k \times n} \) be given. We are interested in the linear matrix equation \(AX = B \), which we assume to be consistent: \(\text{rank } A = \text{rank } [AB] \).

For a given \(S \in F^{n \times n} \) let \(S^* \equiv \bar{S}^T \) denote the conjugate transpose, so \(S^* = S^T \) if \(F = \mathbb{R} \). Matrices \(X, Y \in F^{n \times n} \) are in the same *congruence class if there is a nonsingular \(S \in F^{n \times n} \) such that \(X = S^*YS \). The Hermitian part of \(X \in F^{n \times n} \) is \(H(X) \equiv (X + X^*)/2 \); when \(F = \mathbb{R} \), \(H(X) \) is also called the symmetric part of \(X \). Let \(I_p \) (respectively, \(0_p \)) denote the \(p \)-by-\(p \) identity (respectively, zero) matrix.

When does \(AX = B \) have a solution \(X \) in a given *congruence class? Special cases of this question involving positive semidefinite or Hermitian solutions were investigated in [1]; [2] asked an equivalent question: If \(\{\xi_1, \ldots, \xi_k\} \) and \(\{\eta_1, \ldots, \eta_k\} \) are given sets of real or complex vectors of the same size, when is there a Hermitian or positive definite matrix \(K \) such that \(K\xi_i = \eta_i \) for \(i = 1, \ldots, k \)?

2. Solution of \(AX = B \) in a given *congruence class. Our main result is the following theorem.

Theorem 1. Let \(A, B \in F^{k \times n} \) be given, and suppose the linear matrix equation \(AX = B \) is consistent. Let \(r = \text{rank } A \), and let \(M = BA^* \). Then there are matrices \(N \in F^{r \times r} \) and \(E \in F^{r \times (n-r)} \) such that:

(a) \(M \) is *congruent to \(N \oplus 0_{k-r} \).

(b) For each given \(F \in F^{(n-r) \times r} \) and \(G \in F^{(n-r) \times (n-r)} \) there is an \(X \in F^{n \times n} \) such that \(AX = B \) and \(X \) is *congruent to

\[
\begin{bmatrix}
N & E \\
F & G
\end{bmatrix}.
\]
(c) If rank \(M = \text{rank} \, B \), then for each given \(C \in \mathbb{F}^{(n-r)\times(n-r)} \) there is an \(X \in \mathbb{F}^{n\times n} \) such that \(AX = B \) and \(X \) is *congruent to \(N \oplus C \) over \(\mathbb{F} \).

Proof. Using the singular value decomposition, one can construct a unitary \(U \in \mathbb{F}^{n\times n} \) and a nonsingular \(R \in \mathbb{F}^{k\times k} \) such that
\[
RAU = \begin{bmatrix}
I_r & 0 \\
0 & 0
\end{bmatrix}.
\]
Consistency ensures that \(B = AC \) for some \(C \in \mathbb{F}^{n\times n} \), so
\[
RBU = (RAU)(U^*CU) = \begin{bmatrix}
N & E \\
F & G
\end{bmatrix},
\]
in which \(N \in \mathbb{F}^{r\times r} \). A matrix \(X = UXU^* \) satisfies \(AX = B \) if and only if \(X \in \mathbb{F}^{n\times n} \) has the property that \((RAU)X = RBU \) if and only if it has the form
\[
X = \begin{bmatrix}
N & E \\
F & G
\end{bmatrix}, \quad G \in \mathbb{F}^{(n-r)\times(n-r)};
\]
the entries of \(F \) and \(G \) may be any elements of \(\mathbb{F} \). Since \(RMR^* = RBU(RAU)^* = N \oplus 0_{k-r} \), \(M \) is *congruent to \(N \oplus 0_{k-r} \).

We have
\[
\text{rank } M = \text{rank } N \leq \text{rank } [N \ E] = \text{rank } B,
\]
so rank \(M = \text{rank } B \) if and only if rank \(B = \text{rank } N \) if and only if every column of \(E \) is in the range of \(N \), that is, if and only if there is a matrix \(Z \) over \(\mathbb{F} \) such that \(E = NZ \). If rank \(M = \text{rank } B \), we may take \(X = UXU^* \), in which
\[
X = \begin{bmatrix}
N & NZ \\
Z^*N & Z^*NZ + C
\end{bmatrix} = \begin{bmatrix}
I_r & Z \\
0 & I_{n-r}
\end{bmatrix}^* \begin{bmatrix}
N & 0 \\
0 & C
\end{bmatrix} \begin{bmatrix}
I_r & Z \\
0 & I_{n-r}
\end{bmatrix}.
\]
Then \(AX = B \) and \(X \) is *congruent to \(N \oplus C \) over \(\mathbb{F} \).

Several known results follow easily from our theorem. In each of the following corollaries, we use the notation of the theorem and assume that \(AX = B \) is consistent.

Corollary 2 ([2, Theorem 2.1]). Suppose \(\text{rank } A = k \). There is a Hermitian positive definite matrix \(X \) over \(\mathbb{F} \) such that \(AX = B \) if and only if \(M \) is Hermitian positive definite.

Proof. The rank condition implies that \(M \) is *congruent to \(N \), so \(N \) is Hermitian positive definite if \(M \) is. The theorem ensures that there is a matrix \(X \) over \(\mathbb{F} \) such that \(AX = B \) and \(X \) is *congruent to \(N \oplus I_{n-k} \) over \(\mathbb{F} \), so this \(X \) is Hermitian positive definite. Conversely, if \(X \) is Hermitian positive definite and \(AX = B \), then \(B \) and \(AX^{1/2} \) have full row rank, so \(M = BA^* = AXA^* = (AX^{1/2})(AX^{1/2})^* \) is Hermitian positive definite.
Corollary 3 ([1, Theorem 2.2]). There is a Hermitian positive semidefinite matrix X over \mathbb{F} such that $AX = B$ if and only if $\text{rank} M = \text{rank} B$ and M is Hermitian positive semidefinite.

Proof. If M is Hermitian positive semidefinite, then so is N. For any Hermitian positive semidefinite $C \in \mathbb{F}^{(n-r) \times (n-r)}$, the theorem ensures that there is a matrix X over \mathbb{F} such that $AX = B$ and X is congruent to $N \oplus C$ over \mathbb{F}; such an X is Hermitian positive semidefinite. Conversely, if X is Hermitian positive semidefinite and $AX = B$, then $M = BA^* = AXA^*$ is Hermitian positive semidefinite, and $\text{rank} M = \text{rank} (AX^{1/2})(AX^{1/2})^* = \text{rank} (AX^{1/2}) = \text{rank} AX = \text{rank} B$. \[\Box \]

The real case of part (b) in the following corollary was proved in [2, Theorem 2.1] with the restriction that A has full row rank.

Corollary 4. (a) There is a square matrix X over \mathbb{F} such that $AX = B$ and $H(X)$ is positive semidefinite if and only if $H(M)$ is positive semidefinite.

(b) There is a square matrix X over \mathbb{F} such that $AX = B$ and $H(X)$ is positive definite if and only if $H(M)$ is positive semidefinite and $\text{rank} H(M) = \text{rank} A$.

Proof. Necessity in both cases follows from observing that $H(M) = AH(X)A^* = (AH(X)^{1/2})(AH(X)^{1/2})^*$. Thus, $\text{rank} H(M) = \text{rank} (AH(X)^{1/2}) = \text{rank} A$ if $H(X)$ is nonsingular.

Conversely, $H(M)$ is congruent to $H(N) \oplus 0_{k-r}$, so $H(N)$ is positive semidefinite and $\text{rank} H(N) = \text{rank} H(M)$. Take $F = -E^*$ and $G = I_{n-r}$ in (1), so that $H(X)$ is congruent to $H(X) = H(N) \oplus I_{n-r}$. For this X, $AX = B$, $H(X)$ is positive semidefinite, and $H(X)$ is positive definite if $\text{rank} H(M) = r$. \[\Box \]

Part (a) of the following corollary was proved in [1, Theorem 2.1].

Corollary 5. (a) There is a square matrix X over \mathbb{F} such that $AX = B$ and X is Hermitian if and only if M is Hermitian.

(b) There is a square matrix X over \mathbb{F} such that $AX = B$ and X is skew-Hermitian if and only if M is skew-Hermitian.

Proof. Necessity in both cases follows from observing that $M = AXA^*$. Conversely, choosing $G = 0$ and $F = \pm E^*$ in (1) proves sufficiency. \[\Box \]

The inertia of a Hermitian matrix H is $\text{In} H = (\pi(H), \nu(H), \zeta(H))$, in which $\pi(H)$ is the number of positive eigenvalues of H, $\nu(H)$ is the number of negative eigenvalues, and $\zeta(H)$ is the nullity. Since we know the general parametric form (1), the preceding corollaries can be made more specific in the Hermitian cases by describing the inertias that are possible for X given the inertia of M. Our final corollary is an example of such a result.

Corollary 6. Suppose M is Hermitian and $\text{rank} M = \text{rank} B$. Then X may be chosen to be Hermitian with inertia (α, β, γ) if and only if α, β, and γ are nonnegative integers such that $\alpha + \beta + \gamma = n$ and $(\alpha, \beta, \gamma) \geq \text{In} M - (0, 0, k - r)$.

Proof. Since $\text{rank} M = \text{rank} B$, the theorem ensures for any $C \in \mathbb{F}^{(n-r) \times (n-r)}$ the existence of an X that is congruent over \mathbb{F} to $N \oplus C$. Take C to be Hermitian, in which case $\text{In} X = \text{In} N + \text{In} C \geq \text{In} M - (0, 0, k - r)$, and all permitted inertias can be achieved by a suitable choice of C. \[\Box \]

If the rank condition in the preceding corollary is not satisfied, there may be
further restrictions on the possible set of inertias of A. Consider the example $A = [1 \ 0]$, $B = [0 \ 1]$, $M = [0]$. Any Hermitian solution to $AX = B$ must have the form

$$X = \begin{bmatrix} 0 & 1 \\ 1 & t \end{bmatrix}$$

for some real $t \in F$, and any such matrix has inertia $(1, 1, 0) \triangleright (0, 0, 1)$.

REFERENCES