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A PARALLEL ALGORITHM FOR COMPUTING THE GROUP
INVERSE VIA PERRON COMPLEMENTATION∗

MICHAEL NEUMANN† AND JIANHONG XU‡

Abstract. A parallel algorithm is presented for computing the group inverse of a singular
M–matrix of the form A = I − T , where T ∈ R

n×n is irreducible and stochastic. The algorithm
is constructed in the spirit of Meyer’s Perron complementation approach to computing the Perron
vector of an irreducible nonnegative matrix. The asymptotic number of multiplication operations
that is necessary to implement the algorithm is analyzed, which shows that the algorithm saves a
significant amount of computation over the direct computation of the group inverse of A.
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1. Introduction. The group inverse of a matrix A ∈ R
n×n, denoted by A#

when it exists, is the unique matrix X ∈ R
n×n that satisfies the matrix equations

AXA = A, XAX = X , and AX = XA. The group inverse has been utilized in a
variety of applications [5, 6, 7, 8, 9, 12, 14, 18, 19, 20, 21, 22, 23, 25, 26, 30], mostly
in the context of a singular M–matrix

(1.1) A = ρSI − S,

where S ∈ R
n×n is nonnegative and irreducible and where ρS is its Perron root.1 In

particular, these applications include:
(i) For a finite ergodic Markov chain with a transition matrix T , Meyer [25] has

shown that virtually all the important characteristics of the chain can be determined
from the group inverse of A = ρT I − T = I − T . Furthermore, in [8, 14, 21, 26, 30] it
has been shown that the entries of A# can be used to provide perturbation bounds
on the stationary distribution vector of the chain.

(ii) In [5, 6] it has been shown that for A in (1.1), the signs of the entries of
A# give us qualitative information about the behavior of the Perron root of S as a
function of the entries of S, namely in addition to it being known that the Perron
root is a strictly increasing function of each of the entries, the signs of the entries of
A# answer the question whether the Perron root is a concave or a convex function
of each of the entries. Results of this type have been applied in the study of matrix
population models in [19, 23].
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1For such a matrix A, the existence of A# is guaranteed by the structure of the Jordan blocks
of S [4, 25].

131

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 131-145, April 2005

www.math.technion.ac.il/iic/ela



ELA

132 M. Neumann and J. Xu

In view of the above–mentioned applications, a question of interest is how to
efficiently compute the group inverse A# of A in (1.1). Several algorithms for com-
puting A# have been suggested in [1, 2, 4, 8, 11, 13, 25]. These methods typically
require O(n3) to O(n4) arithmetic operations and so they can be quite expensive to
implement. However, the issue of the parallel computation of A# has received little
attention in the literature.

In this paper we shall present an algorithm for computingA# in parallel, assuming
that A is given by (1.1). The numerical evidence which we shall provide indicates
that this algorithm is more efficient compared with direct computation of A#. From
the examples that we have tested with MATLAB, the savings in the number of flops
(floating point operations) are roughly 50% for matrices of size ranging from n = 50
to n = 1600. An asymptotic analysis shows that the algorithm saves approximately
12.5% of the multiplication operations if it is implemented in a purely serial fashion.

A useful observation is that A in (1.1) can be reduced, using a diagonal similarity
transformation (see, for example, [3, Theorem 2.5.4]), to the case where A := I −
T , with T ∈ R

n×n being irreducible and stochastic. Consequently, without loss of
generality, we shall focus on this case from here on.

The key to constructing our algorithm is Perron complementation. Let α and β
be nonempty subsets of the index set 〈n〉 := {1, 2, . . . , n}, both consisting of strictly
increasing integers. For anyX ∈ R

n×n, we shall denote by X [α, β] the submatrix ofX
whose rows and columns are determined by α and β, respectively. In the special case
when β = α, we shall use X [α] to denote X [α, α].2 Given the irreducible stochastic
matrix T ∈ R

n×n, the Perron complement of T [α] is defined to be3

(1.2) Pα := T [α] + T [α, 〈n〉\α](I − T [〈n〉\α])−1T [〈n〉\α, α].

Meyer [27, 28] proved that the Perron complement Pα resembles T . Specifically,
Pα is also irreducible and stochastic and, in addition, on letting π ∈ R

n be the
normalized left Perron vector of T , viz. the column vector satisfying

(1.3) πtT = πt and ‖π‖1 = 1,

then

(1.4) πα =
π[α]
ξα

, with ξα = ‖π[α]‖1,

where π[α] is the subvector of π determined by α, turns out to be the normalized left
Perron vector of Pα. Based on these results, Meyer introduced a parallel algorithm
for computing the left Perron vector via Perron complementation.

Note that the irreducible stochastic matrix T can be thought of as the transition
matrix of some finite ergodic Markov chain {Xi}∞i=0 on state space S = {1, 2, . . . , n}.

2We follow the notation in [15] for submatrices. This notation allows conclusions to be readily
extended to the case when α and β consist of nonconsecutive integers.

3The notion of Perron complement can be similarly defined on an irreducible nonnegative matrix
(see [27, 28]).
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The mean first passage time from states i to j, denoted by mi,j , is defined to be the
expected number of time steps that the chain, starting initially from state i, would
take before it reaches state j for the first time [17], i.e.

(1.5) mi,j := E(Fi,j) =
∞∑

k=1

kPr(Fi,j = k),

where Fi,j := min{� ≥ 1 : X
 = j|X0 = i}. The matrix M = [mi,j ] ∈ R
n×n is called

the mean first passage matrix of the chain or, simply, of T . Obviously the mean first
passage matrix of the Perron complement Pα can be similarly defined since Pα can
also be regarded as the transition matrix of an ergodic chain with fewer states.

As a further development of Meyer’s results on Perron complementation, Kirk-
land, Neumann, and Xu [22] showed that the mean first passage matrix of Pα is closely
related to M [α] and M [〈n〉\α], i.e. the corresponding submatrices of the mean first
passage matrix of T . Accordingly, the mean first passage matrix of the entire chain
can be computed in parallel via Perron complementation.

The interesting relationship between the irreducible stochastic matrix T and its
Perron complement Pα, as shown in [22, 27, 28], leads us to explore if Perron com-
plementation can be exploited for the parallel computation of A#. Specifically, on
letting Bα := I − Pα, we ask the following questions: (i) How are A# and B#

α re-
lated? (ii) Does the connection between A# and B#

α allow the computation of A#

to be carried out in parallel? These questions will be completely answered in this
paper. We point out that the relationship between A#[α] and B#

α has been shown in
[29] for the special case when α = {1, 2, . . . , n− 1}. Furthermore, for the special case
when T is periodic, Kirkland [18] has developed, without recourse to the terminology
of Perron complementation, formulae for the blocks of A#. Thus our results here will
also generalize those in [18, 29].

The plan of this paper is as follows. In Section 2 we shall summarize some
necessary results on Perron complementation from the literature. Our main results on
the computation of the group inverse via Perron complementation will be presented in
Section 3. Section 4 will be devoted to describing our parallel algorithm for computing
the group inverse. Finally, some concluding remarks are given in Section 5.

2. Preliminaries. Recall that the purpose of this paper is the computation in
parallel of the group inverse of A := I − T , where T ∈ R

n×n is irreducible and
stochastic.

Partition T into a k × k (k ≥ 2) block form as follows:

(2.1) T =




T [α1] T [α1, α2] · · · T [α1, αk]
T [α2, α1] T [α2] · · · T [α2, αk]

...
...

. . .
...

T [αk, α1] T [αk, α2] · · · T [αk]


 ,

where α1, α2, . . . , αk are nonempty disjoint subsets of the index set 〈n〉 := {1, . . . , n}
which form a partition of 〈n〉. Define W := eπt, where π is the left Perron vector of
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T normalized so that ‖π‖1 = 1 and where e ∈ R
n is a column vector of all ones. The

vector π is the stationary distribution vector of the underlying Markov chain. Let
M ∈ R

n×n be the mean first passage matrix of T as defined in (1.5). We shall always
partition A#, W , and M in conformity with T .

Throughout the sequel, the letters J and e will represent a matrix of all ones and
a column vector of all ones, respectively, whose dimensions can be determined from
the context. For any square matrix X , we shall denote by Xd the diagonal matrix
obtained from X by setting all its off–diagonal entries to zero.

We begin with the following two lemmas from [4, 25].
LEMMA 2.1. ([4, Theorem 8.5.5])

(2.2) πtA# = 0.

LEMMA 2.2. ([25, Theorem 3.3]) The mean first passage matrix M of T can be
expressed as

(2.3) M =
[
I −A# + J(A#)d

]
(Wd)−1.

Lemma 2.2 gives the relationship between M and A#. For i = 1, 2, . . . , k, let
Pαi be the Perron complement of T [αi]. In what follows, we shall use the subscript
αi to denote quantities associated with Pαi . Put Bαi := I − Pαi . Since Pαi is also
irreducible and stochastic, its mean first passage matrix Mαi is defined in the same
way as M . Let παi be the normalized left Perron vector of Pαi and set Wαi := eπt

αi
.

The following corollary from Lemma 2.2 characterizes the relationship between Mαi

and B#
αi
.

COROLLARY 2.3. For i = 1, 2, . . . , k, the mean first passage matrix Mαi of
Pαi can be expressed as

(2.4) Mαi =
[
I −B#

αi
+ J(B#

αi
)d

]
[(Wαi )d]

−1.

As already mentioned earlier, according to Meyer [27, Theorem 2.1], for i =
1, 2, . . . , k, the normalized left Perron vector of Pαi is given by

(2.5) παi =
π[αi]
ξαi

with ξαi = ‖π[αi]‖1. The number ξαi is called the i–th coupling factor. Note that∑k
i=1 ξαi = 1. The next lemma, again due to Meyer, points out how the coupling

factors can be obtained without actually computing π.
LEMMA 2.4. ([27, Theorem 3.2]) Let C = [ci,j ] ∈ R

k×k be defined via

(2.6) ci,j : = πt
αi
T [αi, αj ]e, i, j = 1, 2, . . . , k.

Then C is irreducible and stochastic. Moreover, ξ = [ξα1 , ξα2 , . . . , ξαk
]t is the nor-

malized left Perron vector of C.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 131-145, April 2005

www.math.technion.ac.il/iic/ela



ELA

Parallel Algorithm for Computing the Group Inverse 135

The matrix C is called the coupling matrix.
In the sequel we shall also require the following two lemmas from Kirkland, Neu-

mann, and Xu [22] on the relationship between M and Mαi , the mean first passage
matrix of Pαi . In the first lemma the principal submatrices of M are determined,
while in the second lemma, the off–diagonal blocks of M are determined.

LEMMA 2.5. ([22, Theorem 2.2]) For i = 1, 2, . . . , k,

(2.7) M [αi] =
1
ξαi

Mαi + Vαi ,

where

Vαi := B#
αi
T [αi, 〈n〉\αi](I − T [〈n〉\αi])−1J

−
[
B#

αi
T [αi, 〈n〉\αi](I − T [〈n〉\αi])−1J

]t

.(2.8)

The matrix Vαi is clearly skew–symmetric and of rank at most 2.
LEMMA 2.6. ([22, Theorem 2.3]) For i = 1, 2, . . . , k,

M [〈n〉\αi, αi] = (I − T [〈n〉\αi])−1
[
T [〈n〉\αi, αi]M [αi] + J

−T [〈n〉\αi, αi](M [αi])d
]
.(2.9)

We comment that Corollary 2.3, formula (2.5), and Lemmas 2.4, 2.5, and 2.6
continue to hold even when any subset αi consists of nonconsecutive indices.

3. Main Results. In this section we develop our main results in which we
show how the blocks of A#, where A := I − T with T ∈ R

n×n being irreducible
and stochastic, can be linked to the group inverses associated with the smaller size
irreducible transition matrices arising from Perron complementation. Again we use a
k × k partitioning of T which is given by (2.1).

We construct a matrix U ∈ R
n×n by

(3.1) U := (M −Md)Wd,

where, as defined in the previous section, M is the mean first passage matrix of T
and W := eπt. As we shall see, U turns out to play a central role in establishing
the connection between A# and quantities related to Perron complementation and in
constructing our parallel algorithm for computing A#. It should be noted that U is
known in the literature to have several interpretations concerning Markov chains and
concerning surfing the Web. First, Kemeny and Snell [17, Theorem 4.4.10] observed
that U has constant row sums

∑
j �=i πjmi,j = tr(A#), for i = 1, 2, . . . , n. The quantity

K := tr(A#)+1 is known as the Kemeny constant. In relation to the Web it measures
the expected number of links a surfer would follow to exit a site, which he may have
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entered because of being lost, and enter another random site (see Levene and Loizou
[24]). It is also called the expected time to mixing in a Markov chain (see Hunter [16]).

The relationship between the diagonal entries of A# and U is given by the lemma
below, which shows that the diagonal entries of A# can be expressed in terms of U
as well as ξαi and παi arising from Perron complementation.

LEMMA 3.1. Let A# = [a#
i,j ]. Then

(3.2) [a#
1,1, a

#
2,2, . . . , a

#
n,n] = [ξα1π

t
α1
, ξα2π

t
α2
, . . . , ξαk

πt
αk

] U.

Proof. First we observe that from Lemma 2.2, mi,i = 1/πi, for all i, i.e. Md =
(Wd)−1.

Next, again by Lemma 2.2, we obtain that

πtU = πt(M −Md)Wd

= πt
[
[I −A# + J(A#)d](Wd)−1 − (Wd)−1

]
Wd

= −πtA# + πtJ(A#)d

= [a#
1,1, a

#
2,2, . . . , a

#
n,n],

where the last equality is due to Lemma 2.1. This, together with (2.5), yield (3.2).
Suppose next that A# and U are partitioned in conformity with T in (2.1). Our

next lemma concerns the relationship between the blocks of A# and those of U .
LEMMA 3.2. For i = 1, 2, . . . , k,

(3.3) −A#[αi] + J(A#[αi])d = U [αi]

and

(3.4) −A#[〈n〉\αi, αi] + J(A#[αi])d = U [〈n〉\αi, αi].

Proof. Similar to the proof of Lemma 3.1, we see that

U =
[
[I −A# + J(A#)d](Wd)−1 − (Wd)−1

]
Wd

= −A# + J(A#)d.

Without loss of generality, we consider here the case when i = 1. We put β =
〈n〉\α1 for brevity. On partitioning U , A#, and J in conformity with T , we obtain
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that 
 U [α1] U [α1, β]

U [β, α1] U [β]


 = −


 A#[α1] A#[α1, β]

A#[β, α1] A#[β]




+


 J(A#[α1])d J(A#[β])d

J(A#[α1])d J(A#[β])d


 ,

from which (3.3) and (3.4) follow.
We are now in a position to introduce our main results. For that purpose recall

that Pαi is the Perron complement of T [αi], Bαi := I − Pαi , ξαi is the i–th coupling
factor, Wαi := eπt

αi
, where παi is the normalized left Perron vector of Pαi , and Vαi is

the skew–symmetric matrix given in (2.8). In Lemma 3.2 we showed how the blocks
of A# are related to the corresponding blocks of U . We shall show next how the
blocks of U can be obtained from the group inverses of the Bαi ’s starting with the
diagonal blocks of U .

THEOREM 3.3. For i = 1, 2, . . . , k,

(3.5) U [αi] = −B#
αi

+ J(B#
αi
)d + ξαiVαi(Wαi )d.

Proof. It suffices to show the conclusion for the case when i = 1. By Lemma 2.2
and on partitioning M , A#, and W in conformity with T , we have, using (2.5), that

M [α1] =
[
I −A#[α1] + J(A#[α1])d

]
[(W [α1])d]−1

=
1
ξα1

[
I −A#[α1] + J(A#[α1])d

]
[(Wα1 )d]

−1.(3.6)

On the other hand, by (2.4) and (2.7), we find that

(3.7) M [α1] =
1
ξα1

[
I −B#

α1
+ J(B#

α1
)d

]
[(Wα1 )d]

−1 + Vα1 .

It thus follows from (3.6) and (3.7) that

1
ξα1

[
−A#[α1]+J(A#[α1])d

]
[(Wα1 )d]

−1 =
1
ξα1

[
−B#

α1
+J(B#

α1
)d

]
[(Wα1)d]

−1+Vα1 ,

which, by (3.3), can be reduced to

U [α1] = −A#[α1] + J(A#[α1])d

= −B#
α1

+ J(B#
α1
)d + ξα1Vα1(Wα1 )d.

This completes the proof.
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Having determined a representation for the diagonal blocks of U , we now deter-
mine a representation for the off–diagonal blocks of U .

THEOREM 3.4. For i = 1, 2, . . . , k,

(3.8) U [〈n〉\αi, αi] = (I − T [〈n〉\αi])−1
[
T [〈n〉\αi, αi]U [αi] + ξαiJ(Wαi)d

]
.

Proof. It suffices for the sake of simplicity to set i = 1 and β = 〈n〉\α1. Thus
what we need to show is the following:

U [β, α1] = (I − T [β])−1
[
T [β, α1]U [α1] + ξα1J(Wα1)d

]
.

Again, by Lemma 2.2 and on partitioning M , A#, and W in conformity with T ,
we have, using (2.5), that

M [β, α1] =
[
−A#[β, α1] + J(A#[α1])d

]
[(W [α1])d]−1

=
1
ξα1

[
−A#[β, α1] + J(A#[α1])d

]
[(Wα1)d]

−1.(3.9)

On the other hand, by (2.4) and (2.7), we see that

M [α1]− (M [α1])d =
1
ξα1

[
Mα1 − (Mα1)d

]
+ Vα1

=
1
ξα1

[
−B#

α1
+ J(B#

α1
)d

]
[(Wα1)d]

−1 + Vα1 ,

which, together with (2.9), yield that

M [β, α1] =
1
ξα1

(I − T [β])−1
[
T [β, α1][−B#

α1
+ J(B#

α1
)d][(Wα1 )d]

−1

+ξα1T [β, α1]Vα1 + ξα1J
]

=
1
ξα1

(I − T [β])−1
[
T [β, α1]U [α1] + ξα1J(Wα1 )d

]
[(Wα1 )d]

−1.

(3.10)

The conclusion follows now from (3.4), (3.9), and (3.10).
Theorems 3.3 and 3.4 make it clear that U can be completely determined by

quantities directly related to Perron complementation. Furthermore, as shown by our
next theorem, A# can be completely determined by U and thus also by quantities
directly related to Perron complementation.
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THEOREM 3.5. For i = 1, 2, . . . , k, the diagonal blocks of A# are given by:

(3.11)

A#[αi] = e[ξα1π
t
α1
, ξα2π

t
α2
, . . . , ξαk

πt
αk

] U [〈n〉, αi]− U [αi]

= e

k∑

=1

ξα�
πt

α�
U [α
, αi]− U [αi].

The off–diagonal blocks of A# are given as follows: for j �= i, 1 ≤ i, j ≤ k,

(3.12) A#[αj , αi] = e

k∑

=1

ξα�
πt

α�
U [α
, αi]− U [αj, αi].

Proof. From (3.3) we know that

A#[αi] = J(A#[αi])d − U [αi].

On the other hand, from (3.2), we have that

(3.13) J(A#[αi])d = e[ξα1π
t
α1
, ξα2π

t
α2
, . . . , ξαk

πt
αk
] U [〈n〉, αi].

Thus (3.11) follows.
Similarly, using (3.4) and (3.13), we see that (3.12) holds.
Theorems 3.3, 3.4, and 3.5 clearly illustrate how the blocks of A# can be assem-

bled from quantities arising from Perron complementation, namely from ξαi , παi , Vαi ,
and B#

αi
. In the next section we shall use this important fact to construct a parallel

algorithm for computing A#.
We comment that according to [29, Formulae (7) and (19)], if α1 is chosen to be

{1, 2, . . . , n− 1}, then
(3.14) A#[α1] = F + ξα1

[
µWα1 − FWα1 −Wα1F

]

and

(3.15) B#
α1

= F +
µ

ξα1

Wα1 − FWα1 −Wα1F,

where F = (I − T [α1])−1 and where µ = ξα1π
t
α1
Fe. This result, which implies the

close connection between A#[α1] and B#
α1
, can be regarded as a special case of our

Theorems 3.3, 3.4, and 3.5.
Consider the case when T is not only irreducible and stochastic, but also d–

periodic, that is,

(3.16) T =




0 T1 0 · · · · · · 0
0 0 T2 0 · · · 0
...

...
. . . . . . . . .

...
...

...
. . . . . . 0

0 0 · · · · · · . . . Td−1

Td 0 · · · · · · · · · 0



,
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where the diagonal zero blocks are square and where (I − T )# is partitioned con-
formably with T in (3.16). For this case Kirkland [18, Theorem 1] has shown how to
compute the blocks of (I − T )# in terms of (I − Pj)#, where P1 := T1T2 · · ·Td and
where, for j = 2, 3, . . . , d, Pj := TjTj+1 · · ·TdT1 · · ·Tj−1. It can be readily verified
that for each j, Pj is indeed the Perron complement of the j–th diagonal block of T .
This result can also be regarded as a particular case of our Theorems 3.3, 3.4, and
3.5.

We finally remark that Theorems 3.3, 3.4, and 3.5 apply to the case when any αi

consists of nonconsecutive, but increasing, indices, provided that α1, α2, . . . , αk form
a partition of 〈n〉.

4. Parallel Algorithm. In this section we shall provide a parallel algorithm for
the efficient computation of A# via Perron complementation. The algorithm will be
illustrated mainly by partitioning T into a 2× 2 block matrix as follows:

(4.1) T =
[

T [α1] T [α1, α2]
T [α2, α1] T [α2]

]
,

where α1 and α2, both nonempty, form a partition of 〈n〉.
We begin the procedure by computing the Perron complements Pα1 and Pα2 .

According to (1.2), this requires certain matrix inversions. We retain the results of
these inversions since they will be needed later in the computation of Vα1 , Vα2 , and
in the computation of the off–diagonal blocks of U (see (2.8) and (3.8), respectively)
too. As shown in the proof of Theorem 3.5, the blocks of A# are determined by the
blocks of U , the coupling factors ξα1 and ξα2 , and the normalized left Perron vectors
πα1 and πα2 . Among these quantities, each παi can be computed separately from its
respective Pαi , while ξα1 and ξα2 can be obtained from the coupling matrix C once
πα1 and πα2 are known.

Continuing, concerning the blocks of U , each diagonal block U [αi] is determined
by B#

αi
, Vαi , ξαi , and Wαi according to (3.5). Clearly each B#

αi
can be computed

separately from the corresponding Pαi . As soon as B#
αi

becomes available, Vαi can
be obtained immediately from (2.8). Having found U [αi], we proceed with (3.8) so as
to determine U [〈n〉\αi, αi].

In summary, with a 2× 2 partitioning scheme and Perron complementation, the
computation of A# can be implemented by computing the following components
roughly in the order as they appear: (i) Pα1 and Pα2 ; (ii) πα1 and πα2 ; (iii) B#

α1
and

B#
α2
; (iv) C, ξα1 , and ξα2 ; (v) Vα1 and Vα2 ; (vi) U [α1] and U [α2]; and (vii) U [α2, α1]

and U [α1, α2]. Each of these components, except (iv), consists of two separate sub-
components that can be computed concurrently and in parallel. In addition, steps
(ii) and (iii) may also be executed in parallel. The flow of the computation on each
Pαi , as illustrated in Figure 4.1, can obviously be carried out independently, with the
computation of ξα1 and ξα2 being the only exception.

According to our Theorems 3.3, 3.4, and 3.5, the above algorithm can be ex-
tended to the general k × k (k > 2) partitioning scheme where T is partitioned as in
(2.1), which would be an appropriate choice when the computation of A# is to be dis-
tributed over k processors. Specifically, we begin with the computation of the Perron
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Pαi

B#
αi

παi
, ξαi

Vαi U [αi] U [〈n〉\αi, αi]

Fig. 4.1. Computation on the Perron Complement Pαi

complements Pαi for i = 1, 2, . . . , k, then for each i we proceed to calculating B#
αi
,

παi and ξαi , Vαi , U [αi], and U [〈n〉\αi, αi] in the order as shown in Figure 4.1, and
finally we recover the blocks of A# using formulae (3.11) and (3.12). Alternatively,
similar to what was suggested in [27], a higher level partitioning scheme can also be
achieved by following successive lower level partitionings on the Perron complements.
For example, we may partition T into a 2 × 2 block form and construct the Perron
complements Pα1 and Pα2 , but then for each i, we may compute the group inverse
B#

αi
using our parallel algorithm by further partitioning the corresponding Pαi into a

2 × 2 block form. In other words, we may compute B#
αi

on the Perron complements
of Pαi , rather than directly computing it on Pαi .

It is natural to ask whether the above parallel algorithm for computing A# via
Perron complementation is less costly than the direct computation of A#, considering
that there are quite a few quantities, though all are smaller than n in size, to compute.
To answer this question, we shall estimate the asymptotic number of multiplications
necessary to implement the parallel algorithm and compare it with the case without
parallelism.

It should be mentioned that for general matrices, there are actually very few
numerically viable methods for computing A# because of the issue of numerical in-
stability. Specifically, problems might arise in determining the bases for R(A) and
N(A) ([2, 4]) or the characteristic polynomial of A and the resolvent (zI − A)−1

([11, 13]). Under our assumption on A, namely that A is an irreducible singular
M–matrix, however, there is a quite reliable method for computing A# proposed
by Meyer [25, Section 5], which can be implemented using the conventional Gaussian
eliminations on nonsingular matrices. Here we shall adopt this method while counting
the asymptotic numbers of multiplications.

According to Meyer [25, Theorem 5.5 and Table 2], if A# is computed directly
from the formula

(4.2) A# = (A+W )−1 −W

and if π is computed first, then the number of multiplications required is roughly
4n3/3.
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Suppose now that n = 2m and that α1 = {1, 2, . . . ,m} and α2 = {m + 1,m +
2, . . . , n}. As shown in Figure 4.1, the total number of multiplications required for
the computation on each Pαi can be counted as follows:

(i) Pαi . To find (I−T [〈n〉\αi])−1T [〈n〉\αi, αi], it requires 4m3/3 multiplications
to solve the matrix equation (I −T [〈n〉\αi])X = T [〈n〉\αi, αi] with Gaussian
eliminations. An additional amount of m3 multiplications is then needed to
premultiply (I − T [〈n〉\αi])−1T [〈n〉\αi, αi] by T [αi, 〈n〉\αi].

(ii) παi and B#
αi
. Based on the result in [25], it requires 4m3/3 multiplications

if παi is computed first and then B#
αi

is computed from a formula similar to
(4.2). We comment that the computation of ξα1 and ξα2 is trivial and does
not require O(m3) multiplications.

(iii) Vαi . Due to the particular structure of Vαi , it is enough to compute the first
column of the rank–one matrix B#

αi
T [αi, 〈n〉\αi](I − T [〈n〉\αi])−1J . This

does not require O(m3) multiplications since the LU factorization in (i) can
be retained.

(iv) U [αi]. Clearly this does not require O(m3) multiplications.
(v) U [〈n〉\αi, αi]. The computation of ξαi(I −T [〈n〉\αi])−1J(Wαi)d does not re-

quire O(m3) multiplications for exactly the same reason as mentioned in (iii).
It requires m3 multiplications, however, to postmultiply (I − T [〈n〉\αi])−1×
T [〈n〉\αi, αi] by U [αi].

(vi) A#[αi] and A#[〈n〉\αi, αi]. These can be obtained without multiplication
operations from (3.3) and (3.4), respectively, when J(A#[αi])d is known. Note
that, according to (3.13), the computation of J(A#[αi])d does not require
O(m3) multiplications.

From (i) through (vi), we conclude that the number of multiplications necessary
for implementing the parallel algorithm for computing A# is roughly 28m3/3 = 7n3/6.
On the other hand, to compute A# directly from (4.2) requires 4n3/3 = 8n3/6 mul-
tiplications. Therefore the parallel algorithm actually saves approximately 1/8 or
12.5% of multiplication operations.

n flopsd flopsp (flopsd−flopsp)/flopsd
50 3,489,825 1,796,824 48.5%
100 28,126,945 14,066,448 50.0%
200 221,017,525 108,340,394 51.0%
400 1.7449 ×109 8.4711 ×108 51.5%
800 1.3551 ×1010 6.7867 ×109 49.9%
1600 1.0575 ×1011 5.3352 ×1010 49.5%

Table 1: Results of Numerical Tests

We have tested with MATLAB several examples using randomly generated dense
matrices and counted the number of flops with MATLAB’s built–in function flops.
The results are given in Table 1, where flopsp stands for the total number of flops
used in the parallel algorithm for computing A#, while flopsd stands for that from
directly computing A# by (4.2).

The data in Table 1 confirms the efficiency of the parallel algorithm in terms of
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a reduced amount of computation4. The savings shown in the table are much greater
than the asymptotic estimate of a 12.5% reduction in the number of multiplications.
The reason appears to be that we have only tested matrices of small to moderate size.
There may be also some dependency on the manner in which MATLAB performs
matrix operations (multiplications and additions) at machine level.

Finally we make a few comments on the numerical accuracy of our parallel al-
gorithm. Our parallel algorithm basically involves two main tasks: to compute the
Perron complements Pαi and to compute the group inversesB#

αi
associated with those

Perron complements. For the same reason as we mentioned earlier, Meyer’s method in
[25] is advisable for computing the B#

αi
’s. This method can be carried out with Gaus-

sian eliminations as an inversion algorithm on the nonsingular matrices Bαi + Wαi

and therefore the standard results on round–off analysis of Gaussian eliminations (see,
for example, [10]) apply. It should be noted that compared with that of A + W in
(4.2), the inversion of Bαi +Wαi tends to be more stable because of the reduced size
of the problem [10, Theorem 3.3.1]. In addition, according to [29], the computation
of παi on Pαi tends to be more stable than that of π on T ; in particular, the bound
on the relative errors in παi does not exceed that in π. On the other hand, Gaussian
eliminations can also be used to invert the matrices I−T [αi] arising from Perron com-
plementation. Even though such nonsingular principal submatrices of I −T could be
poorly conditioned [8], various partitioning schemes may be exploited so as to allevi-
ate possible numerical difficulties in calculating (I −T [αi])−1. Consider, for example,
the following 4× 4 irreducible stochastic matrix:

T =




.4332 .5667 .0001 .0000

.4331 .5668 .0000 .0001

.0000 .0001 .3667 .6332

.0001 .0000 .3668 .6331


 .

Using the condition number κ∞(X) := ‖X‖∞‖X−1‖∞, where X ∈ R
n×n is nonsingu-

lar, we obtain that for α1 = {1, 2} and α2 = {3, 4}, κ∞(I−T [α1]) ≈ 1.1335×104 and
κ∞(I − T [α2]) ≈ 1.2665× 104, but for α1 = {1, 3} and α2 = {2, 4}, κ∞(I − T [α1]) ≈
1.1175 and κ∞(I − T [α2]) ≈ 1.1810.

5. Concluding Remarks. The goal of this paper was to present an efficient
parallel algorithm for computing the group inverse of the singular M–matrix A =
I−T , where T is an irreducible stochastic matrix, via Perron complementation. This
algorithm can be easily modified to handle the more general case that A = ρSI − S,
where S is an irreducible nonnegative matrix and where ρS is the Perron root of S.

As shown in Theorems 3.3, 3.4, and 3.5, the group inverse of A is closely related
to the group inverses associated with the Perron complements of T . This adds to
previous computational utilization of Perron complementation due to Meyer [27, 28]
and Kirkland, Neumann, and Xu [22]. It remains an interesting question whether
the Perron complementation approach is applicable to other computational problems
relating to irreducible stochastic matrices.

4We remark, however, that the flop–count in the table also reflects the fact that our experiments
were carried out using a particular, in this case MATLAB, programming language.
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In this paper we have focused on implementing the parallel algorithm for com-
puting the group inverse of A with a 2× 2 partitioning scheme. We therefore remark
that even though any 2 × 2 block–partitioning may be used, numerically it is more
efficient to choose αi and 〈n〉\αi of roughly the same size since it balances the work-
load between the processors. To see this note that as the size of αi decreases, it is less
costly to compute (I − T [αi])−1, but at the same time, the size of 〈n〉\αi increases
accordingly, and therefore it is more costly to compute (I − T [〈n〉\αi])−1.

The operational count presented in Table 1 shows that the parallel algorithm is
capable of significantly reducing the amount of necessary multiplication operations
as compared with directly computing the group inverse of A. It is interesting to
observe that in [22], the computation of the mean first passage matrix of a finite
ergodic Markov chain with transition matrix T is carried out in parallel on the Perron
complements of T . A crucial step there is the computation of the group inverse
associated with each Perron complement. When this step is accomplished with the
parallel algorithm for computing A# developed here, we can expect that in the parallel
computation of the mean first passage matrix as suggested in [22], further reductions
in the computational effort can be achieved.
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