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NORM ESTIMATES FOR FUNCTIONS OF TWO COMMUTING
MATRICES∗

MICHAEL GIL’†

Abstract. Matrix valued analytic functions of two commuting matrices are considered. A
precise norm estimate is established. As a particular case, the matrix valued functions of two
matrices on tensor products of Euclidean spaces are explored.
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1. Introduction and statement of the main result. In the book [4], I.M.
Gel’fand and G.E. Shilov have established an estimate for the norm of a regular
matrix-valued function in connection with their investigations of partial differential
equations. However that estimate is not sharp, it is not attained for any matrix. The
problem of obtaining a precise estimate for the norm of a matrix-valued function has
been repeatedly discussed in the literature. In the paper [5] (see also [7]) the author
has derived a precise estimate for a regular matrix-valued function. It is attained in
the case of normal matrices. In the present paper we generalize the main result of
the paper [5] to functions of two commuting matrices. Besides, the main result of the
present paper-Theorem 1.1 is improved in the case of matrices on tensor products of
Euclidean spaces.

It should be noted that functions of commuting operators were investigated by
many mathematicians, cf. [1, 10, 12] and references therein however the norm esti-
mates were not considered, but as it is well-known, matrix valued functions are Green’s
functions and characteristic functions of various differential and difference equations.
This fact allow us to investigate stability, well-posedness and perturbations of these
equations by norm estimates for matrix valued functions, cf. [2, 3, 6].

Let Cn be a Euclidean space with a scalar product (·, ·), the unit matrix I and the
Euclidean norm ‖ · ‖ = (·, ·)1/2; M(Cn) denotes the set of all linear operators in Cn.
For a A ∈ M(Cn), ‖A‖ is the operator norm; N(A) is the Frobenius (Hilbert-Schmidt)
norm: N2(A) = Trace (AA∗); A∗ is the operator adjoint to A, λj(A), j = 1, . . . , n
are the eigenvalues counting with their multiplicities, σ(A) is the spectrum.

Everywhere below A and B are commuting matrices. Let ΩA and ΩB be open
simple connected sets containing σ(A) and σ(B), respectively. Let f be a scalar
function analytic on ΩA ×ΩB. Introduce the operator valued function

(1.1) f(A,B) := − 1
4π2

∫
LB

∫
LA

f(z, w)Rz(A)Rw(B)dw dz,
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where LA ⊂ ΩA, LB ⊂ ΩB are closed contour surrounding σ(A) and σ(B), respec-
tively. Note that if the series

f(z, w) =
∞∑

j,k=0

cjkz
jwk

converges for |z| ≤ rs(A), |w| ≤ rs(w), where rs(A) denotes the spectral radius of A,
then (1.1) holds.

The following quantity plays a key role in the sequel

g(A) = (N2(A)−
n∑

k=1

|λk(A)|2)1/2.

Since
n∑

k=1

|λk(A)|2 ≥ |Trace A2|, we have g2(A) ≤ N2(A) − |Trace A2|.

If A is a normal matrix, i.e. if AA∗ = A∗A, then g(A) = 0. Also the inequality

(1.2) g2(A) ≤ 1
2
N2(A∗ −A)

is valid, cf. [7, Section 2.1]. Introduce the numbers

ηk :=
1
k!

√
(n− 1)!

(n− k − 1)!(n− 1)k
for k = 1, ..., n− 1; η0 = 1.

It is simple to check that

(1.3) η2
k ≤ 1

(k!)3
(k = 1, ..., n− 1).

Denote by co(A), co(B) the closed convex hulls of σ(A) and σ(B), respectively. Put

f (j,k)(z, w) =
∂j+kf(z, w)
∂zj∂wk

.

Now we are in a position to formulate the main result of the paper.
Theorem 1.1. Let A and B be commuting n×n-matrices and f(z, w) be regular

on a neighborhood of co(A)× co(B). Then

‖f(A,B)‖ ≤
j+k≤n−1∑

j,k=0

ηjηkg
j(A)gk(B) sup

z∈co(A),w∈co(B)

|f (j,k)(z, w)|.

The proof of this theorem is divided into a series of lemmas which are presented in
the next section. If both A and B are normal operators, and

sup
z∈co(A),w∈co(B)

|f(z, w)| = sup
z∈σ(A),w∈σ(B)

|f(z, w)|,
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then Theorem 1.1 gives us the exact relation

‖f(A,B)‖ = sup
z∈σ(A),w∈σ(B)

|f(z, w)|.

Taking into account (1.3), we get
Corollary 1.2. Under the hypothesis of Theorem 1.1, the estimate

‖f(A,B)‖ ≤
j+k≤n−1∑

j,k=0

gj(A)gk(B)
(j!k!)3/2

sup
z∈co(A),w∈co(B)

|f (j,k)(z, w)|

is true.
Let A be a normal matrix. Then g(A) = 0. Now Corollary 1.2 implies

‖f(A,B)‖ ≤
∑

0≤k≤n−1

gk(B)
(k!)3/2

sup
z∈co(A),w∈co(B)

|∂
kf(z, w)
∂wk

|.

Let us evaluate the error of Theorem 1.1 in the case of non-normal matrices.
Certainly, we can obtain the exact value of the norm of a function of two matrices in
very simple cases only. Consider the 2× 2-matrices

A =
(

a 1/3
0 a

)
.

and B = 2A with a > 0. Construct a function of two variables by setting (x, y) →
f(x+ y). Direct calculations show that

f(A+B) =
(

f(3a) f ′(3a)
0 f(3a)

)
.

Assume that f(3a) = 0. Then ‖f(A + B)‖ = |f ′(3a)|. At the same time, Theorem
1.1 gives us the relations,

‖f(A+B)‖ ≤ |f(a)|+ |f ′(3a)|(g(A) + g(B)) = |f ′(3a)|,

since g(A) = 1/3, g(B) = 2/3. Thus in the considered case Theorem 1.1 gives us the
exact result.

Example 1.3. Consider the polynomial

P (z, w) =
m1∑
ν=0

m2∑
l=0

cνlz
νwl

with complex, in general, coefficients. Then

P (j,k)(z, w) =
m1−j∑
ν=0

m2−k∑
l=0

cνlν(ν − 1)...(ν − j + 1)zν−jl...(l − k + 1)wl−k.
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Now Theorem 1.1 implies

‖P (A,B)‖ ≤
j+k≤n−1∑

j,k=0

ηjηkg
j(A)gk(B)

m1−j∑
ν=0

m2−k∑
l=0

ν!l!|cνl|
(l − k)!(ν − j)!

rν−j
s (A)rl−k

s (B).

Recall that rs(., ) denotes the spectral radius. If both A and B are normal operators,
then

‖P (A,B)‖ ≤
m1∑
ν=0

m2∑
l=0

|cνl|rν
s (A)rl

s(B).

Example 1.4. Consider the function

f(z, w) = cos (xz + yw) (y, x ≥ 0).

Note that the function U(x, y) = cos(xA+ yB) is a solution of the equation

∂2U(x, y)/∂x2 + ∂2U(x, y)/∂y2 + (A2 +B2)U(x, y) = 0.

In the considered case

|f (j,k)(z, w)| = xjyk|cos (xz + yw)| (j + k is even ),

|f (j,k)(z, w)| = xjyk|sin (xz + yw)| (j + k is odd ).

For simplicity assume that the spectra of both A and B are real. Then thanks to
Theorem 1.1,

‖U(x, y)‖ ≤
j+k≤n−1∑

j,k=0

ηjηkg
j(A)gk(B)xjyk (x, y ≥ 0).

2. Proof of Theorem 1.1. The following lemma is needed.
Lemma 2.1. Let Ω and Ω̃ be the closed convex hulls of complex, in general, points

(2.1) x0, x1, ..., xn

and

(2.2) y0, y1, . . . , ym,

respectively, and let a scalar-valued function f(z, w) be regular on D × D̃, where D
and D̃ are neighborhoods of Ω and Ω̃, respectively. In addition, let L ⊂ D, L̃ ⊂ D̃ be
Jordan closed contours surrounding the points in (2.1) and (2.2), respectively. Then
with the notation

Y (x0, ..., xn; y0, ...ym) = − 1
4π2

∫
L

∫
L̃

f(z, w)dz dw

(z − x0) · · · (z − xn)(w − y0) · · · (w − ym)
,
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we have

|Y (x0, ..., xn; y0, ...ym)| ≤ 1
n!m!

sup
z∈Ω,w∈Ω̃

|f (n,m)(z, w)|.

Proof. First, let all the points be distinct: xj �= xk, yj �= yk for j �= k. Let a
function h of one variable be regular on D and [x0, x1, ..., xn]h be a divided difference
of function h at points x0, x1, ..., xn. Then

(2.3) [x0, x1, ..., xn]h =
1

2πi

∫
L

h(λ)dλ
(λ− x0) · · · (λ− xn)

(see [4, formula (54)]). Thus

Y (x0, ...xn; y0, ..., ym) =
1

2πi

∫
L̃

[x0, ..., xn]f(., w)dw
(w − y0) · · · (w − yn)

.

Now apply (2.3) to [x0, ...xn]f(., w). Then

Y (x0, ...xn; y0, ..., ym) = [x0, ...xn] [y0, ...ym]f(., .) ≡ [x0, ...xn] ([y0, ...ym]f(., .)).

The following estimate is well-known [11, p. 6 ]:

|[x0, ...xn] [y0, ...ym]f(., .)| ≤ sup
z∈Ω,w∈Ω̃

|f (n,m)(z, w)|.

It proves the required result if all the points are distinct. If some points coincide,
then the claimed inequality can be obtained by small perturbations and the previous
arguments.

Furthermore, since A and B commute they have the same orthogonal normal
basis of the triangular representation (Schur’s basis) {ek}. We can write

(2.4) A = DA + VA, B = DB + VB ,

where DA, DB are the diagonal parts, VA and VB are the nilpotent parts of A and B,
respectively. Furthermore, let |VA| be the operator whose matrix elements in {ek} are
the absolute values of the matrix elements of the nilpotent part VA of A with respect
to this basis. That is,

|VA| =
n∑

k=1

k−1∑
j=1

|ajk|(., ek)ej ,

where ajk = (Aek, ej). Similarly |VB | is defined.
Lemma 2.2. Under the hypothesis of Theorem 1.1 the estimate

‖f(A,B)‖ ≤
j+k≤n−1∑

j,k=0

sup
z∈co(A),w∈co(B)

|f (j,k)(z, w)| ‖ |VA|j |VB|k‖
j!k!
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is true, where VA and VB are the nilpotent part of A and B, respectively.
Proof. It is not hard to see that the representation (2.4) implies the equality

(A− Iλ)−1 = (DA + VA − λI)−1 = (I +Rλ(DA)VA)−1Rλ(DA)

for all regular λ. According to Lemma 1.7.1 from [7] Rλ(DA)VA is a nilpotent operator
because V and Rλ(DA) the same invariant subspaces. Hence, (Rλ(DA)VA)n = 0.
Therefore,

Rz(A) =
n−1∑
k=0

(Rz(DA)VA)k(−1)kRz(DA).

Similarly,

Rµ(B) =
n−1∑
k=0

(Rµ(DB)VB)k(−1)kRµ(DB).

So from (1.1) it follows

(2.5) f(A,B) =
n−1∑

j,k=0

Cjk,

where

Cjk =
(−1)k+j

4π2

∫
LB

∫
LA

f(z, w)(Rz(DA)VA)jRz(DA)(Rw(DB)VB)kRw(DB)dz dw.

Since DA is a diagonal matrix with respect to the Schur basis {ek} and its diagonal
entries are the eigenvalues of A, then

Rz(DA) =
n∑

j=1

Qj

λj(A)− z
,

where Qk = (., ek)ek. Similarly,

Rz(DB) =
n∑

j=1

Qj

λj(B)− z
.

Taking into account that QsVAQm = 0, QsVBQm = 0 (s ≥ m), we get

Cjk =
∑

1≤s1<s2<...<sj+1<m1<m2<...<mk+1<n

Qs1VAQs2VA · · ·

VAQsj+1Qm1VBQm2VB . . . VBQmk+1J(s1, . . . , sj+1,m1, . . . ,mk+1),
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where

J(s1, . . . , sj+1,m1, . . .mk+1) =

(−1)k+j

4π2

∫
LA

∫
LB

f(z, w)dz dw

(λs1 (A)− z) · · · (λsk+1 (A)− z)(λm1(B)− w) · · · (λmk+1(B)− w)
.

Lemma 2.5.1 from [7] gives us the estimate

‖Cjk‖ ≤ max
1≤s1<...<sj+1<m1<...<mk+1<n

|J(s1, . . . , sj+1,m1, . . .mk+1)|‖ |VA|j |VB |k ‖.

Due to Lemma 2.1,

|J(s1, . . . , sj+1,m1, . . . ,mk+1)| ≤ sup
z∈co(A),w∈co(B)

|f (j,k)(z, w)|
j!k!

.

This inequality and (2.5) imply the required result.
Proof of Theorem 1.1: Theorem 2.5.1 from [7] implies

(2.6) ‖V k ‖ ≤ ηkk!Nk(V )

for any nilpotent matrix V ∈ M(Cn). Take into account that N(|VA|) = N(VA).
Moreover, thanks to Lemma 2.3.2 from [7], N(VA) = g(A). Thus

(2.7) ‖ |VA|k ‖ ≤ k!ηkg
k(A) (k = 1, ..., n− 1).

The similar inequality holds for VB. Now the previous lemma yields the required
result. �

3. Functions of matrices on tensor products. Let E1 = Cn1 , E2 = Cn2 , be
the Euclidean spaces of the dimensions n1 and n2, with the scalar products < ., . >1

and< ., . >2, respectively, and the norms ‖.‖l =
√
< ., . >l (l = 1, 2). LetH = E1⊗E2

be the tensor product of E1 and E2 with the scalar product defined by

< y ⊗ h, y1 ⊗ h1 >H≡< y, y1 >1 < h, h1 >2 (y, y1 ∈ E1; h, h1 ∈ E2)

and the cross norm ‖.‖H =
√
< ., . >H , cf. [9]. In addition, I = IH and Il mean the

unit operators in H and El, respectively. So H = Cn with n = n1n2.
Recall that M(E) is the set of all linear operators in a space E. In this section it

is assumed that A ∈ M(E1) and B ∈ M(E2).
Again let ΩA and ΩB be open simple connected sets containing σ(A) and σ(B),

respectively. Let f be a scalar function analytic on ΩA ×ΩB. Introduce the operator
valued function

(3.1) f(A,B) := − 1
4π2

∫
LB

∫
LA

f(z, w)Rz(A)⊗Rw(B)dw dz,
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where LA ⊂ ΩA, LB ⊂ ΩB are closed contour surrounding σ(A) and σ(B), respec-
tively. If the series

f(z, w) =
∞∑

k=0

∞∑
j=0

cjkz
jwk

converges for |z| ≤ rs(A), |w| ≤ rs(B), where rs(A) is the spectral radius of A, then
(3.1) holds. Besides,

f(z, w) =
∞∑

k=0

∞∑
j=0

cjkA
j ⊗Bk.

Theorem 3.1. Let A ∈ M(E1) and B ∈ M(E2) and f(z, w) be regular on a
neighborhood of co(A)× co(B). Then

‖f(A,B)‖H ≤
n1−1∑
j=0

n2−1∑
k=0

ηjηkg
j(A)gk(B) sup

z∈co(A),w∈co(B)

|f (j,k)(z, w)|.

Proof. Put Ã = A⊗ I2, B̃ = I1 ⊗B2. Now Lemma 2.2 implies

‖f(A,B)‖H ≤
j+k≤n−1∑

j,k=0

sup
z∈co(A),w∈co(B)

|f (j,k)(z, w)| ‖ |VÃ|j |VB̃|k‖H

j!k!

where VÃ, VB̃ are the nilpotent parts of Ã and B̃, respectively. But

V n1

Ã
= V n1

A ⊗ I2 = 0.

Similarly, V n2

B̃
= 0. Thus,

‖f(A,B)‖H ≤
n2∑

k=0

n1∑
j=0

sup
z∈co(A),w∈co(B)

|f (j,k)(z, w)| ‖ |VA|j‖1 ‖ |VB |k‖2

j!k!

Now the required result follows from (2.7).
Taking into account (1.3), we get
Corollary 3.2. Under the hypothesis of Theorem 3.1, the estimate

‖f(A,B)‖H ≤
n2−1∑
k=0

n1−1∑
j=0

gj(A)gk(B)
(j!k!)3/2

sup
z∈co(A),w∈co(B)

|f (j,k)(z, w)|

is true.
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