
ELA

FOCAL POWER∗

ROBERT E. HARTWIG† AND JOHN MAROULAS‡

Abstract. The properties of a 2 × 2 block matrix M over a field for which (Mk)11 = (M)k11
are examined. This “fire-wall” property will be characterized by the vanishing of the sequence of
moments Fi = CDiB.
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1. Background material. LetM =
[
A C
B D

]
be a square matrix over a field

F, with square diagonal blocks. Suppose further that Mk =
[
Ak Ck

Bk Dk

]
. Then the

recurrence relation for the block can be obtained from[
Ak+1 Ck+1

Bk+1 Dk+1

]
=Mk+1 =MMk =

[
A C
B D

] [
Ak Ck

Bk Dk

]
=MkM,

which gives

(i) Ak+1 = AAk + CBk = AkA+ CkB (A0 = I)
(ii) Bk+1 = BAk +DBk = BkA+DkB (B0 = 0)
(iii) Ck+1 = ACk + CDk = AkC + CkD (C0 = 0)
(iv) Dk+1 = BCk +DDk = BkC +DkD (D0 = I).

(1.1)

We call M “focused on the (1,1) position” or (1,1)-focused, if (Mk)11 = (M)k11 for
all k = 1, 2, . . . Examples of this are block triangular matrices. In this note we
shall be characterizing this property. Our first observation is that if we think of a
matrix as a relation, then matrix multiplication corresponds to the composition of
relations. This is best addressed by using the digraph associated with M that has
weights mij attached to the arc (edge) (vi, vj) from node vi to node vj . We may
loosely speaking, think of mij as the “flow of information” from vi to vj . The entry
(Mk)ij is represented by the sum of all k-step path products from vi to vj and as
such represents the total flow of information from vi to node vj . When we partition

our matrix M as
[
A C
B D

]
then we partition the nodes accordingly into two classes

V1 = {S1, S2, . . . , Sm} and V2 = {T1, T2, . . . , Tn} (often called condensed nodes).
Moreover the weight of the arcs (Si, Sj), (Si, Tk), (Tk, Tq), (Tq, Sj) are respectively
given by aij , cik, dkq and bqj .
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We can now think of block matrix multiplication as representing the total flow
of information between the condensed nodes Vi corresponding to the diagonal block
entries.

In particular the block entry (Mk)11 represents the flow of information from V1

into V1 after a k-fold application of the linear mapM . That is, the flow of information
from Si into Sj , for any (i, j).

The statement thatM is (1,1)-focussed precisely means that no information flows
from V1 into V1 via V2, for any repeated application of the relation M .

The basic fact that we shall show is that for two block rows, the (1,1) focal
property occurs precisely when all the moments Fi = CDiB vanish! That is when

(CDrB)ij =
m∑

k=1

n∑
q=1
cik(Dr)kqbqj= 0 for all i = 1, . . . ,m, j = 1, . . . , n.

Alternatively we may think of the (1,1)-focal property as corresponding to a “fire-
wall” around the node V1. The analogy that comes to mind are the two sides of the
brain, for which in certain cases, no information flows from the right side into the left
side (all the neurons leading into the left half have been cut).

When we have more than two block rows, we may likewise define M = [Aij ] to be
(k, k) focussed or to be focussed on any principal sub block matrix ofM . The diagram
given below illustrates this idea
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Fig. 1.1. Basic Flow for a 2 x 2 block matrix

We shall also need the moments Ei = BAiC, i = 1, 2, . . ., which represent the
flow of information into the second node V2. When A is nonsingular we may also
define E−i = BA−iC, i = 1, 2, . . . A key role in all of this is played by the cornered
matrices

Γk(A,C,D) = Ak−1C +Ak−2CD + . . .+ CDk−1 =
k−1∑
i=0

AiCDk−i−1.

Throughout this note, the minimal and characteristic polynomials of M will be
denoted by ψM (λ) and ∆A(λ) respectively, the Drazin inverse of M is denoted by
MD (it is always a polynomial in M), and the index of a square matrix M is denoted
by in(M). When in(M) = 0 or 1, the Drazin inverse reduces to the group inverse,
which will be denoted by M#. The range, nullspace and nullity of a matrix M will
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be denoted by R(M), N(M) and ν(M) respectively. If M = [Aij ] is an n× n block
matrix we denote the leading k × k block matrix, [Aij ], i, j = 1, . . . , k, by Mk.

Theorem 1.1. Let M =
[
A C
B D

]
be a square block matrix with A and D square

and Mk =
[
Ak Ck

Bk Dk

]
. Then

(a) the following are equivalent:
1. Ak = Ak for all k = 1, 2, . . .
2. Ak+1 = AAk for all k = 0, 1, . . .
3. CBk = 0 for all k = 0, 1, . . .
4. Fk = CDkB = 0 for all k = 0, 1, . . .
5. CkB = 0 for all k = 0, 1, . . .
6. C adj (λI −D)B = 0.

In which case,

(b)
1. Bk = Γk(D,B,A)

2. Ck = Γk(A,C,D) and
3.

Dk = Dk +
k∑

i=2

i−2∑
r=0

Dr(BAk−iC)Di−2−r

= Dk + [I,D, . . . , Dk−2]



Ek−2 Ek−3 E0

Ek−3 E0 0

.. . .. .

E0 0 0







I
D
...

Dk−2


 .(1.2)

Proof.
(1)⇔(2). Clear since A1 = A is the initial condition.
(2)⇔ (3). Clear from (1.1)-(i).
(3)⇔ (4). To do this let us first solve for CBk in term of the Fk and Ak.

From this expression it is clear that when all the moments Ei vanish, then no infor-
mation will flows into V2, i.e., Dk = Dk for all k = 1, 2, . . .
The following lemma is needed before we proceed with the proof of the theorem.
Lemma 1.2. If Bk+1 = BAk +DBk, then

CBk = F0Ak−1 + F1Ak−2 + . . .+ Fk−2A1 + Fk−1(1.3)

and

Ak+1 = AAk + F0Ak−1 + F1Ak−2 + . . .+ Fk−2A1 + Fk−1,(1.4)

which is the recurrence relation for the (1,1) blocks Ak.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 56-71, February 2005

www.math.technion.ac.il/iic/ela



ELA

Focal Power 59

Proof of lemma. It is easily seen by induction that

CBk = F0Ak−1 + F1Ak−2 + . . .+ Fs−1Ak−s + CDsBk−s for s = 0, 1, . . . , k − 1.

Indeed, for s = 0 this is clear. So assuming this is valid for s, we have CBk =
F0Ak−1+F1Ak−2+. . .+Fs−1Ak−s+CDs(BAk−s−1+DBk−s−1) = F0Ak−1+F1Ak−2+
. . .+ FsAk−s−1 + CDs+1Bk−s−1, which establishes the validity for s+ 1, . . .
Setting s = k − 1 yields (1.3). The rest is clear. �
In block matrix from this gives



CB1

CB2

...
CBk


 =




I 0
A1 I
...

. . .
Ak−2 · · · A1 I







F0

F1

...
Fk−1


 .(1.5)

From this it follows at once that CBk = 0 for all k = 0, 1, 2 . . . iff Fi = 0 for all
i = 0, 1, . . . By B ←→ C symmetry it also follows that CmB = 0 iff Fi = 0 for all
i = 0, 1, . . .

(4)⇔ (6). Recall that if D is m × m has characteristic polynomial, ∆D(λ) = d0 +
d1λ + . . .+ λm, then adj (λI −D) = D0 +D1λ + . . .+Dm−1λ

m−1 with Dm−1 = I.
Consequently

C adj (λI −D)B = CD0B + (CD1B)λ+ . . .+ (CB)λm−1.

The matrices Di = fi(D) are the adjoint polynomials of D, which are given by

[f0(x), f1(x), .., fm−1(x)] = [1, x, .., xm−1](H⊗I),(1.6)

where H =



d1 d2 · · · dm

d2 d3

.. .

dm · · · 0


. This means that

[CD0B,CD1B, . . . , CDm−1B] = C[D0, D1, . . . , Dm−1](Im⊗B)

= C[I,D, . . . , Dm−1](H⊗I)(I⊗B) = C[I,D, . . . , Dm−1](I⊗B)(H⊗I)

= [F0, F1, . . . , Fm−1](H⊗I).
From this we see that C adj (λI −D)B = 0 iff CDiB = 0 for i = 0.1, . . . ,m iff Fi =
0 for all i.

Let us next turn to expressions for the blocks Bk and Ck, for which we again use
induction.

It is clear that B1 = B = Γ1(D,B,A). So let us assume that Br = Γr(D,B,A),
for r ≤ k. Then Bk+1 = BAk +DBk = BAk +D(Dk−1B+Dk−2BA+ ...+BAk−1) =
Γk+1(D,B,A), as desired.
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Likewise C1 = C = Γ1(A,C,D) and Ck+1 = AkC + CkD = AkC + (Ak−1C +
Ak−2CD + . . .+ CDk−1)D = Γk+1(A,C,D).

Lastly, let us show by induction that (1.2) holds. Let Xk denote the RHS of
equation (1.2). Since D2 = BC +D2 we see that (1.2) holds for k = 2. Now Dk+1 =

BCk + DDk = B(Ak−1C + . . . + CDk−1) + Dk+1 +
k∑

i=2

i−2∑
r=0
Dr+1(BAk−iC)Di−2−r .

Setting j = i+ 1, reduces the last sum to
k+1∑
j=3

j−1∑
r=0
Dr+1(BAk−j+1C)Dj−r−3.

Next we set s = r + 1, giving
k+1∑
j=3

j∑
s=1
Ds(BAk−j+1C)Dj−s−2.

The term with j = 2 is empty because j − 2− s will be negative. Likewise the terms
with s = j − 1 or s = j will be absent. We may thus write the sum as

k+1∑
j=2

j−2∑
s=1
Ds(BA(k+1)−jC)Dj−s−2.

The term with s = 0 is precisely BAk−1C + . . .+BCDk−1, and so we end up with

Dk+1 +
k+1∑
j=2

j−2∑
s=0

Ds(BA(k+1)−jC)Dj−s−2,

which precisely equals Xk+1. This completes the proof of the theorem. �
We note that we may also write Dk in terms of chains as

Dk = Dk + [B,DB, . . . ,Dk−2B]



Ak−2 Ak−3 I
Ak−3 · · · I 0

... .. . .. .

I 0 0







C
CD
...

CDk−2


 .(1.7)

It is of interest to observe that the cornered matrices Γk(A,C,D) and Γk(D,B,A)
appear in[

A C
0 D

]k

=
[
Ak Γk(A,C,D)
0 Dk

]
and

[
A 0
B D

]k

=
[

Ak 0
Γk(D,B,A) Dk

]
.

Summing these we see that for any polynomial f(x):

f(
[
A C
0 D

]
) =

[
f(A) Γf (A,C,D)

0 f(D)

]
and f(

[
A 0
B D

]
) =

[
f(A) 0

Γf (D,B,A) f(D)

]
,

where Γf (A,C,D) =
k∑

i=1

fiΓi(A,C,D)
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2. Consequences. Let us now derive several of the properties of focused ma-
trices, as related to (i) convergence, (ii) graphs, (iii) invariant subspaces, and (iv)
chains.

Throughout this section we assume that M =
[
A C
B D

]
is (1,1)-focused.

Our first observation is
Corollary 2.1. If M is (1,1) focussed and Mk converges (to zero) as k → ∞ then
Ak also converges (to zero).

Next we have
Corollary 2.2. If M if (1,1)-focused, then for any polynomial f(x) = f0 + f1x +
. . .+ fsxs, with adjoint polynomials fi(x),

f(M) = f(
[
A C
B D

]
) =

[
f(A) Γf (A,C,D)

Γf (D,B,A) Df

]
,(2.1)

where Df =

f(D) + [B,DB, . . . ,Ds−2B]




f1(A) f2(A) fs−1(A)
f2(A) · · · fs−1(A) 0

... .. . .. .

fs−1(A) 0 0







C
CD
...

CDs−2


 .

In particular if q(M) = 0, then q(A) = 0. From this it follows that
Corollary 2.3. If M is (1,1)-focused, then ψA|ψM .

This tells us that the eigenvalue of A (if any) must be among the e-values of M.
In addition
Corollary 2.4. IfM is (1,1)-focused, then for any scalar β: in(A−βI) ≤ in(M−βI).

We further know that for any polynomial f(x),

f(M) = g(M) ⇒ f(A) = g(A).(2.2)

This simple observation has numerous consequences.

Corollary 2.5. For complex matrices, if M =
[
A C
B D

]
is (1,1)-focused and nor-

mal, then A is also normal.
Proof. M is normal exactly when M∗ = f(M) for some polynomial f(x). In

this case
[
A∗ B∗

C∗ D∗

]
= M∗ = f(M) =

[
f(A) ?

? ?

]
, and thus A∗ = f(A) and A is

normal. �
Corollary 2.6. Suppose that M is (1,1)-focused.
(i) If M is invertible, then A is also invertible.
(ii) If M−1 = f(M), then A−1 = f(A).

Proof. If M is invertible then M−1 is a polynomial in M , say f(M). As such
Mf(M) = I, and hence Af(A) = I, with f(A) = A−1. �

Let us next extend this to Drazin and group inverses.
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Corollary 2.7. If M =
[
A C
B D

]
is (1,1) focussed, then

MD =
[
AD ?
? ?

]
.(2.3)

If M# exists then

M# =
[
A# ?
? ?

]
.(2.4)

Proof. To show (2.3), let X = g(M) = MD. Then, using the notation of general-
ized inverses, we have

(1k) Mk+1X =M⇔Mk+1g(M) =Mk ⇒ Ak+1g(A) = Ak.
(2) XMX = X ⇔ g(M)Mg(M) = g(M) ⇒ g(A)Ag(A) = g(A).
(5) MX = XM ⇔Mg(M) = g(M)M ⇒ Ag(A) = g(A)A.

The latter show that g(A) is unique solution to the three equations

Ar+1Y = Ar, AY = Y A, Y AY = Y (for some r),

and thus must equal the Drazin inverse of A.
Equation (2.4) is a special case of (2.3), when k = 0 or 1.

Corollary 2.8. Over C, if M is (1,1)-focused and EP (i.e. R(M) = R(M∗)), then
A is also EP.

Proof. IfM is EP, thenM † =M# = g(M) is the group inverse ofM . This means

that MM# = Mg(M) =
[
Ag(A) ?

? ?

]
and M#M = g(M)M =

[
g(A)A ?

? ?

]
.

Since the latter two matrices are Hermitian it follows that Ag(A) = g(A)A is also
Hermitian, ensuring that g(A) = A# = A†. �

In the closed field case, the spectral projection associated with the zero eigenvalue
is a polynomial in M , and satisfies:
Corollary 2.9.

ZM = I −MMD = I −Mg(M) =
[
I −Ag(A) ?

? ?

]
=[

I −AAD ?
? ?

]
=

[
ZA ?
? ?

]
.

Corollary 2.10. The spectral components associated with the zero eigenvalue are
given by

Zj
M =M jZM =M j(I −MMD) =M j(I −Mg(M)) =

[
Aj(I −Ag(A)) ?

? ?

]
=

[
Aj(I −AAD) ?

? ?

]
=

[
Zj

A ?
? ?

]
.
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Corollary 2.11. If M is (1,1)-focused, then ∆M = ∆A.∆D

Proof. We shall use the following polynomial form identity, in which D is k × k
and M is n× n. [

∆DI −C adj (λI −D)
0 I

][
λI −A −C
−B λI −D

]

=
[

(λI −A)∆D − C adj (λI −D)B 0
−B λI −D

]
.(2.5)

Taking determinants gives

∆n−k
D ∆M = ∆D det[∆D(λI −A) − C adj (λI −D)B](2.6)

Now because of (1.6), CDiB = 0 for i = 0, 1, . . . , k − 1 iff CDiB = for i =
0, 1, . . . , k − 1. Hence we see that

if Fi = 0 for all i, then C adj (λI −D)B = 0, and (2.6) simplifies to

∆n−k
D ∆M = ∆n−k+1

D ∆A

in which we may cancel the ∆n−k
D to give the desired result. �

Corollary 2.12. Let M be A-focussed. Then, as k → ∞, Mk → 0 iff Ak → 0 and
Dk → 0.

We remark that when M is A-focussed and Mk converges, then Dn need not

converge, as seen from the matrix M =


 1/2 0 1

−1/2 1 1
0 0 1


, with D =

[
1 1
0 1

]
.

3. Transitivity. When we have more than two block rows, the term “(1,1)-
focussed” becomes ambiguous, since it depends on the particular partitioning one has
in mind. To avoid this we shall explicitly refer to the principal sub-block matrix that

is used. For example if M =
[
A C
B D

]
=


 A1 A3 C1

A2 A4 C2

B1 B2 D


, we shall say that M

is A-focussed, or M is A1-focussed, but shall not use “(1,1)- focussed” for either of
these. In this vein it is best to think of this as a relation and define
Definition 3.1. A �M iff A is a principal submatrix of M and M is A-focussed.

It is clear that this relation is reflexive and anti-symmetric. We shall now show
that it is transitive as well, making it a partial order. It suffices to consider the case
of three block rows. The general case then follows by induction and by permutation
similarity.

Theorem 3.2. Let M =
[
A C
B D

]
=


 A1 A3 C1

A2 A4 C2

B1 B2 D


. Then A1 � A and A �M

imply A1 �M .
Proof. From theorem (1.1) we know that

(a)
[
C1

C2

]
Dk[B1, B2] = 0 for all k = 0, 1, . . .(3.1)
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and

(b) A3A


4A2 = 0, for all + = 0, 1, 2, . . .(3.2)

Our aim is to show that

[A3, C1]
[
A4 C2

B2 D

]r [
A2

B1

]
= 0 for all r = 0, 1, 2, . . .

We begin by setting
[
A4 C2

B2 D

]k

=
[
αk γk

βk δk

]
for k = 1, 2, . . . In terms of this we

must establish that

A3αkA2 +A3γkB1 + C1βkA2 + C1δkB1 = 0, k = 0, 1, . . .(3.3)

We shall use the recurrence of (1.1) and apply the conditions (3.1) and (3.2) to show
by induction that each term in this sum vanishes.
(a) Ciβk = Ci(B2αk−1+Dβk−1) = CiDβk−1 = . . . = CiD

rβk−r = . . . = CiD
k−1β1 =

CiD
k−1B2 = 0.

(b) CiδkBj = Ci(B2δk−1 + Dδk−1)Bj = CiDδk−1Bj = . . . = CiD
rδk−rBj = . . . =

CiD
k−1δ1Bj = CiD

k−1DBj = 0 for i, j = 1, 2.
(c) γkBj = (αk−1C2 + γk−1D)Bj = γk−1DBj = . . . = γk−rD

rBj = .. = γ1Dk−1Bj =
C2D

k−1Bj = 0.
(d) A3αkA2 = A3(A4αk−1 + C2βk−1)A2 = A3A4αk−1A2

= A3A4(A4αk−2 +C2βk−1)A2, in which the latter term vanishes by part (a). Hence,
by (3.2), we have

A3αkA2 = A3A
2
4αk−2A2 = . . . = A3A

r
4αk−rA2

= . . . = A3A
k−1
4 α1A2 = A3A

k−1
4 A4A2 = 0. �

This result is not surprising in term of information flow. If no information can
flow fromM into A and no information can flow from A into A1 then no information
can flow from M into A1. If Mk is the leading principal submatrix in M, then
Corollary 3.3. M1 � M iff M1 � Mk1 � Mk2 � . . . � M for some increasing
sequence (1, k1, k2, . . . , n).
Corollary 3.4. If Akk �Mk and Mk �M then Akk �M .

Using permutations, this may be extended to any nested sequence of principal
block matrices containing Akk.

4. Special cases. Let us now turn to some special cases.

Proposition 4.1.
[
A B∗

B D

]
is A-focussed iff B = 0.

Proof. The condition CB = B∗B = 0, forces B = 0. �
Proposition 4.2. If

[
A c

bT d

]
, where b and c are columns, then M is (1,1)-focused

iff either c = 0, or b = 0. In which case M is block triangular
Proof. Suppose that M is (1,1)-focused. Then with k = 2 we see that A2 =

A2 + cbT and thus cbT = 0. This means that either c = 0, or b = 0. In which case
M is block triangular. No other conditions are necessary. The converse is clear. �
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As an application of this consider the companion matrix

L(f) =




0 −f0
1 0 −f1
0 1

. . . . . .
...

0
0 1 −fn−1




=
[
N c
bT d

]
,

associated with the monic polynomial f(t) = f0 + f1t+ . . .+ tn, with b = en−1 and

d = −fn−1. If L is N -focussed, then c = 0, and L reduces to L =
[
N 0
eT

n−1 d

]
. It

follows at once by induction that

(a) for k ≤ n− 1, Lk =




0 0
...
0
1

. . .
0 1 d · · · dk




and
(b) for r ≥ 0, Ln+r = en[dr+1, . . . , dn+r].
Given the vector aT = [a0, a1, . . . , an−1], the coefficients bk = aTLke1, k =

0, 1, 2, . . . can be computed as bk = ak for k = 0, . . . , n− 1 and bn+r = an−1d
r+1 for

r = 0, 1, . . . That is, the tail forms a geometric progression. This construction finds
use in the search for minimal realizations of order n [6].

As our next example we consider the linear system
•
x(t)= Dx(t) +Bu(t) and y(t) = Cx(t).

Differentiating this repeatedly, gives [5]




y(t)
y′(t)

...
y(n−1)(t)


 =




C
CD
...

CDn−1


x(t) +




0 0
F0 0
...

. . .
Fn−2 · · · F0 0







u(t)
u′(t)

...
u(n−1)(t)


 ,(4.1)

where the moments Fk = CDkB are now called the Markov parameters of the
system. These are uniquely determined by the transfer matrix H = C(λI−D)−1B =∑
k=0

Fkλ
−k. When M is (1,1)-focused, we know that all the Markov parameters van-

ish, and consequently OB =




C
CD
...

CDn−1


B = 0. If in addition, the pair (C,D) is

observable, then O has a left inverse and B must vanish. In this caseM will be upper
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triangular.

Lastly, we next turn our attention to the dilation of a (1,1)-focused matrix.

Proposition 4.3. If M =
[
A C
B D

]
is (1,1) focused, then so is the (N+1)×(N+1)

block dilation

M̂N−1 =




A C 0 · · · 0
0 0 I 0
...

. . .
0 0 I
B D · · · 0




=
[
A C
B Ω

]
.(4.2)

Proof. It suffices to note that Ωk =




0 I
. . .

D I
. . .

D 0



, for k = 0, 1, . . . , N − 1

so that ΩN = I⊗D and ΩN+1 = (IN⊗D)Ω. We next compute [C, 0, .., 0]Ωk




0
...
B


 =

C(Ωk)1NB. Since the (1, N) block in Ωk is either zero or a power of D, we see that
CΩkB = 0, for all k = 0, 1, . . ., which on account of theorem (1.1) suffices. �

5. Schur complements. When A is invertible, we may diagonalize the matrix

M =
[
A C
B D

]
as follows:[

I 0
−BA−1 I

][
A C
B D

] [
I −A−1C
0 I

]
=

[
A 0
0 D −BA−1C

]
.

Because of this form, the matrix Z = D − BA−1C is called the Schur Complement
(SC) of A in M , and is denoted by M/A. Likewise, when D is nonsingular, we have
the factorization[

I −CD−1

0 I

][
A C
B D

] [
I 0

−D−1B I

]
=

[
A− CD−1B 0

0 D

]
,

giving the Schur complement ζ = A− CD−1B =M/D.
When neither A nor D are invertible, we have the following fundamental form

PMQ =

[
I 0

−BX I

] [
A C
B D

] [
I −XC
0 I

]
=

[
A (I − AX)C

B(I − XA) Z

]
= N

and

P ′MQ′ =

[
I −CY
0 I

] [
A C
B D

] [
I 0

−Y B I

]
=

[
ζ C(I − Y D)

(I − DY )B D

]
= N ′,

where

Z = D −B(2X −XAX)C and ζ = A− C(2Y − Y DY )B

are the “generalized“ Schur complements. In order to mimic the nonsingular case,
it stands to reason that we want X and Y , to be some kind of generalized inverse.
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Indeed, if X = Â is a 2-inverse of A (i.e., XAX = X), then Z = D−B(2X−XAX)C
reduces to Z = D − BÂC, which we shall denote by M/A. In particular this holds
when X = A+ is a reflexive (1-2) inverse of A (i.e. AXA = A,XAX = X). On the
other hand if X = A− is an inner inverse of A (i.e. AXA = A), then Z reduces to
Z = D − B(2A− − A−AA−)C. Similarly if Y = D̂ is a 2-inverse of D, then we see
that ζ = A− C(2Y − Y DY ) = A− CD̂B = M/D. Needless to say, M/D and M/A
depend on the choice of 2-inverse in general.

The matrices N and N ′ have properties that are similar to those ofM . Indeed, using
2-inverses we may state

N ′/D =M/D and M/A = N/A.(5.1)

We next turn to the case where A is partitioned further, say

M =
[
A C
B D

]
=


 A1 A3 C1

A2 A4 C2

B1 B2 D


 =


 A1 A3 C1

A2 A4 C2

B1 B2 D


 =

[
A1 ?
? Y

]
.(5.2)

We shall first present a generalization of the Haynsworth Quotient formula [1, Eq.
3.22].
Theorem 5.1. For each choice of 2-inverse Â1 and (A4 −A2Â1A3)∧, there exists a
2-inverse Â, depending only on these choices, such that

(M/A1)/(A/A1) =M/A,(5.3)

where M/A = D −BÂC.
Proof. First we compute

M/A1 =
[
A4 C2

B2 D

]
−

[
A2

B1

]
Â1[A3, C1] =

[
A4 −A2Â1A3 C2 −A2Â1C1

B2 −B1Â1A3 D −B1Â1C1

]
.

Next observe that Z = A/A1 = A4 −A2Â1A3 and hence that
(M/A1)/(A/A1) = (D −B1Â1C1) − (B2 −B1Â1A3)Ẑ(C2 −A2Â1C1),

which reduces to

(M/A1)/(A/A1) =D −B1(Â1 + Â1A3ẐA2Â1)C1

−B2ẐC2 + B1Â1A3ẐC2 +B2ẐA2Â1C1.(5.4)

Next consider the matrix

X =
[
Â1 + Â1A3ẐA2Â1 −Â1A3Ẑ

−ẐA2Â1 Ẑ.

]
(5.5)

It is easily checked that XAX = X . Using this 2-inverse in M/A = D − [B1, B1]Â[
C1

C2

]
we again arrive at (5.4), completing the proof. �
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It should be remarked that when we select reflexive inverses A+
1 and (A4 −

A2A
+
1 A3)+, then the matrix X in (5.5) also becomes a 1-2 inverse.
Let us next turn to the question of focal power and the quotient formulae. We

shall use M//A to denote the special Schur complement M//N = D−BAdC, where
Ad denotes the Drazin inverse of A. It will be shown that the quotient formula holds
for this type of Schur complements, when we add focal power.
Theorem 5.2. Let M be as in (5.2). If D � Y and Y � M then

M//A = (M//A1)//(A//A1) and M//Y = (M//D)//(Y//D)(5.6)

Proof. If Y � M then
[
A2

B1

]
Ak

1 [A3, C1] = 0 for all k = 1, 2 . . ., which implies

that
[
A1

B1

]
Ad

1[A3, C1] = 0 and thus A2A
d
1A3 = 0 as well. As such we obtain

M//A1 = Y −
[
A1

B1

]
Ad

1[A3, C1] = Y and A//A1 = A4 −A2A
d
1A3 = A4.

Next we note that if D � Y then B2A
k
4C2 = 0, for all k = 0, 1, . . . and thus

B2A
d
4C2 = 0. This means that Y//A = D −B2A

d
4C2 = D. We may conclude that

(M//A1)//(A//A1) = Y//A4 = D.
Lastly, by transitivity, D � M , which tells us that BAkC = 0 for all k = 0, 1, . . .
and hence BAdC = as well. Substituting this into M//A = D −BAdC, we arrive at
M//A = D, completing the proof of the first identity. The remaining identity follows
by symmetry. �

Let us now return to the case where A is invertible, and Z = D−BA−1C = D−E.
We shall examine a different completion.

Proposition 5.3. Let M =
[
A C
B D

]
and suppose A is invertible. Further let

Z = D − BA−1C be a Schur complement of M and set N” =
[
A C
B Z

]
. Then the

following are equivalent.
(i) M is (1,1)-focused
(ii) CDkZrB = 0 for all k, r = 0, 1, . . .
(iii) CZrB = 0 for all r = 0, 1, . . .
(iv) N” is (1,1)-focused.

In which case,
(a) ZrB = DrB = DrB
(b) CZr = CDr = CDr

(c) Dr = Zr + Γr(Z,E,Z)
(d) Br = Γr(Z,B,A) and Cr = Γr(A,C,Z)
(e)

Dk = Zk + [B, ZB, . . . , Zk−1B]




Ak−2 Ak−3 I A−1

Ak−3 · · · I A−1 0
... ..

.
..

.

I ..
.

A−1 0 · · · 0







C
CZ
...

CZk−1


(5.7)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 13, pp. 56-71, February 2005

www.math.technion.ac.il/iic/ela



ELA

Focal Power 69

= Zk + [I, Z, . . . , Zk−1]




Ek−2 Ek−3 E0 E−1

Ek−3 · · · E−1 0
... .. . .. .

E0 .. .

E−1 0 · · · 0







I
Z
...

Zk−1


 .(5.8)

Proof.
(i) ⇒(ii). It holds for r = 0. So assume it also holds for r = r and all k. Then
CDkZr+1B = CDkZ.ZrB = CDk(D −BA−1C)ZrB = CDk+1.ZrB = 0.
(ii) ⇒ (iii) Clear.
(iii) ⇒ (i). When r = 0 we see that F0 = CB = 0. We now claim that DkZB =
Zk+1B. This is clear for k = 0. So assuming this holds for k = k, we have Dk+1ZB =
D(DkZB) = DZkB = (Z+BA−1C)ZkB = Zk+1B since CZkB = 0. We then arrive
at CDk+1B = CDk.DB = CDk(Z +BA−1C)B = CDkZB = CZk+1B.
(i) ⇔ (iv). This is clear from theorem (1.1)-(4).
(a) Both equalities are clearly true for r = 1, so suppose they hold for r = r. Then
Dr+1B = DDrB = (Z + E)ZrB = Zr+1B + EZrB = Zr+1B, since EZrB = 0 by
part (iii). Also Dr+1B = (BCr + DDr)B = B(CrB) + D(DrB) = 0 + D(ZrB) =
D.DrB = Dr+1B = Zr+1B, where we used (a) twice.
(b) This follows by symmetry.
(c) First note that E2 = 0 and EZrE = 0 and thus Γr(Z,E,Z)E = 0 = EΓr(Z,E,Z).
Next we observe that the results clearly holds for r = 1. Assuming its validity for
r = r, we arrive at Dr+1 = DrD = [Zr +Γr−1(Z,E,Z)](Z+E) = Zr+1+(Zr−1EZ+
+EZr) + ZrE + 0 = Zr+1 + Γr(Z,E,Z).

(d) From part (a), Ck =
k−1∑
i=0

Ak−i−1CDi =
k−1∑
i=0

Ak−i−1CZi = Γk(A,C,Z) and Bk =

k−1∑
i=0

Dk−i−1BAi =
k−1∑
i=0

Zk−i−1BAi = Γk(Z,B,A).

(e) Note that (c) can be written as

Dk = Zk + [I, Z, .., Zk−1]




0 0 E−1

0 · · · E−1 0

.. .

E−1 0 · · · 0







I
Z
...

Zk−1


,

which we substitute in

Dk = Dk + [I, Z, .., Zk−1]




Ek−2 Ek−3 E0 0
Ek−3 E0 0 0

.. . .. .

E0 0 0
0







I
Z
...

Zk−1




to give the desired expression (5.7) �.
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6. Remarks. (i) The condition Fk = 0 means that the controllability space
W = R[B,DB,D2B, ...] is a D-invariant subspace of N(C), of dimension d ≤ ν(C).
Let Q be am×d basis matrix forW . SinceW is D-invariant we know that DQ = QR
for some d × d matrix R, and because R(B) ⊆ W , we also know that B = QT for
some d× n matrix T (here A is n× n). This means that[

A C
B D

] [
In 0
0 Q

]
=

[
A 0
B DQ

]
=

[
In 0
0 Q

][
A 0
T R

]
.

The matrix Y =
[
In 0
0 Q

]
has full column rank, and thus is left invertible. It is not

clear if any further subspace properties can be obtained.

(ii) If A is nonsingular, we may form the Schur complement of N , i.e. Z1 = Z −
BA−1C = D − 2BA−1C. It is now clear that if M is (1,1)- focused then so is[
A C
B Z1

]
. Needless to say we may repeat this for Zk = D − kBA−1C.

(iii) The (1,1) entries Ak = Ak +Ek in Mk satisfy the recurrence (1.4). This however,
does not show the “dominant” term Ak nor the “error” term Ek. The latter can be
expressed as [2]

Ek = [C,AC, .., Ak−2C]



Yk−2 Yk−3 · · · Y0

Yk−3 · · · Y0 0
... .. . .. .

Y0 0 0







B
BA
...

BAk−2


 , k = 1, 2,(6.1)

where Yk+1 = DYk + E0Yk−1 + . . .+ Ek−1Y0, with Y0 = I.

It then follows by induction that Ek = 0 iff CDkB = 0 iff CYkB = 0 for all k = 0, 1, . . .

(iv) M is diagonally focussed if (Mk)ii = (Mii)k for i = 1, 2 and all k = 0, 1, . . . This
happens exactly when Ek and Fk vanish for all k. Such matrices act like block diagonal
matrices without being of this form.

Let us close by posing some open problems.

7. Open questions. When M is (1,1)-focused, there are several concepts that
present themselves, such as minimal polynomials, graphs, convergence and pencils.
For example it would be of interest to know when ψD|ψM ? or how one could relate

focal power to Roth’s theorem: AX−XD = C ⇒
[
A C
0 D

]
≈

[
A 0
0 D

]
. Likewise

it would be of interest to see how the (condensed) graph of M is affected by this
property, or what invariance the pencil condition C adj (λI −D)B = 0, corresponds
to? On a different note we could only require that Ak = Ak for k = 0, . . . , +, with
+ fixed. What would be the the smallest value of +, for which we obtain (1,1) focal
power? Could the (1,1)-focal property shed light on the question of when ψA|ψM , for

a general block matrix M =
[
A C
B D

]
? Are there any other dilation that preserve

the focal property?
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