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SOME PROPERTIES OF THE Q-ADIC
VANDERMONDE MATRIX�

VAIDYANATH MANIy AND ROBERT E. HARTWIGy

Abstract. The Vandermonde and con
uent Vandermonde matrices are of fundamental
signi�cance in matrix theory. A further generalization of the Vandermonde matrix called the
q-adic coe�cient matrix was introduced in [V. Mani and R. E. Hartwig, Lin. Algebra Appl.,
to appear]. It was demonstrated there that the q-adic coe�cient matrix reduces the Bezout
matrix of two polynomials by congruence. This extended the work of Chen, Fuhrman, and
Sansigre among others. In this paper, some important properties of the q-adic coe�cient
matrix are studied. It is shown that the determinant of this matrix is a product of resultants
(like the Vandermonde matrix). The Wronskian-like block structure of the q-adic coe�cient
matrix is also explored using a modi�ed de�nition of the partial derivative operator.
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1. Introduction. Undoubtedly, the Vandermonde matrix is one of the
most important matrices in applied matrix theory. Its generalization to the
con
uent Vandermonde matrix has numerous applications in engineering. This
concept was further generalized to the q-adic Vandermonde matrix in [9], ex-
tending the work of Chen [4], Fuhrman [7] and Sansigre [3] among others. In
this paper, we investigate some of the properties of the q-adic Vandermonde
matrix. In particular, we shall evaluate its determinant and analyze its block
structure. The former extends the Vandermonde determinant, while the lat-
ter shows a remarkable analogy to the layered Wronskian structure of the
con
uent Vandermonde matrix.

It is well known that the con
uent Vandermonde matrix for the polynomial

 (x) =
sY
i=1

(x� �i)
mi ;

deg( ) =
P
mi = n, can be constructed by forming the Taylor expansion of
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xt in terms of the powers of (x� �i), i.e.,

1 = 1
x = �i + 1(x� �i)
x2 = �2i + 2�i(x� �i) + 1(x� �i)

2

...
xt = �ti + t�t�1i (x� �i) + : : :
...

xn�1 =
Pn
j=1

�
n� 1
j � 1

�
�n�ji (x� �i)j :

(1)

If we set (x��i) = qi and denote the column containing the �rstmi coe�cients
in the above expansion of xt by [xt](qi;mi), then

[xt](qi;mi) =

2
666664

�ti
t�t�1i
...�

t
mi � 1

�
�t�mi+1
i

3
777775
mi�1

:(2)

In case t < mi�1, we of course replace the elements involving negative powers
of �i by zero. Collecting these coordinate columns, we may construct the n�mi

matrix 
nmi
(�i) as


nmi
(�i)

T =
h
[1](qi;mi) [x](qi;mi) : : : [xn�1](qi;mi)

i
:

In other words, 
nmi
(a) is made up of �rst mi columns of Caratheodory's n�n

binomial matrix 
n(a) =

��
k
j

�
ak�j

�n�1;n�1
k;j=0

. Lastly, the n � n con
uent

Vandermonde is de�ned by matrix


� =
�

nm1

(�1); 

n
m2
(�2); ::; 


n
ms
(�s)

�
:(3)

To extend this concept further, we recall the q-adic expansion of a given
polynomial f(x) relative to a monic polynomial q(x). Indeed, the following
lemma from [2] is elementary.

Lemma 1.1. Let q(x) be a monic polynomial of degree l over F. If f(x)
is any polynomial over F, then there exist unique polynomials rj(x) over F, of
degree less than l, such that

f(x) =
kX
j=0

rj(x)[q(x)]
j
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for some �nite non-negative integer k.
Let us now use the above lemma to de�ne the q-adic coordinate column of

a polynomial. For an arbitrary polynomial f(x) = a0+a1x+: : :+akx
k, its stan-

dard coordinate column relative to the standard basis BST = f1; x; : : : ; xn�1g
is de�ned and denoted by

f = [f ](st) =

2
6664
a0
a1
...
ak

3
7775 :

Now for a given pair (q;m) made up of a polynomial q(x) of degree l and a
positive integer m, the q-adic expansion of f(x) may be written as

f(x) = r0(x) + r1(x)q + : : :+ rm�1(x)q
m�1 + qm(?);

where ? denotes the (polynomial) quotient after division by qm. The q-adic
coordinate column associated with f(x) for the pair (q;m) is now de�ned as

[f ](q;m) =

2
6664
r0
r1
...
rm�1

3
7775
lm�1

;

where ri is the standard coordinate column for ri(x). It should be noted that
(i) if the degree of f(x) is larger than q(x)m, we simply ignore the quotient
after division by qm.
(ii) the statements qmjf and [f ](q;m) = 0 are equivalent, i.e.,

[f ](q;m) = 0 , qmjf:(4)

(iii) if deg(f) = k, then [f ](st) is a (k + 1)� 1 column vector.

Throughout this paper, we shall denote the ith unit column vector by ei.

1.1. The q-adic Vandermonde matrix. We are now ready for the
construction of the q-adic Vandermonde matrix. In order to repeat the con-
struction given in (1) over �elds which are not algebraically closed, let  (x)
be a foundation polynomial with the factorization

 (x) =
sY
i=1

qmi

i

with deg(qi) = li � 1 and deg( ) =
Ps
i=1mili = n. Again, using the q-adic

expansion of the standard basis elements xt, we have

xt =
mi�1X
j=0

r
(t)
ij (x)qi(x)

j + qi(x)
mi(?):
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The qi-adic coordinate column [xt](qi;mi) may now be formed as

[xt](qi;mi) =

2
666664

r
(t)
i0

r
(t)
i1
...

r
(t)
i;mi�1

3
777775 ;(5)

where r
(t)
ij is the standard coordinate column for r

(t)
ij (x). Lastly, collecting

coordinate columns, we set

Wi =
h
[1](qi;mi) [x](qi;mi) : : : [xn�1](qi;mi)

i
limi�n

(6)

and construct the n� n q-adic Vandermonde matrix W as

WT =

2
664
W1

W2

: : :
Ws

3
775

It is clear that when the qi's are linear polynomials then, (2) reduces to (6) and
WT to 
T . We shall as such refer to the matrixW as the q-adic Vandermonde
matrix. If W is nonsingular, it solves the q-adic interpolation problem for
polynomials as discussed in [9]. Moreover, for any polynomial f(x) with degree
less than n and standard coordinate column [f ](st), it is clear from (5) that

Wi[f ](st) = [f ](qi;mi);(7)

In other words, Wi acts as a change of basis matrix from the standard to the
qi-adic coordinates. This is a crucial observation which will be used in the
next section.

To analyze W further, we need the relation between the q-adic coordinate
columns of [f ](q;m) and [�

kf ](q;m). This relation is best handled via the concept
of a polynomial in a hypercompanion matrix which we shall now address.

1.2. Some basic results hypercompanion matrices. If q(x) = a0 +
a1x + : : :+ xl is a monic polynomial of degree l, then the hypercompanion
matrix for q(x)m is the m�m block matrix

Hqm =

2
66664
Lq 0 : :: 0
N Lq 0 :: 0
: : : : 0
0 0 N Lq 0
0 0 0 N Lq

3
77775 ;(8)
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where N = E1;l = e1e
T
l and Lq is the companion matrix of q(x) de�ned by

Lq =

2
6666664

0 0 0 ::: �a0
1 0 0 ::: �a1
0 1 0 ::: ::
: : : ::: ::
: : : ::: �ak�2
0 0 0 ::1 �ak�1

3
7777775
:

The key result which we need is the following lemma dealing with polynomials
of hypercompanion matrices.

Lemma 1.2. Let p(x) be a monic polynomial of degree l and let Hm =
H [p(x)m] be the ml �ml hypercompanion matrix induced by p(x). If f(x) is
any polynomial over F with p-adic expansion

f(x) = �0(x) + �1(x)p(x) + : : :+ �m�1(x)p(x)
m�1 + p(x)m(?);(9)

and coordinate columns �i, then

f(Hm) =

2
6664
A0 0 : : : 0
A1 A0 0
...

...
. . .

...
Am�1 Am�2 : : : A0

3
7775 =

�
U; JU; : : : ; Jm�1U

�
;(10)

where A0 = �0(Lp), Ai = �i(Lp)+�i�1(Lp+N)��i�1(Lp), i = 1; : : : ; m� 1,
N = E1;l and U = [a; Ha; : : : ; H l�1a] with J = Jm(0) 
 Il = p(Hm) and

a =

2
6664
�0

�1
...
�m�1

3
7775.

Proof. To calculate a polynomial in the hypercompanion matrix Hm =
H [p(x)m], we proceed in two stages. First suppose that f(x) has degree
deg(f) < deg(p) = l. Now split Hm as Hm = Im 
 L + Jm(0) 
 N , and
since

NLkN = 0; k = 0; 1; : : : ; l� 2;(11)

it follows by induction that (L+N)k = Lk + Yk ; k = 0; 1; : : : ; l, and that

Hk
m = I 
 Lk + Jm(0)
 Yk ; k = 0; 1; : : : ; l(12)

where Yk = Lk�1N + Lk�2NL+ : : :+NLk�1 and Y0 = 0.
Next, we de�ne the di�erence operator for �xed p(x) and f(x) by

�f = f(L+N)� f(L):
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Summing up (12) shows that if deg(f) < l, then

f(Hm) = Im 
 f(L) + Jm(0)
�f:(13)

This formula breaks down when deg(f) � l, since (11) does not hold for values
of k � l � 2. But we may proceed in the following way. Suppose f(x) admits
the p-adic expansion

f(x) = �0(x) + �1(x)p(x) + : : :+ �m�1(x)p(x)
m�1 + p(x)m(?):

Now recall from [6] that J = p(Hm) = Jm(0) 
 Il. Clearly, p(Hm)
k = 0 for

k � l. Hence by (13), �k(Hm)p(Hm)
k has the form

�k(Hm)p(Hm)
k = Jm(0)

k 
 �k(L) + Jm(0)
k+1 
��k ;

for k = 0; 1; : : : ; l� 1. Summing this for k = 0; 1; : : : ; l� 1, we see that f(Hm)
is block Toeplitz of the form given in (10).
For the remaining part it su�ces to show that U agrees with the matrix

A =

2
664
A0

A1

: : :
Am�1

3
775. It is well known that for a polynomial

h(x) = h0 + h1x + : : : + hn�1x
n�1, h(L) = [h Lh : : : Ln�1h], where L is

any n � n companion matrix. Moreover, (eL) = L + N; N = E1;n is also a
companion matrix. From the above two observations, it follows that

A0e1 = �k(L)e1 + �k�1(eL)e1 � �k�1(L)e1 = �k + �k�1 ��k�1 = �k :
Needless to say, this ensures that Ae1 = a = f(Hm)e1. Consequently, Hma =
f(Hm)Hm(e1) = f(Hm)e2. Similarly, Hk

ma = f(Hm)ek+1 for k = 0; 1; : : : ; l�1
and hence U = [a; Hma : : : H l�1

m a], completing the proof.
An immediate corollary to Lemma 1.2 gives us the required result relating

the q-adic coordinate column of [f ](q;m) and [�kf ](q;m).
Corollary 1.3. Let [f ](q;m) = a for polynomials f(x) and q(x) as in

Lemma 1.2. Then [�kf ](q;m) = (Hm)ka and [qkf ](q;m) = Jka, where Hm =
H [qm] and J = Jm(0)
 Il.

Proof. From Lemma 1.2, we see that for any polynomial g(x), [g](q;m) =

g(Hm)e1: Consequently, if g(x) = �kf(x), then

[g](q;m) = g(Hm)e1 = (Hm)
kf(Hm)e1 = (Hm)

ka:

The remaining result is clear since q(Hm) = J .
Given the special construction of W , it comes as no surprise that W is

directly related to the hypercompanion matrix. Indeed, since [1](qi;mi) = e1,

it is clear from Corollary 1.3 that [�k](qi;m�i) = Hk
i e1; where Hi = H [qmi

i ].
Consequently,

Wi =
h
e1 Hie1 : : : Hn�1

i e1

i
:(14)
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1.3. The E matrix. In order to calculate the determinant of W , our
strategy shall be to block diagonalize WT �rst, and then compute the deter-
minant of the resulting block diagonal matrix. In other words, we wish to
�nd a suitable non singular matrix E = [E1; E2; : : : ; Es] such that WTE =
diag(D1; D2; : : : ; Ds), i.e., we want

WiEj =

�
0 i 6= j
Di i = j;

where Wi is limi � n and Ej is n� ljmj .
Based on (4) and (7), it su�ces to take as the columns of Ej , the standard

coordinate columns of suitable polynomials all divisible by qmi

i . In addition, we
want E to be such that the blocks Di = WiEi are manageable and det(E) 6= 0.

A convenient choice is the chain of polynomials

�j = [xkqj(x)
r j(x)] =  j(x)[�j; qj�j ; : : : ; q

mj�1
j �j ]

where  j =  =q
mj

j , �j = [1; x; : : : ; xlj�1], j = 1; : : : ; s, r = 0; : : : ; mj � 1 and

k = 0; 1; : : : ; lj � 1. Clearly, qmi

i divides every polynomial in �j for i 6= j. As
mentioned earlier, Ej is de�ned by

�j = BSTEj :(15)

From (4), we have

Wi[x
kqj(x)

r j(x)](st) = [xkqj(x)
r j(x)](qi;mi)(16)

and hence for j 6= i, WiEj = 0. On the other hand when j = i, we recall
Corollary 1.3, so that (16) reduces to

Wi[x
kqi(x)

r i(x)](st) = [�kqri i](qi;mi) = JriH
k
i a;

where Hi = H [qmi

i ], Ji = Jmi

 Ili and a = [ i](qi;mi). Now if [U ] =

[a; Hia; : : : ; H
li�1
i a] then an application of Lemma 1.2 yields

WiEi =
h
U JU : : : Jmi�1U

i
=  i(Hi):

We have thus shown the following result.
Lemma 1.4. For the matrices W and E described above

WTE = diag[ i(Hi)]
s
i=1;(17)

where  i =  =qmi
i and Hi = H(qmi

i ) is the hypercompanion matrix associated
with qmi

i .
We close this section with the following remarks.



ELA
Properties of q-adic Vandermonde Matrix 25

Remark 1.5. The blocks Er in E = [E1; E2; : : : ; Es] may be further
described as

Er =  r(L)

��
Ili
0

�
; qi(L)

�
Ili
0

�
; :::::; qi(L)

mi�1
�
Ili
0

��
;(18)

see (5.4) of [5]. To obtain the above, simply note that

 r(L)qr(L)
k

�
Ilr
0

�
= qr(L)

k
h
 r; L r; : : : ; L

lr�1 r
i
;

=
h
[qkr r](st); [xq

k
r r](st); : : : ; [x

lr�1qkr r](st)
i
;

in which L = L and [ r](st) =  r are respectively the companion matrix and
the standard coordinate column of  (x). Since n � deg( r) + lr, we see that
for k = 0; 1; : : : ; lr � 1, Lk r merely shifts the nonzero entries in  r without
losing any of them.

Remark 1.6. In the next section we shall explicitly calculate the deter-
minant of the E matrix. It will be shown that det(E) is nonzero, and hence
E is nonsingular, if and only if the polynomials qi are pairwise coprime, i.e,
gcd(qi; qj) = 1 for i 6= j.

Remark 1.7. It was shown in [9] that the polynomials � form a Jacobson
chain basis for the space Fn�1 [x] of polynomials of degree less than n with
respect to a shift operator S. Hence, when the qi's are pairwise coprime, E is
a change of basis matrix from the standard to a chain basis denoted by BCH .
The reader is referred to [9] for more details.

Let us now capitalize on (17) and simultaneously calculate the determinant
of E as well as that of W .

2. Determinants. It is well known that if 
 is the con
uent Vander-
monde matrix for the polynomial �(x) =

Qs
i=1(x� �i)

mi , then

det(
) =
Y

1�j<i�s

(�i � �j)
mimj ;

where the product is taken over all the roots �i . We shall now show that the
determinant of the q-adic Vandermonde matrixW induced by  (x) =

Qs
i=1 q

mi

i

is given by

det(W ) =
Y

1�j<i�s

R(qi; qj)
mimj ;

where R(qi; qj) is the resultant of qi and qj . This shows that det(W ) is non-zero
if and only if the qi's are pairwise coprime.

From (17), we see at once that

det[WT ]det[E] = det[W ]det[E] =
sY
i=1

det[ i(Hi)];(19)
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and thus in order to calculate det(W ), we shall need to evaluate det(E) and
det[ i(Hi)], i = 1; : : : ; s.

Our strategy shall be to factor E as E = MT , in which det(T ) = 1 and
M is a generalized Sylvester matrix. The determinant ofM can be calculated
with the aid of some results from [5] and this will enable us to compute det(E).
We then evaluate det[ i(Hi)] and combine the results to express the det(W )
in terms of the factors of the foundation polynomial  (x) =

Qs
i=1 q

mi

i .
In the next subsection, we undertake this factorization of the E matrix.

2.1. Resultants and the E matrix. Before we can factor E, we shall
need to introduce the Sylvester matrix of two polynomials. We �rst de�ne the
(r+k)� r striped matrix Sr(f) for a polynomial f(x) = a0+a1x+ : : :+akx

k

to be

Sr(f) =

2
666666666664

a0 : : : : : : 0
a1 a0 : : :
... a1

. . .

ak
. . . a0

ak a1
. . .

...
0 : : : ak

3
777777777775
;(20)

The striped matrices of two polynomials f1(x) and f2(x) of degrees n1 and
n2 respectively can be combined to yield the square Sylvester matrix S(f1; f2)
given by

S(f1; f2) = [Sn2(f1)jSn1(f2)]

whose determinant R(f1; f2) is the resultant of f1 and f2. The Sylvester
matrix can be constructed only for two polynomials. It is possible to extend
this construction to a set of more than two polynomials as follows. A more
thorough discussion can be found in [5].

Let ff1(x); f2(x); : : : ; fs(x)g be a set of polynomials with deg(fi) = ni.
Moreover, let f = f1f2 : : : fs, deg(f) =

Ps
i=1 ni = n and construct the set

of polynomials fF1;F2; : : : ;Fsg by Fi = f=fi. Now de�ne the square n � n
generalized Sylvester matrix M(f1jf2 : : : jfs) to be

M =M(f1jf2 : : : jfs) = [Sn1(F1); Sn2(F2); : : : ; Sns(Fs)] :(21)

Clearly

M(f1jf2) = S(f2; f1):(22)

The following lemma (corollary 5, page 24, [5]) gives a factorization of the
matrix M .
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Lemma 2.1. For the generalized Sylvester matrix M = M(f1jf2 : : : jfs)
described above,

M = M(fsjf1 : : : fs�1)

�
M(fs�1jf1 : : : fs�2) 0

0 I

�

� : : :

�
M(f3jf1f2) 0

0 I

� �
M(f2jf1) 0

0 I

�
:

where I denotes the identity matrix of appropriate size.
Using the above factorization, it is easy to calculate det(M) as follows.
Corollary 2.2. The determinant of the matrix M = M(f1jf2 : : : jfs)

de�ned above is

det(M) =
Y

1�i<j�s

R(fi; fj);

where R(fi; fj) is the resultant of fi and fj .
Proof. The proof easily follows from (22), Lemma 2.1 and the product

rule for resultants i.e.

R(f1; f2f3) = R(f1; f2)R(f1; f3):

We are now ready to give the desired factorization. Let us �rst factor the
chain Er given in (18) as follows

Er =  r(L)

��
Ilr
0

�
; qr(L)

�
Ilr
0

�
; : : : ; qr(L)

mr�1
�
Ili
0

��
=  ̂r(L)Tr;(23)

where

Tr =

��
Ilr
0

�
; qr(L)

�
Ilr
0

�
; : : : ; qr(L)

mr�1
�
Ili
0

��

is upper triangular with a diagonal of ones and c r(L ) contains the �rst mrlr
columns of  r(L ). Since the deg( r(x)) = mrlr � 1 and L is n� n, we may
write

 ̂r(L ) = Smr lr( r);

where the striped matrix Sr(f) was de�ned as in (20). Using (18) and (23),
the induced factorization of E becomes

E =
h
 ̂1(L )  ̂2(L ) : : :  ̂s(L )

i
diag[Ti]

s
i=1 =MT:

We now observe that

M =
h
 ̂1(L );  ̂2(L ); : : : ;  ̂s(L )

i
=

�
Sm1l1( 1); : : : ; Smsls( s);

�
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is the generalized Sylvester matrix of the polynomials fqm1

1 ; qm2

2 ; : : : ; qms
s g de-

�ned in (21). Since T is upper triangular and block diagonal, with a diagonal
of ones, det(T ) = 1 and hence from Corollary 2.1

det(E) = det(M) =
Y

1�i<j�s

R(fi; fj) =
Y

1�i<j�s

R(qi; qj)
mimj :(24)

We have thus shown the following result.
Lemma 2.3. For the matrix E given in (15),

det(E) =
Y

1�i<j�s

R(qi; qj)
mimj

where R(qi; qj) is the resultant of qi(x) and qj(x).
In the next subsection, we evaluate det[ i(Hi)] and then calculate det(W )

according to (19).

2.2. The determinant of W . Recall from (8) and Lemma 1.2 that
 i(Hi) is a mi�mi block upper triangular matrix with diagonal blocks  i(Li)
where Li = Lqi is a companion matrix. Note further that

 i(Li) =
sY

j = 1
j 6= i

(qj(Li))
mj :(25)

It is well known (see [1] for example) that

det[qj(Lqi)] = R(qi; qj);(26)

where R(qi; qj) is the resultant of qi and qj . Using (25), (26), and the product
rule for determinants, the quantity det[ i(Li)] can be readily calculated to be

det[ i(Li)] =
sY

j = 1
k 6= i

R(qi; qj)
mj :

Since  i(Hi) consists of mi diagonal blocks of the form  i(Li), we have that

det[ i(Hi)] =
sY

j = 1
k 6= i

R(qi; qj)
mimj ;
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and repeating this for i = 1; : : : ; s, we arrive at the expression

det (diag[ i(Hi)]
s
i=1) =

sY
i=1

sY
j = 1
j 6= i

R(qi; qj)
mimj :(27)

We are now ready to put the pieces together. Let us recall from (17) that

WTE = diag[ i(Hi)]
s
i=1:

and hence taking determinants on both sides of this equation yields

det(WT )det(E) = det(W )det(E) =
sY
i=1

det[ i(Hi)]:(28)

Substituting from (24) and (27), equation (28) can be rewritten as

det(W )
Y

1�i<j�s

R(qi; qj)
mimj =

sY
i=1

sY
j = 1
j 6= i

R(qi; qj)
mimj :(29)

We now need to consider two cases. First suppose that gcd(qi; qj) = 1 for
i 6= j. In this case, det(E) and the right hand side of (29) are both non zero
since R(qi; qj) 6= 0. Hence we may cancel det(E) from both sides of (29) to
obtain

det(W ) =
Y

1�j<i�s

R(qi; qj)
mimj :(30)

Next, assume that gcd(qr; qt) = h(x), deg(h) � 1 for some distinct r; t, 1 �
t < r � s. We claim that in this case, W is singular.

To show this, consider the polynomial e =  =h where deg( e ) � n � 1.

Now note that for 1 � i � s, qmi

i j e and thus from (7) and (4), we have

Wi
e = [ e (x)](qi;mi) = 0;

i.e, W e = 0 and consequently det(W ) = 0. Needless to say R(qr; qt) = 0 and
hence (30) also holds in this case.

We reiterate the fact that in the above discussion, no assumption has been
made about the polynomials qi being prime or irreducible. Hence (30) holds
for every factorization of  (x) =

Qs
i=1 q

mi

i of the polynomial  . We have thus
proven the following theorem.
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Theorem 2.4. Let  (x) =
Qs
i=1 q

mi
i be any (not necessarily prime) fac-

torization of a polynomial  (x) of degree n. Let W be the q-adic matrix cor-
responding to this factorization. Then

det(W ) =
Y

1�j<i�s

R(qi; qj)
mimj :

In particular W is nonsingular if and only if gcd(qi; qj) = 1 for i 6= j.
So far we have demonstrated one way in which the q-adic Vandermonde

matrix generalizes the Vandermonde matrix. In the next section, we consider
the Wronskian structure of the con
uent Vandermonde matrix and show that
the q-adic Vandermonde matrix has a similar block structure.

3. The Structure ofW . We conclude this paper by examining the block
structure of the q-adic Vandermonde matrix W . Recall from (3) that the
con
uent Vandermonde matrix 
, for � =

Qs
i=1(x � �i)mi has the following

structure


T� =

2
664

1


2

: : :

s

3
775 ;

where


r =

2
66666664

1 �r �2r : : : �n�1r

0 1 2�r : : : (n� 1)�n�2r

0 0 1

0 0
. . .

...

0 0 : : :

�
n � 1
mr � 1

�
�n�mr
r

3
77777775
mr�n

:(31)

Clearly, for 1 � j � n and 1 � i � mr,

[
r]ij =

8<
:
�
j � 1
i� 1

�
�j�ir j � i

0 otherwise
(32)

We may express the entries in 
r via partial di�erentiation. Indeed if D
(k)
r is

the kth derivative with respect to �r, we may denote the quantity on the right

hand side of (32) by (1=i!)D
(i)
r (�jr), j = 0; : : : ; n� 1.

Let us now extend the idea of partial di�erentiation to matrices thereby
showing that the q-adic Vandermonde matrix induced by  (x) =

Qs
i=1 q

mi
i ,

has a block structure that is very similar to that of the Wronskian structure
exhibited in (31).
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Suppose Lr = Lqr of the polynomial qr(x) = �0+�1(x)+ : : :+ xlr�1. We
de�ne the associated partial derivative operator Dr acting on an lr� lr matrix
by

Dr(A) =

�
@(aij)

@(��0)

�
;

i.e., the derivative is taken with respect to the negative of the constant term
(��0) in qr(x). For example, Dr(Lr) = N = E1;lr and hence

Dr(Lrx) = Dr(Lr)x+ Lr(Drx) = Nx+ LrDrx:

It follows swiftly by induction that

D
i(Lrx) = iNrD

i�1x+ LrD
ix:(33)

Our essential step is to relate the q-adic coordinate columns to the operator

D
(i)
r . In fact, we have the following lemma.

Lemma 3.1. If [xj ](qr;mr) =

2
6664
a0
a1
...
amr�1

3
7775, then ai = (1=i!)D

(i)
r (Ljre1) for

i = 0; : : : ; mr � 1 and j = 0; : : : ; n� 1.
Proof. The proof is by induction on j. The lemma clearly holds for j = 0,

since [x0](qr;mr) =

2
664
e1
0
: : :
0

3
775
mrlr�1

. Now assume that

[xj ](qr;mr) =

2
6664
a0
a1
...
amr�1

3
7775 ; and [xj+1](qr ;mr) =

2
6664
b0
b1
...
bmr�1

3
7775 ;

where ai = (1=i!)D
(i)
r (Ljre1). From Corollary 1.3 with f = xj we see that

[xj+1](qr;mr) = Hm[x
j ](qr;mr) which in matrix form becomes

b0 = Lra0; : : : ; bi = Nai�1 + Lrai

for i = 1; : : : ; n� 1. Using the induction hypothesis, this gives

b0 = Lra0 = LrL
j
re1 = Lj+1r e1

as well as

bi = N

�
1

(i� 1)!
D
(i�1)
r (Ljre1)

�
+ Lr

�
1

i!
D
i
r(L

j
re1)

�
:
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Using (33) with x = Ljre1 , we see that (3) reduces to

bi =
1

i!

�
iND(i�1)r (Ljre1) + LrD

i
r(L

j
re1)

�
=

1

i!
D
(i)
r (Lj+1r e1);

completing the induction.
Our �nal result on the structure of the matrix W is given by the following

theorem.
Theorem 3.2. The q-adic Vandermonde matrix W induced by

Q
qmi
i has

the block form WT =

2
6664
W1

W2
...
Ws

3
7775, where

Wr =

2
6666664

e1 Lre1 L2re1 : : : Ln�1r e1
0 e1 Dr(L2re1) Dr(Ln�1r e1)
... 0 e1

...
: : :

0 0 : : : (1=(mr � 1)!)D
(mr�1)
r (Ln�1r e1)

3
7777775
mr�n

:

In other words, for i = 0; ::; mr�1 and j = 0; ::; n�1, [Wr]ij = (1=i!)D
(i)
r (Ljre1):

Proof. We recall from (6) that the columns ofWr are of the form [xt](qr ;mr).
The structure of these columns is precisely given by Lemma 3.1 as

[xt](qr;mr) =

2
66664
Ltre1
Dr(L

t
re1)

...

(1=(mr � 1)!)D
(mr�1)
r (Ltre1)

3
77775

and hence the proof of the theorem follows.
Remark 3.3. It has been pointed out to the authors by an anonymous

referee that each of the Wi is a Kalman reachability matrix. Indeed, from
equation (14), we have that

Wi =
h
e1Hie1 : : :H

n�1
i e1

i
;

where e1 = [1; 0; : : : ; 0]T and Hi = H [qmi
i ] is a hypercompanion matrix. This

structure of this matrix is similar to the one given in Theorem 3.18, page 41
of [8]. The control theoretic aspects of this matrix are still to be explored.
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