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Abstract. In this paper a generalization of avoidance control for multi-agent dynamic systems
is presented. Strategies for avoidance control for multiple agents are obtained using individual
Liapunov-type functions. The overall system avoidance conditions are guaranteed using a vector
Liapunov-type function via an M-matrix property.
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1. Introduction. The problem of avoidance control for two independent agents
has been introduced and extensively studied in a number of publications by Leit-
mann and his coworkers ([12]-[14], [5], and [6]). Avoidance control conditions guar-
antee that all the trajectories of a given dynamic system that start outside of the
prescribed avoidance set in the state space, will never enter the set. These conditions
are established using a Liapunov-type function.

In the past several years, a number of other tools for computing avoidance con-
trol conditions have been developed, generally based on computing reachable sets
from the prescribed avoidance set. Methods include numerical computation of solu-
tions to static Hamilton-Jacobi equations [1] and to techniques from viability theory
and set valued analysis [4]. In other related work, we have developed a reachabil-
ity computation method based on level set techniques [17] and viscosity solutions to
Hamilton-Jacobi equations [7], using the ideas presented in [23]. In this previous work,
we have represented a set as the zero sublevel set of an appropriate function, and the
boundary of this set is propagated under the nonlinear dynamics using a validated
numerical approximation of a time dependent Hamilton-Jacobi-Isaacs (HJI) partial
differential equation (PDE) governing system dynamics [16].

In this paper, we generalize avoidance control conditions to the case of multi-
agent dynamic systems modeled as a class of nonlinear dynamic systems with a special
decomposed structure ([21], [20]). The main novelty is that the results are established
using a vector Liapunov-type function (vector Liapunov functions were independently
introduced by Matrosov [15] and Bellman [2]) which is given as a positive linear
combination of individual Liapunov-type functions that correspond to independent
agents. Each individual function is dependent only on a subset of the state space
variables, and strategies for avoidance control for each agent are thus defined using
only these local state variables. Using a property of an M -matrix ([8], [3], [10]),
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conditions for avoidance control are established for the overall system, similar to the
development of the connective stability results for interconnected systems ([21], [22],
[18], and [19]).

2. M-matrices. M -matrices ([8], [3], [10]) are known to have many applications
in modeling dynamic systems in Economics, Ecology, and Engineering [21]. Various
properties of M-matrices are used in establishing stability results for dynamic sys-
tems in general (e.g., see [21] and [22], and the list of references reported therein).
Since avoidance conditions may be linked to a stability type of result via Liapunov-
type functions, M-matrices may be used to certify avoidance conditions. Avoidance
conditions guarantee that all trajectories of a given dynamic system never enter the
avoidance set which is a prescribed set in the state space. In this paper, the standard
notation is used to denote the set of all square matrices of dimension n with nonpos-
itive off-diagonal elements as Zn, Zn ⊂ R

n×n. Then, the set of M -matrices, denoted
as Mn, Mn ⊂ Zn, is defined as ([3], [10]):

Definition 2.1. A square n-dimensional matrix A is said to be an M -matrix if
A ∈ Zn and if all eigenvalues of A have positive real parts. The set Mn is a set of all
M -matrices of dimension n.

Now, the following theorem formulates the property needed to establish avoidance
conditions [3]:

Theorem 2.2. Let A ∈ Zn. Then, A ∈ Mn if and only if there exists a vector
d > 0, d ∈ R

n, such that Ad > 0.
The linear programming test for the result in Theorem 2.2 is given by [18]:

Lemma 2.3. Let A ∈ Zn. Define the augmented matrix Ā ∈ R
n×(n+1) such

that Ā = [A,−e], where e = [1, 1, ..., 1]T ∈ R
n , and the augmented vector d̄ =

[d1, d2, ..., dn, dn+1]T ∈ R
n+1. Consider the following linear programming problem:

max dn+1

subject to Ā d̄ ≥ 0, d̄ ≥ 0, dn+1 ≤ 1.(2.1)

Then, A is an M-matrix if do
n+1 = max dn+1 = 1.

3. Multi-Agent Avoidance Control. Let us consider a dynamic system de-
scribed by the following:

ẋ = f(x, u, w) , t ∈ T = [0,+∞) , x(0) ∈ R
n,(3.1)

where x ∈ R
n is the state, u ∈ R

m is a known control input, and w ∈ R
p is an

unknown input, or disturbance. Both the known and the unknown input are assumed
to belong to a set of feedback strategies, that is, u ∈ U = {φ(·) : R

n → U, U ⊂ R
m}

and w ∈ W = {ψ(·) : R
n → W, W ⊂ R

p}, and the function f : R
n ×U ×W → R

n is
assumed to be Lipschitz continuous. Sets U and W are assumed to be compact. The
input functions t → u(x(t)) and t → w(x(t)) are assumed to be measurable functions,
and the trajectory of the system t → x(t) is an absolute continuous function such that
equation (3.1) is satisfied almost everywhere. The set of input feedback strategies
defines the admissible controls.
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The main idea of avoidance control is to develop an admissible control such that a
particular set in the state space will be avoided for all possible unknown inputs, that
is, disturbances. To be mathematically precise, we recall the following two definitions
[5]:

Definition 3.1. The dynamic system ẋ = f(x, u(x), w(x)) avoids Ω, Ω ⊂ R
n, if

and only if for each solution x(t), t ∈ T, with x(0) /∈ Ω the following is true: x(t) /∈ Ω
for all t ∈ T.

Definition 3.2. The set Ω is avoidable if there exists uo ∈ U such that for any
w ∈ W the system ẋ = f(x, u(x), w(x)) avoids Ω.
In order to guarantee avoidance of the set Ω, a safety region is constructed around the
avoidance set such that there exists a Liapunov-type function which is nonincreasing
in the safety region and becomes infinitely large on the boundary of the avoidance
set. This is expressed in the following definition of the safety zone and a theorem
involving a Liapunov-type function [5]:

Definition 3.3. Γ is a safety zone for Ω if and only if Γ ∩ Ω = {∅} and
∂Ω ⊂ int{Γ ∪ Ω}.

Theorem 3.4. Assume that there exist a function uo, uo ∈ U and a continuously
differentiable function v : O → R, where O is an open subset of R

n such that: (a)
Γ ⊂ O; (b) if x̂ ∈ ∂Ω then lim

x→x̂
v(x) = ∞; (c) for each w ∈ W and all x ∈ Γ,

dv
dt

∣∣
ẋ=f(x,u,w)

= ∂v
∂xf(x, u, w) ≤ 0. Then, the set Ω is avoidable.

We use the standard notation ∂Ω and int{Ω} to denote the boundary and the interior
of Ω, respectively.

Notice that the preceding three definitions and theorem have been formulated
for two agents only. Since our goal is to present a generalization of these results for
a group of agents, let us assume that there are N -agents with independent control

inputs ui, ui ∈ R
mi , such that

N∑
i=1

mi = m. These are the agents with intentions to

avoid the avoidance set. The other group of agents are the ones that would want to
steer the system into the avoidance set. They are grouped in vector w and need not be
treated as individuals. From this point we will engage in the more formal description
of the subsystem state spaces and we refer to the example at the end of the paper for
the physical motivation of our approach. The avoidance set Ω is given in terms of a

partition of the overall state as x = [x1, . . . , xk, . . . xP ] with xk ∈ Ok,
P∑

i=1

nk = n. Ok

is an open subset of R
nk

for all k ∈ P = {1, ..., P}. The avoidance set in the xk space
is denoted as Ωk ⊂ Ok and is assumed to be an open set. Then, the overall avoidance
set can be expressed using the extended sets Ω̃k = O1 × ... × Ωk︸︷︷︸

k−th place

×... ×OP , as

Ω =
P⋃

k=1

Ω̃k ⊂ O = ×
k∈P

Ok. The standard Cartesian product is denoted by ×. Notice

that Ω and O are open sets since both the Cartesian product and the union of a finite
number of open sets are open [11], [9].

To each agent we associate the subsystem state xi which is defined as a collection
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of xk’s, that is, xi = ×
k∈Ci

xk ∈ Oi = ×
k∈Ci

Ok, where the set Ci ⊂ P is the set of

indices that describes the subsystem i. The feedback structure is still assumed except
now each independent agent forms its feedback control using only a portion of the
state. Thus, the input sets for the agents are more specific: ui ∈ Ui = {φi(·) : Oi →
Ui, Ui ⊂ R

mi}, where Ui for all i ∈ N are assumed to be compact. The goal for
these independent agents stays the same, that is, to avoid the set Ω. Additionally, we
assume a particular structure for the system that is expressed in terms of its dynamic
model. This structure is represented as a decomposition of the dynamic system [20]:

ẋi = fi(x, u, w) = gi(xi, ui) + hi(x, u, w) , i ∈ N = {1, 2, ..., N},(3.2)

where gi : Oi×Ui → R
ni is a Lipschitz continuous function that represents subsystem

dynamics (the one corresponding to the independent agent i), and hi : O × U ×
W → R

ni is a Lipschitz continuous function that represents interconnections between
subsystems, for all i, i ∈ N. Notice that, by their construction, the subsystem states
xi ∈ R

ni , i ∈ N are not necessarily disjoint, that is, they may overlap (xi ∩ xj �= {∅}
for some i, j ∈ N). This means that the same applies for fi and fj. Also, we assume

that
N∑

i=1

ni ≥ n, in general.

If Γk is a safety region for Ωk then the safety region for xi, denoted as Γi, is
given via the extended sets Γ̂k, that are computed as the Cartesian products of Γk

and Oj \ Ωj for all j ∈ Ci \ {k}, as Γi =
⋃

k∈Ci

Γ̂k. Notice that, by construction, Γi

is an open set that satisfies Γi ⊂ Oi. Similarly, we can compute Γ =
⋃

k∈P

Γ̃k, where

Γ̃k = {O1 \ Ω1} × ...× Γk︸︷︷︸
k−th place

×...× {OP \ ΩP }, for all k ∈ P.

With each subsystem state xi we associate a positive and continuously differen-
tiable function vi(xi). Our goal is to construct a function that will be infinitely large
on each ∂Ωk, k ∈ Ci. One possible solution (the one we propose in this paper and is
certainly not unique) is to set

vi(xi) =
∑
k∈Ci

vik(xk),(3.3)

where vik : Ok → R+ (R+ denotes the set of all nonnegative real numbers) with the
additional property

lim
xk→x̂k

vik(xk) = ∞ if x̂k ∈ ∂Ωk and k ∈ Ci.(3.4)

Next, the Hamiltonian with respect to the subsystem dynamics is defined as [20]

Hgi(xi,
∂vi

∂xi
) = min

ui∈Ui

∂vi

∂xi
gi(xi, ui)(3.5)
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and the subsystem optimal control laws are obtained by the following:

uo
i (xi) = argmin

ui∈Ui

{ ∂vi

∂xi
gi(xi, ui)}, i ∈ N.(3.6)

Notice that from (3.6) it follows that uo
i ∈ Ui.

Additionally, we assume that there exist positive numbers αi and positive func-
tions µi(·) : Oi → R+ such that

Hgi(xi,
∂vi

∂xi
) ≤ −αiµi(xi), for all xi ∈ Γi.

Similarly, let us assume that there exist nonnegative numbers αij such that the con-
straints on the interconnections, that depend on the unknown control inputs w, are
given by

max
w∈W

∂vi

∂xi
hi(x, uo(x), w) ≤

N∑
j=1

αijµj(xj), for all x ∈ Γ.(3.7)

Notice again that the result of the maximization in (3.7) implies that the maximizing
wo belongs to W since it is a function of the state only.

In order to establish the avoidance result for the overall system we assume a
vector Liapunov-type function of the form [21]:

v(x) =
N∑

i=1

divi(xi),(3.8)

where the di’s are all positive numbers (implying v : O → R+), and compute its time
derivative along solutions of (3.2)

dv(x)
dt

∣∣∣∣
(3.2)

=
N∑

i=1

di
dvi(xi)

dt
=

N∑
i=1

di
∂vi

∂xi
gi(xi, ui) +

N∑
i=1

di
∂vi

∂xi
hi(x, u, w).(3.9)

We follow the standard procedure [22], and define the N×N test matrix Q = (qij)
as

qij =
{

αi − αii, i = j
−αij , i �= j.

(3.10)

Theorem 3.5. Let Q be an N × N matrix as defined in (3.10). If Q ∈ MN

and P ⊆
N⋃

i=1

Ci then the set Ω =
P⋃

k=1

Ω̃k is avoidable for the system (3.2) with the

subsystem control strategies defined in (3.6).
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Proof. First, we establish part (a) of Theorem 3.4 by observing that if Γk is a
safety region for Ωk then Γk ⊂ Ok which implies Γ̃k = {O1 \Ω1}× ...× Γk︸︷︷︸

k−th place

×...×

{OP \ ΩP } ⊂ O for all k ∈ P. The last set of inclusions implies Γ =
P⋃

k=1

Γ̃k ⊂ O.

Notice that the condition P ⊆
N⋃

i=1

Ci implies that for any k ∈ P there exist i ∈ N

and a function vik(·) such that (3.4) is satisfied. Part (b) follows directly from the
the fact that the crossing of the boundary of any Ωk implies existence of a subset
of states xk such that xk ∈ ∂Ωk, equations (3.3), (3.4), (3.8), and the fact that all
Liapunov-type functions are nonnegative.

From equations (3.8) and (3.9) it follows that for uo
i (xi), i ∈ N, as defined in

equation (3.6) we get

dv(x)
dt

∣∣∣∣
(3.2)

=
N∑

i=1

diHgi(xi,
∂vi

∂xi
) +

N∑
i=1

di
∂vi

∂xi
hi(x, uo(x), w) ≤ −dTQµ(x)

for all x ∈ Γ with µ(x) = [µ1(x1), ..., µN (xN )]T . In the above inequality we used the
following property of the maximum operator

max
w∈W

N∑
i=1

∂vi

∂xi
hi(x, uo(x), w) ≤

N∑
i=1

max
w∈W

∂vi

∂xi
hi(x, uo(x), w).

From Definition 2.1 it follows that Q is an M -matrix if and only if QT is an M -
matrix. Then, Theorem 2.2 implies that there exists a positive vector d such that
QTd = c > 0. Thus, dv(x)

dt

∣∣∣
(3.2)

≤ −cTµ(x) ≤ 0 for all x ∈ Γ since µ(x) is a vector

of nonnegative elements. Thus, part (c) is also established and the set Ω is avoidable
via conditions of Theorem 3.4.

Corollary 3.6. If Q satisfies linear programming conditions of Lemma 2.3 and

P ⊆
N⋃

i=1

Ci then the system (3.2) avoids set Ω =
P∪

k=1
Ω̃k.

To illustrate the results presented in this paper we present the following example:
Example 3.7. Let us consider a collision-avoidance problem with three vehicles

such that the planar motion of the i-th vehicle, is described by the following noninertial
kinematics model:

żi = ui,(3.11)

where the state vector zi ∈ R
2 denotes rectangular coordinates in the plane, and

ui ∈ R
2 is the control input representing velocity of the i-th vehicle.
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Since we are interested in controlling relative distances between the vehicles, using
(3.11), we define

x1 = z1 − z2 ⇒ ẋ1 = u1 − u2,
x2 = z1 − z3 ⇒ ẋ2 = u1 − u3,
x3 = z2 − z3 ⇒ ẋ3 = u2 − u3.

We assume that vehicles 1 and 2 are the ones that want to avoid the collision and that
vehicle 3 is the one whose behavior we do not know and thus treat it as a disturbance.
The domains for each of the xi states are given as Oi = {xi : ||xi|| ≤ R ,R > 0}, where
R is assumed to be sufficiently large. According to the appearance of their control
inputs, with the vehicles 1 and 2 we associate subsystems states as x1 = ×

k∈{1,2}
xk =

[x1, x2] and x2 = ×
k∈{1,3}

xk = [x1, x3]. For each xi we choose the corresponding

avoidance set to be Ωk = {xk : ||xk|| < r1} and the Liapunov-type function of
the form vik(xk) = (||xk|| − r1)−2 for i ∈ {1, 2} and k ∈ {1, 2, 3}, where r1 is a
positive number determining the size of the avoidance set. Notice that the Liapunov-
type functions satisfy (3.4). The safety regions may be chosen as “rings” around
the avoidance regions such as Γk = {xk : r1 < ||xk|| < r2}, where R � r2 > r1.
As an example of the bounding procedure, we choose the first subsystem, that is,
x1 = [x1, x2] and its corresponding dynamics as

ẋ1 =
[

I2
I2

]
u1 −

[
I2
02

]
u2 −

[
02

I2

]
w,

where I2, 02 ∈ R
2×2 denote the identity and the zero matrix, respectively.

For the simplicity of the presentation we assume that ui ∈ Ui = {φi(·) : Oi → Ui}
with Ui = {ui : ||ui|| ≤ νi , νi > 0}, i ∈ {1, 2}, where || · || represents the Euclidean
norm. For the third vehicle we assume that w ≡ u3 ∈ W = {ψ(·) : O → W, W ⊂
R

2}, where W is a compact set in R
2. Notice that g1(x1, u1) = [I2, I2]Tu1 and using

(3.6) we compute

uo
1(x1) = argmin

u1∈U1

{ ∂v1

∂x1
[I2, I2]Tu1} = −ν1[I2, I2]

∂v1

∂x1

T

/

∥∥∥∥∥[I2, I2] ∂v1

∂x1

T
∥∥∥∥∥(3.12)

and by noting that g2(x2, u2) = [−I2, I2]Tu2, similarly we obtain

uo
2(x2) = argmin

u2∈U2

{ ∂v2

∂x2
[I2, I2]Tu2} = −ν2[−I2, I2]

∂v2

∂x2

T

/

∥∥∥∥∥[−I2, I2]
∂v2

∂x2

T
∥∥∥∥∥ ,(3.13)

where (again for the simplicity of the presentation) we assume that uo
i ’s are properly

defined, that is, the denominators are different from zero. From equations (3.5),(3.6),
(3.12),and (3.13), we obtain

Hg1(x1,
∂v1
∂x1

) = −ν1

∥∥∥[I2, I2] ∂v1
∂x1

T
∥∥∥ ,

Hg2(x2,
∂v2
∂x2

) = −ν2

∥∥∥[−I2, I2] ∂v2
∂x2

T
∥∥∥(3.14)
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and set

αi ≡ νi, µi(xi) ≡ −ν−1
i Hgi(xi,

∂vi

∂xi
), i ∈ {1, 2}.

If there are coefficients αij in (3.8) such that that the matrix Q in (3.10) is an M -
matrix then there is a guarantee that there will be no collisions between the agents.
One of the avenues for the future research would be to find the mathematical rela-
tionship between r1, r2, ν1, ν2, and W such that Q is an M -matrix.

4. Conclusions. In this paper a solution for the multi-player avoidance control
problem is presented. Possible extensions for this work are numerous. One direction
is to study refinement of the bounds on the unknown interconnections by considering
special structures where the individual treatment of the agents with strategies that
would steer the system trajectories into the avoidance set would be of interest. The
other direction is to consider the problem of finding the correlation between the size
of the unknown perturbations that represent disturbances and the size of the safety
regions where the safety regions would be given as level sets of a vector Liapunov-type
function. Any result that would link the size of the interconnections and the size of
the safety regions would be relevant in the study of the safety verification of dynamic
systems.
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