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GIRTH AND SUBDOMINANT EIGENVALUES FOR STOCHASTIC
MATRICES∗

S. KIRKLAND†

Abstract. The set S(g, n) of all stochastic matrices of order n whose directed graph has girth
g is considered. For any g and n, a lower bound is provided on the modulus of a subdominant
eigenvalue of such a matrix in terms of g and n, and for the cases g = 1, 2, 3 the minimum possible
modulus of a subdominant eigenvalue for a matrix in S(g, n) is computed. A class of examples for
the case g = 4 is investigated, and it is shown that if g > 2n/3 and n ≥ 27, then for every matrix in
S(g, n), the modulus of the subdominant eigenvalue is at least ( 1

5
)1/(2�n/3�).
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1. Introduction and preliminaries. Suppose that T is an irreducible stochas-
tic matrix. It is well known that the spectral radius of T is 1, and that in fact 1 is
an eigenvalue of T (with the all ones vector 1 as a corresponding eigenvector). In-
deed, denoting the directed graph of T by D (see [2]), Perron-Frobenius theory (see
[8]) gives more information on the spectrum of T , namely that the number of eigen-
values having modulus 1 coincides with the greatest common divisor of the cycle
lengths in D. In particular, if that greatest common divisor is 1, it follows that
the powers of T converge. (This in turn leads to a convergence result for the iter-
ates of a Markov chain with transition matrix T .) Denoting the eigenvalues of T
by 1 = λ1(T ) ≥ |λ2(T )| ≥ . . . ≥ |λn(T )| (throughout we will use this convention
in labeling the eigenvalues of a stochastic matrix), it is not difficult to see that the
asymptotic rate of convergence of the powers of T is governed by |λ2(T )|. We refer
to λ2(T ) as a subdominant eigenvalue of T .

In light of these observations, it is natural to wonder whether stronger hypotheses
on the directed graph D will yield further information on the subdominant eigen-
value(s) of T . This sort of question was addressed in [6], where it was shown that
if T is a primitive stochastic matrix of order n whose exponent (i.e. the smallest
k ∈ N so that T k has all positive entries) is at least �n2−2n+2

2 � + 2, then T has at

least 2�(n− 4)/4� eigenvalues with moduli exceeding
(

1
2 sin[π/(n− 1)]

)2/(n−1)
. Thus

a hypothesis on the directed graph D can lead to information about the eigenvalues
of T .

In this paper, we consider the influence of the girth of D - that is, the length
of the shortest cycle in D - on the modulus of the subdominant eigenvalue(s) of T .
(It is straightforward to see that the girth of D is the smallest k ∈ N such that
trace(T k) > 0.) Specifically, let S(g, n) be the set of n×n stochastic matrices having

∗ Received by the editors 27 August 2004. Accepted for publication 2 December 2004. Handling
Editor: Abraham Berman.

†Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan,
S4S 0A2, CANADA (kirkland@math.uregina.ca). Research supported in part by an NSERC Re-
search Grant.

25

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 12, pp. 25-41, January 2005



ELA

26 S. Kirkland

digraphs with girth g. If T ∈ S(g, n), how large can |λ2(T )| be? How small can
|λ2(T )| be?

We note that the former question is readily dealt with. If g ≥ 2, consider the
directed graph G on n vertices that consists of a single g−cycle, say on vertices
1, . . . , g, along with a directed path n → n − 1 → . . . → g + 1 → 1. Letting A be
the (0, 1) adjacency matrix of G, it is straightforward to determine that A ∈ S(g, n),
and that the eigenvalues of A consist of the g−th roots of unity, along with the
eigenvalue 0 of algebraic multiplicity n−g. In particular, |λ2(A)| = 1, so we find that
max{|λ2(T )||T ∈ S(g, n)} = 1. Similarly, for the case g = 1, we note that the identity
matrix of order n, In, is an element of S(1, n), and again we have max{|λ2(T )||T ∈
S(1, n)} = 1.

The bulk of this paper is devoted to a discussion of how small |λ2(T )| can be if
T ∈ S(g, n) (and hence, of how quickly the powers of T can converge). To that end,
we let λ2(g, n) be given by λ2(g, n) = inf{|λ2(T )||T ∈ S(g, n)}.

Remark 1.1. We begin by discussing the case that g = 1. Let J denote the
n× n all ones matrix, and observe that for any n ≥ 2, the n× n matrix 1

nJ has the
eigenvalues 1 and 0, the latter with algebraic and geometric multiplicity n − 1. It
follows immediately that that λ2(1, n) = 0.

Indeed there are many stochastic matrices yielding this minimum value for λ2, of
all possible admissible Jordan forms. To see this fact, let M be any nilpotent Jordan
matrix of order n − 1. Let v1, . . . , vn−1 be an orthonormal basis of the orthogonal
complement of 1 in R

n, and let V be the n × (n − 1) matrix whose columns are
v1, . . . , vn−1. We find readily that for all sufficiently small ε > 0, the matrix T =
1
nJ + εVMV T is stochastic; further, the Jordan form for T is given by [1] ⊕M, so
that the Jordan structure of T corresponding to the eigenvalue 0 coincides with that
of M . Evidently for such a matrix T , the powers of T converge in a finite number
of iterations; in fact that number of iterations coincides with the size of the largest
Jordan block of M .

The following elementary result provides a lower bound on λ2(g, n) for g ≥ 2.
Theorem 1.1. Suppose that g ≥ 2 and that T ∈ S(g, n). Then |λ2(T )| ≥

1/(n−1)
1

(g−1) . Equality holds if and only if g = 2 and the eigenvalues of T are 1 (with
algebraic multiplicity 1) and −1

n−1 (with algebraic multiplicity n− 1). In particular,

λ2(g, n) ≥ 1/(n− 1)
1

(g−1) .(1.1)

Proof. Let the eigenvalues of T be 1, λ2, . . . , λn. Since trace(T g−1) = 0, we find
that

∑n
i=2 λ

g−1
i = −1. Hence, (n− 1)|λ2|g−1 ≥ ∑n

i=2 |λi|g−1 ≥ |∑n
i=2 λ

g−1
i | = 1. The

inequality on |λ2| now follows readily.
Now suppose that |λ2| = 1/(n − 1)

1
(g−1) . Inspecting the proof above, we find

that |λi| = |λ2|, i = 3, . . . , n, and that since equality holds in the triangle inequality,
it must be the case that each of λ2, . . . , λn has the same complex argument. Thus
λ2 = λi for each i = 3, . . . , n. Since trace(T ) = 0, we deduce that λ2 = −1/(n− 1);
but then trace(T 2) = n/(n− 1) > 0, so that g = 2. The converse is straightforward.
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Remark 1.2. If T ∈ S(2, n) and |λ2(T )| = 1/(n − 1), it is straightforward to
see that the matrix S = n−1

n T + 1
nIn has just two eigenvalues, 1 and 0, the latter

with algebraic multiplicity n − 1. In particular, S is a matrix in S(1, n) such that
λ2(S) = λ2(1, n) = 0.

Remark 1.3. From Theorem 1.1, we see that if ∃ c > 0 such that g ≥ cn, then
necessarily λ2(g, n) ≥ 1/(n− 1)

1
(cn−1) . An application of l’Hospital’s rule shows that

1/(n − 1)
1

(cn−1) → 1 as n → ∞. Consequently, we find that for each c > 0, and
any ε > 0, there is a number N such that if n > N and g ≥ cn, then each matrix
T ∈ S(g, n) has |λ2(T )| ≥ 1 − ε.

We close this section with a discussion of λ2(g, n) as a function of g and n.
Proposition 1.2. Fix g and n with 2 ≤ g ≤ n− 1. Then

a) λ2(g, n) ≥ λ2(g, n+ 1), and
b) λ2(g + 1, n) ≥ λ2(g, n).

Proof. a) Suppose that T ∈ S(g, n), and partition off the last row and column of

T, say T =
[
T1 x
yT 0

]
. Now let S be the stochastic matrix of order n + 1 given by

S =


 T1

1
2x

1
2x

yT 0 0
yT 0 0


 . Note that the digraph of S is formed from that of T by adding

the vertex n+1, along with the arcs i→ n+1 for each i such that i→ n in the digraph
of T , and the arcs n+ 1 → j for each j such that n→ j in the digraph of T . It now
follows that the girth of the digraph of S is also g, so that S ∈ S(g, n+ 1). Observe
also that we can write S as S = ATB, where the (n + 1) × n matrix A is given by

A =


 In−1 0

0T 1
0T 1


 , while the n× (n+ 1) matrix B is given by B =

[
In−1 0 0
0T 1

2
1
2

]
.

It is straightforward to see that BA = In; from this we find that since the matrix
ATB and the matrix TBA have the same nonzero eigenvalues, so do S and T . In
particular, λ2(S) = λ2(T ), and we readily find that λ2(g, n) ≥ λ2(g, n+ 1).
b) Let ε > 0 be given, and suppose that T ∈ S(g + 1, n) is such that |λ2(T )| <
λ2(g + 1, n) + ε/2. Without loss of generality, we suppose that the digraph of T
contains the cycle 1 → 2 → 3 → . . .→ g+ 1 → 1. For each x ∈ (0, Tg,g+1), let S(x) =
T + xeg(e1 − eg+1)T , where ei denotes the i-th standard unit basis vector. Note that
for each x ∈ (0, Tg,g+1),, S(x) ∈ S(g, n). By the continuity of the spectrum, there is a
δ > 0 such that for any 0 < x < min{δ, Tg,g+1}, |λ2(S(x))| − |λ2(T )| < ε/2. Hence we
find that for 0 < x < min{δ, Tg,g+1} we have λ2(g, n) ≤ |λ2(S(x))| < |λ2(T )| + ε/2 <
λ2(g+ 1, n) + ε. In particular, we find that for each ε > 0, λ2(g, n) ≤ λ2(g+ 1, n) + ε,
from which we conclude that λ2(g, n) ≤ λ2(g + 1, n).

2. Girths 2 and 3. In this section, we use some elementary techniques to find
λ2(2, n) and λ2(3, n). We begin with a discussion of the former.

Theorem 2.1. For any n ≥ 2, λ2(2, n) = 1/(n− 1).
Proof. From Theorem 1.1, we have λ2(2, n) ≥ 1/(n − 1); the result now follows

upon observing that the matrix 1
n−1 (J − I) ∈ S(2, n), and has eigenvalues 1 and

−1/(n− 1), the latter with multiplicity n− 1.
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Our next result shows that there is just one diagonable matrix that yields the
minimum value λ2(2, n).

Theorem 2.2. Suppose that T ∈ S(2, n). Then T is diagonable with |λ2(T )| =
1/(n− 1) if and only if T = 1

n−1 (J − I).
Proof. Suppose that T is diagonable, with |λ2(T )| = 1/(n − 1); from Theorem

1.1 we find that the eigenvalue λ2 = −1/(n − 1) has algebraic multiplicity n − 1.
Since T is diagonable, the dimension of the λ2-eigenspace is n − 1. Let xT be the
left Perron vector for T , normalized so that xT 1 = 1. It follows that there are right
λ2-eigenvectors v2, . . . , vn and left λ2-eigenvectors w2, . . . , wn so that T = 1xT +
−1

n−1

∑n
i=2 viw

T
i and I = 1xT +

∑n
i=2 viw

T
i . Substituting, we see that T = 1

n−1 (n1xT −
I), and since T has trace zero, necessarily, xT = 1

n1T , yielding the desired expression
for T . The converse is straightforward.

Our next example shows that other Jordan forms are possible for matrices yielding
the minimum value λ2(2, n).

Example 2.1. Consider the polynomial

(λ+
1

n− 1
)n−1 =

n−1∑
j=0

λj

(
1

n− 1

)n−1−j (
n− 1
j

)

= λn−1 + λn−2 +
n−3∑
j=0

λj

(
1

n− 1

)n−1−j (
n− 1
j

)
.

From the fact that n− j > j
n−1 for j = 1, . . . , n− 2, it follows readily that

( 1
n−1 )n−1−j

(
n−1

j

)
> ( 1

n−1 )n−j
(
n−1
j−1

)
for each such j.

We thus find that (λ − 1)(λ + 1
n−1 )n−1 can be written as λn − ∑n

j=2 ajλ
n−j ,

where aj > 0 for j = 2, . . . , n, and
∑n

j=2 aj = 1. Consequently, the companion matrix

C =




0 1 0 . . . 0 0
0 0 1 0 . . . 0
...

. . . . . .
...

0 0 0 . . . 0 1
an an−1 an−2 . . . a2 0




is in S(2, n), and λ2(C) = −1/(n− 1). Note

that since any eigenvalue of a companion matrix is geometrically simple, the eigenvalue
−1/(n− 1) of C has a single Jordan block of size n− 1.

Next, we compute λ2(3, n) for odd n.
Theorem 2.3. Suppose that n ≥ 3 is odd. If T ∈ S(3, n), then |λ2(T )| ≥√

n+1
n−1 , with equality holding if and only if the eigenvalues of T are 1 (with algebraic

multiplicity one) and −1±i
√

n
n−1 (with algebraic multiplicity (n − 1)/2 each). Further,

λ2(3, n) =
√

n+1
n−1 .

Proof. Suppose that T ∈ S(3, n), and denote the eigenvalues of T by 1, and
xj + iyj , j = 2, . . . , n (where of course each complex eigenvalue appears with a cor-
responding complex conjugate). Since trace(T ) = 0, we have

∑n
j=2 xj = −1, while

from the fact that trace(T 2) = 0, we have 1 +
∑n

j=2(x2
j − y2

j ) = 0. Consequently,
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∑n
j=2(x2

j + y2
j ) = 1 + 2

∑n
j=2 x

2
j ≥ 1 + 2|∑n

j=2 xj |2/(n − 1) = n+1
n−1 , the inequality

following from the Cauchy-Schwarz inequality, and the fact that
∑n

j=2 xj = −1. Thus

we find that (n− 1)|λ2|2 ≥ ∑n
j=2(x2

j + y2
j ) ≥ n+1

n−1 , so that |λ2(T )| ≥
√

n+1
n−1 . Inspect-

ing the proof above, we see that |λ2(T )| =
√

n+1
n−1 if and only if each xj is equal to

−1/(n − 1), and each y2
j is equal to n/(n − 1)2. The equality characterization now

follows.
We claim that for each odd n, the companion matrix for the polynomial (λ −

1)(λ − −1+i
√

n
n−1 )(n−1)/2(λ − −1−i

√
n

n−1 )(n−1)/2 = (λ − 1)(λ2 + 2
n−1λ + n+1

(n−1)2 )(n−1)/2 is
in fact a nonnegative matrix, from which it will follow that for each odd n, there is a
matrix in S(3, n) having −1+i

√
n

n−1 as a subdominant eigenvalue. In order to prove that
this companion matrix is nonnegative, it suffices to show that the coefficients of the

polynomial q(λ) =
(
λ2 + 2

n−1λ+ n+1
(n−1)2

)(n−1)/2

are increasing with the powers of λ.

Note that q(λ) =
(

(λ+ 1
n−1 )2 + n

(n−1)2

)(n−1)/2

. Applying the binomial expan-
sion, and collecting powers of λ, we find that

q(λ) =
n−1∑
l=0

λl

(n−1)/2∑
j=�l/2�

(
1

n− 1

)2j−l (
n

(n− 1)2

)(n−1)/2−j (
2j
l

)(
(n− 1)/2

j

)
.(2.1)

Write q(λ) as
∑n−1

l=0 λ
lαl. We claim that αl ≥ αl−1 for each l = 1, . . . , n−1, which will

yield the desired result. Note that for each such l, the inequality αl ≥ αl−1 is equiva-
lent to (n−1)

∑(n−1)/2
j=�l/2�

(
2j
l

)(
(n−1)/2

j

)
1
nj ≥ ∑(n−1)/2

j=�(l−1)/2�
(

2j
l−1

)(
(n−1)/2

j

)
1
nj .Observe that

(n− 1)
(
2j
l

) − (
2j

l−1

)
= 2j!

(l−1)!(2j−l)! (
n−1

l − 1
2j−l+1 ) ≥ 0, so in particular, if l is even (so

that �l/2� = �(l − 1)/2�) it follows readily that αl ≥ αl−1.
Finally, suppose that l is odd with 1 ≤ l ≤ n − 1 and l = 2r + 1. Then �l/2� =

r+1, �(l−1)/2� = r, and since 2r+1 ≤ n−1, we find that r ≤ n−3
2 . In order to show

that αl ≥ αl−1, it suffices to show, in conjunction with the inequalities proven above,
that (n − 1)

(
2r+2
2r+1

)(
(n−1)/2

r+1

)
1

nr+1 − (
2r+2
2r

)(
(n−1)/2

r+1

)
1

nr+1 − (
2r
2r

)(
(n−1)/2

r

)
1

nr ≥ 0. That
inequality can be seen to be equivalent to 2(n−1

n ) − 2r+1
n − 1

(n−1)/2−r ≥ 0, and since
we have 2(n−1

n )− 2r+1
n − 1

(n−1)/2−r ≥ 2(n−1
n )− n−2

n − 1 = 0, the desired inequality is
thus established. Hence for odd l, we have αl ≥ αl−1, and it now follows that there
is a companion matrix C ∈ S(3, n) such that |λ2(C)| =

√
n+1

n−1 .
Example 2.2. Another class of matrices in S(3, n) yielding the minimum value

for |λ2| arises in the following combinatorial context. A square (0, 1) matrix A of
order n is called a tournament matrix if it satisfies the equation A + AT = J − I.
From that equation, one readily deduces that there are no cycles of length 2 in the
digraph of a tournament matrix, and a standard result in the area asserts that the
digraph associated with any tournament matrix either contains a cycle of length 3,
or it has no cycles at all. Thus the digraph of any nonnilpotent tournament matrix
necessarily has girth 3.

If, in addition, a tournament matrix A satisfies the identity ATA = n+1
4 I +

n−3
4 J = AAT , then A is known as a doubly regular (or Hadamard) tournament ma-
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trix; note that necessarily n ≡ 3 mod 4 in that case. It turns out that doubly regular
tournament matrices are co-existent with skew-Hadamard matrices, and so of course
the question of whether there is a doubly regular tournament matrix in every admis-
sible order is open, and apparently quite difficult.

In [3] it is shown that if A is a doubly regular tournament matrix, then its eigen-
values consist of n−1

2 (of algebraic multiplicity one, and having 1 as a corresponding
right eigenvector) and −1

2 ±i
√

n
2 , each of algebraic multiplicity (n−1)/2. Consequently,

we find that if A is an n × n doubly regular tournament matrix, then T = 2
n−1A is

in S(3, n) and has eigenvalues 1 and −1±i
√

n
n−1 , the latter with algebraic multiplicity

(n− 1)/2 each. From Theorem 2.3, we find that |λ2(T )| = λ2(3, n).
We adapt the technique of the proof of Theorem 2.3 in order to compute λ2(3, n)

for even n.
Theorem 2.4. Suppose that n ≥ 4 is even. If T ∈ S(3, n), then |λ2(T )| ≥√

n+2
n2−2n , with equality holding if and only if the eigenvalues of T are 1 (with algebraic

multiplicity one), −2/n (also with algebraic multiplicity one) and −1
n ± i

n

√
n2+n+2

n−2

(with algebraic multiplicity (n− 2)/2 each). Further, λ2(3, n) =
√

n+2
n2−2n .

Proof. Suppose that T ∈ S(3, n). Since T is stochastic, it has 1 as an eigenvalue,
and since n is even, there is at least one more real eigenvalue for T , say z. Let
xj + iyj, j = 2, . . . , n − 1, denote the remaining eigenvalues of T . From the fact
that trace(T ) = 0, we have 1 + z +

∑n−1
j=2 xj = 0, while trace(T 2) = 0 yields 1 + z2 +∑n−1

j=2 (x2
j −y2

j ) = 0. Thus we have
∑n−1

j=2 (x2
j +y2

j ) = 1+z2+2
∑n−1

j=2 x
2
j . Consequently,

we find that (n − 2)|λ2|2 ≥ ∑n−1
j=2 (x2

j + y2
j ) = 1 + z2 + 2

∑n−1
j=2 x

2
j ≥ 1 + z2 + 2(1 +

z)2/(n−2), the second inequality following from the Cauchy-Schwarz inequality. The
expression 1 + z2 + 2(1 + z)2/(n− 2) is readily seen to be uniquely minimized when
z = −2/n, with a minimum value of n+2

n . Hence we find that (n− 2)|λ2|2 ≥ n+2
n , and

the lower bound on |λ2| follows.

Inspecting the argument above, we see that if |λ2(T )| =
√

n+2
n2−2n , then necessarily

z must be −2/n, each xj must be −1/n, while each y2
j is equal to 1

n2
n2+n+2

n−2 . The
characterization of equality now follows.

We claim that for each even n, there is a companion matrix in S(3, n) having −1
n +

i
n

√
n2+n+2

n−2 as a subdominant eigenvalue. To see the claim, first consider the poly-

nomial q(λ) =
(
λ−

(
−1
n − i

n

√
n2+n+2

n−2

))(n−2)/2 (
λ−

(
−1
n + i

n

√
n2+n+2

n−2

))(n−2)/2

=(
(λ+ 1

n )2 + n2+n+2
n2(n−2)

)(n−2)/2

and write it as q(λ) =
∑n−2

l=0 λ
lal, so that (λ+2/n)q(λ) =

λn−1 +
∑n−2

l=1 λ
l(al−1 + 2al/n) + 2a0/n. As in the proof of Theorem 2.3, it suffices

to show that in this last expression, the coefficients of λl are nondecreasing in l.
Also as in the proof of that theorem, we find that for each l = 0, . . . , n − 2, al =∑(n−2)/2

j=�l/2� ( 1
n )2j−l( n2+n+2

n2(n−2) )(n−2)/2−j
(
2j
l

)(
(n−2)/2

j

)
; straightforward computations now

reveal that the coefficients of λn−1, λn−2, λn−3 and λn−4 in the polynomial (λ +

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 12, pp. 25-41, January 2005



ELA

Girth and Subdominant Eigenvalues 31

2/n)q(λ) are 1, 1, 1 and 2n2−3n−2
3n2 , respectively. We claim that for each l = 1, . . . , n−

4, al ≥ al−1, which is sufficient to give the desired result.
The claim is equivalent to proving that for each l = 1, . . . , n − 4,

n
∑(n−2)/2

j=�l/2�
(

n−2
n2+n+2

)j (
2j
l

)(
(n−2)/2

j

) ≥ ∑(n−2)/2
j=�(l−1)/2�

(
n−2

n2+n+2

)j (
2j

l−1

)(
(n−2)/2

j

)
. Ob-

serve that n
(
2j
l

) − (
2j

l−1

)
= 2j!

(l−1)!(2j−l)! (
n
l − 1

2j−l+1 ) ≥ 0, so in particular, if l is even
(so that �l/2� = �(l− 1)/2�) it follows readily that al ≥ al−1. Now suppose that l ≥ 1
is odd, say l = 2r+1, so that �l/2� = r+1 and �(l−1)/2� = r. Note also that since l ≤
n−4, in fact l ≤ n−5, so that r ≤ (n−6)/2. In conjunction with the argument above,
it suffices to show that n( n−2

n2+n+2 )r+1
(
2r+2
2r+1

)(
(n−2)/2

r+1

)− ( n−2
n2+n+2 )r+1

(
2r+2
2r

)(
(n−2)/2

r+1

)−
( n−2

n2+n+2 )r
(
2r
2r

)(
(n−2)/2

r

) ≥ 0. This last inequality can be seen to be equivalent to
2n(n−2)
n2+n+2 − (2r + 1) n−2

n2+n+2 − 1
(n−2)/2−r ≥ 0. Note that since r ≤ (n − 6)/2, we have

2n(n−2)
n2+n+2 −(2r+1) n−2

n2+n+2 − 1
(n−2)/2−r ≥ 2n(n−2)

n2+n+2 −(n−5) n−2
n2+n+2 − 1

2 = n2+5n−22
2(n2+n+2) ≥ 0,

the last since n ≥ 4. Hence we have al ≥ al−1 for each l = 1, . . . , n− 4, as desired.
The following result shows that the lower bound of (1.1) on λ2(g, n) is of the

correct order of magnitude for g = 3. Its proof is immediate from Theorems 2.3 and
2.4.

Corollary 2.5. limn→∞λ2(3, n)
√
n− 1 = 1.

3. A class of examples for girth 4. Our object in this section is to identify,
for infinitely many n, a matrix T ∈ S(4, n) such that |λ2(T )| is of the same order
of magnitude as 1/ 3

√
n− 1, the lower bound on λ2(4, n) arising from (1.1). Our

approach is to identify a certain sequence of candidate spectra, and then show that
each candidate spectrum is attained by an appropriate stochastic matrix.

Fix an integer p ≥ 3, and let r = 1
3p . Set q = 9p3 + 2p, l = 18p3 + 9p2 + p and

m = 9p2 + 3p. Letting n = q+ l+m+ 1, it follows that (n− 1)r3 − 2r2 − 2r− 1 = 0.
We would like to show that there is a matrix T ∈ S(4, n) whose eigenvalues are: 1
(with multiplicity 1), −r (with multiplicity q), re±πi/3 (each with multiplicity l/2)
and re±2πi/3 (each with multiplicity m/2).

For each j ∈ N, let

sj = 1+q(−r)j +(l/2)(reπi/3)j +(l/2)(re−πi/3)j +(m/2)(re2πi/3)j +(m/2)(re−2πi/3)j .

(Observe that if we could find the desired matrix T , then sj would just be the trace
of T j.) We find readily that s1 = s2 = s3 = 0, while s4 = 1 − r2, s5 = 1 − r4, and
s6 = 1 + r3 + 2r4 + 2r5. Finally, note that for any j ∈ N, sj+6 − 1 = r6(sj − 1).

Write the polynomial

(λ − 1)(λ+ r)q(λ− reπi/3)
l
2 (λ− re−πi/3)

l
2 (λ− re2πi/3)

m
2 (λ− re−2πi/3)

m
2

as λn +
∑n−1

j=0 ajλ
j . Let Cn =




0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

. . . . . .

0 0 . . . 0 1
−a0 −a1 . . . −an−1




be the asso-
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ciated companion matrix, let Mn =




n 0 0 0 . . . 0
s1 n− 1 0 0 . . . 0
s2 s1 n− 2 0 . . . 0

. . . . . . . . .

sn−1 sn−2 . . . s1 1



, and let

An =




s1 n− 1 0 0 . . . 0
s2 s1 n− 2 0 . . . 0
s3 s2 s1 n− 3 0 . . .

. . . . . . . . .

sn sn−1 . . . s2 s1



. Following an idea from [7], we note

that from the Newton identities, it follows that CnMn = An, so that M−1
n CnMn =

M−1
n An. In particular, Cn is similar to M−1

n An. Much of our goal in this section
is to show that M−1

n An is an irreducible nonnegative matrix. Since any irreducible
nonnegative matrix with Perron value 1 is diagonally similar to a stochastic matrix,
we will then conclude that there is a matrix T ∈ S(4, n) such that |λ2(T )| = r.

Throughout the remainder of this section, we take the parameters p, n, r and the
sequence {sj} to be as defined above. In particular, we will rely on the facts that
p ≥ 3, r ≤ 1/9 and (n− 1)r3 − 2r2 − 2r − 1 = 0.

We begin with some technical results. In what follows, we use 0k denote the
k-vector of zeros.

Lemma 3.1. Suppose that k ∈ N with 7 ≤ k ≤ n. Then

Mk1 = (k − 3 − r2)1 + (3 + r2)e1 + (2 + r2)e2 +

(1 + r2)e3 + r2e4 + r3
[

06

v

]
,(3.1)

where ||v||∞ = 1 + r + 2r2.
Proof. Evidently the first four entries of Mk1 are k, k − 1, k − 2 and k − 3,

respectively. For j ≥ 5, the j-th entry ofMk1 is k−3+tj, where tj =
∑j

i=4(si−1).We
have t4 = −r2, t5 = −r2−r4, t6 = −r2+r3+r4+2r5, t7 = −r2+r3+r4+2r5−r6, t8 =
−r2+r3+r4+2r5−2r6, and t9 = −r2+r3+r4+2r5−3r6. In particular, for 4 ≤ j ≤ 9,
note that −r ≤ tj+r2

r3 ≤ 1 + r + 2r2, with equality holding in the upper bound for
j = 6. Also, for each 4 ≤ j ≤ 9 and i ∈ N, we have tj+6i = t9

1−r6i+6

1−r6 + tjr6i. We find

that for such i and j, 0 < tj+6i+r2

r3 ≤ 1
r3 (t9/(1 − r6) + r2 + r6it6) ≤ 1

r3 (t9/(1 − r6) +
r2 + r6t6). An uninteresting computation shows that the rightmost member is equal
to 1+r+2r2+ 1

1−r6 (−3r3−2r5+2r6+2r7+4r8+r11−r12−r13−2r14). Since r ≤ 1/9,
it follows that this last quantity is strictly less than 1 + r + 2r2. Consequently, for
any j ≥ 4, we have tj+r2

r3 ≤ 1 + r + 2r2, with equality holding for j = 6. The result
now follows.

Proposition 3.2. For each 1 ≤ k ≤ n, we have
a) the offdiagonal entries of M−1

k are nonpositive, so that M−1
k is an M-matrix,
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b) M−1
k 1 ≥ 1

k+11, and

c) M−1
k




s4
s5
...

sk+3


 is a positive vector.

Proof. We proceed by extended induction on k using a single induction proof
for all three statements. Note that each of a), b) and c) is easily established for
k = 1, . . . , 6. Suppose now that a), b) and c) hold for natural numbers up to and
including k − 1 ≥ 6.

First, we consider statement a). We have M−1
k =

[
1/k 0T

−y M−1
k−1

]
, where y can

be written as y = 1
k




0
0
0

M−1
k−4




s4
s5
...

sk−1






. From part c) of the induction hypothesis, it

follows that y is a nonnegative vector, while from part a) of the induction hypothesis,
the offdiagonal entries of M−1

k−1 are also nonpositive. Hence all offdiagonal entries of
M−1

k are nonpositive, which completes the proof of the induction step for statement
a).

Next, we consider statement b). From Lemma 3.1, it follows that

M−1
k 1 =

1
k − 3 − r2

(
1 − (3 + r2)M−1

k e1 − (2 + r2)M−1
k e2−

(1 + r2)M−1
k e3 − r2M−1

k e4 + r3M−1
k

[
06

v

])
,

for some vector v with ||v||∞ = 1 + r + 2r2. The first four entries of M−1
k 1 are

1/k, 1/(k − 1), 1/(k − 2) and 1/(k − 3), respectively, so it remains only to show that
M−1

k 1 ≥ 1
k+11 in positions after the fourth.

Let trunc4(M−1
k 1) denote the vector formed from M−1

k 1 by deleting its first
four entries. Noting that the entries of M−1

k e1,M
−1
k e2,M

−1
k e3, and M−1

k e4 are
nonpositive after the fourth position, it follows that trunc4(M−1

k 1) ≥ 1
k−3−r2 1 +

r3

k−3−r2

[
02

M−1
k−6v

]
.

From part b) of the induction hypothesis, M−1
k−61 is a positive vector, and from

part a) of the induction hypothesis, M−1
k−6 is an M-matrix. Note that M−1

k−6 has
diagonal entries 1/(k−6), 1/(k−7), . . . , 1/2, 1. Letting ui be the i-th row sum ofM−1

k−6,
it follows that ||eTi M−1

k−6||1 = 1/(k−5+i)+(1/(k−5+i)−ui) ≤ 2/(k−5+i) ≤ 2. Letting
||| • |||∞ denote the absolute row sum norm (induced by the infinity norm for vectors),
we conclude that |||M−1

k−6|||∞ ≤ 2. Hence M−1
k−6v ≥ −2||v||∞1 = −2(1 + r+ 2r2)1. As
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a result, we have 1
k−3−r2 1+ r3

k−3−r2

[
02

M−1
k−6v

]
≥ 1

k−3−r2 1−2(1+r+2r2) r3

k−3−r2 1 =

1−2r3(1+r+2r2)
k−3−r2 1.
Since (k − 1)r3 ≤ 2r2 + 2r + 1, we have

1 − 2r3(1 + r + 2r2)
k − 3 − r2 ≥ 1 − 2(1 + r + 2r2)(1 + 2r + 2r2)/(k − 1)

k − 3 − r2 ≥ k − 3.8325
(k − 1)(k − 3)

,

the last inequality following from the fact that r ≤ 1/9. Since k ≥ 7, we find readily
that k−3.8325

(k−1)(k−3) ≥ 1
k+1 . Putting the inequalities together, we have M−1

k 1 ≥ 1
k+11,

which completes the proof of the induction step for statement b).

Finally, we consider statement c). We have




s4
s5
...

sk+3


 = 1 +




s4 − 1
s5 − 1

...
sk+3 − 1


 =

1 +




−r2
−r4

r3(1 + 2r + 2r2)
−r6
−r6
−r6
0k−6




+




06

s10 − 1
...

sk+3 − 1



. Recall that for 4 ≤ j ≤ 9 and i ∈ N,

sj+6i − 1 = r6i(sj − 1), so that |sj+6i−1|
r8 ≤ |sj−1|

r2 ≤ 1. Hence




s4
s5
...

sk+3


 = 1 − r2e1 −

r4e2 + r3(1 + 2r + 2r2)e3 − r6(e4 + e5 + e6) + r8
[

06

v

]
, where ||v||∞ ≤ 1. Thus we

have

M−1
k




s4
s5
...

sk+3


 = M−1

k 1 −M−1
k (r2e1 + r4e2 + r6(e4 + e5 + e6)) +

r3(1 + 2r + 2r2)M−1
k e3 + r8

[
06

M−1
k−6v

]
.

Certainly the first six entries of M−1
k




s4
s5
...

sk+3


 are positive, so it remains only to

show that the remaining entries are positive. Note also that the entries ofM−1
k (r2e1+
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r4e2 + r6(e4 + e5 + e6)) below the sixth position are all nonpositive, that M−1
k e3 =



06

−1
k−2M

−1
k−6




s4
s5
...

sk−3






, and that the infinity norm of




s4
s5
...

sk−3


 is bounded above

by s6 = 1 + r3(1 + 2r + 2r2).

Let trunc6


M−1

k




s4
s5
...

sk+3





 denote the vector formed from M−1

k




s4
s5
...

sk+3


 by

deleting its first six entries, and define trunc6(M−1
k 1) similarly. From the considera-

tions above, we find that

trunc6


M−1

k




s4
s5
...

sk+3





 ≥

trunc6(M−1
k 1) − r3(1 + 2r + 2r2)

k − 2
M−1

k−6




s4
s5
...

sk−3


 + r8M−1

k−6v.

As above, since M−1
k−6 is an M-matrix, we find that |||M−1

k−6|||∞ ≤ 2. Applying b),
and using the bound on the norm of M−1

k−6, we have

trunc6(M−1
k 1) − r3(1 + 2r + 2r2)

k − 2
M−1

k−6




s4
s5
...

sk−3


 + r8M−1

k−6v ≥

1
k + 1

1 − r3(1 + 2r + 2r2)(2 + 2r3 + 4r4 + 4r5)
k − 2

1 − 2r81.

Thus, it is sufficient to show that 1
k+1−

r3(1+2r+2r2)(2+2r3+4r4+4r5)
k−2 − 2r8 > 0.

Since r3 ≤ 2r2+2r+1
k−1 , it follows that 1

k+1 − r3(1+2r+2r2)(2+2r3+4r4+4r5)
k−2 − 2r8 ≥

1
k+1 − 2(1+2r+2r2)2(k−1+(1+2r+2r2)2)

(k−1)2(k−2) − 2r2(1+2r+2r2)2

(k−1)2 . Now using the fact that r ≤
1/9, it eventually follows that 1

k+1 − 2(1+2r+2r2)2(k−1+(1+2r+2r2)2)
(k−1)2(k−2) − 2r2(1+2r+2r2)2

(k−1)2 ≥
k3−6.54k2+1.84k−2.62

(k+1)(k−2)(k−1)2 . This last is positive, since k ≥ 7. This completes the proof of the
induction step for statement c).
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The preceding results lead to the following.
Theorem 3.3. M−1

n An is an irreducible nonnegative matrix.
Proof. We claim that for each 4 ≤ k ≤ n,M−1

k Ak is irreducible and nonnegative.
The statement clearly holds if k = 4, and we proceed by induction. Suppose that

the claim holds for some 4 ≤ k ≤ n − 1. Note that Mk+1 =
[
k + 1 0T

s Mk

]
, where

s =



s1
...
sk


 .We also have Ak+1 =

[
0 keT1
σ Ak

]
, where σ =




s2
...

sk+1


 . It then follows

that M−1
k+1Ak+1 =

[
0 k

k+1e
T
1

1
k+1M

−1
k σ M−1

k Ak − k
k+1M

−1
k seT1

]
.

From the induction hypothesis, M−1
k Akej ≥ 0 for each 1 ≤ j ≤ k. Note also

that M−1
k Ake1 = M−1

k s ≥ 0, so that the first column of M−1
k Ak − k

k+1M
−1
k seT1 is

just 1
kM

−1
k s, which is nonnegative, and has the same zero-nonzero pattern as the first

column of M−1
k Ak. Thus the (2, 2) block of M−1

k+1Ak+1 is nonnegative and irreducible
by the induction hypothesis, while the (1, 2) block is a nonnegative nonzero vector.
Further, from Proposition 3.2 it follows that M−1

k σ is also nonnegative and nonzero.
HenceM−1

k+1Ak+1 is both nonnegative and irreducible, completing the induction step.
Here is the main result of this section; it follows from Theorem 3.3.
Theorem 3.4. For infinitely many n, λ2(4, n) ≤ r, where r is the positive root

of the equation (n− 1)r3 − 2r2 − 2r − 1 = 0.
Remark 3.1. Let f(x) = (n−1)x3−2x2−2x−1. A straightforward computation

shows that for all sufficiently large n, f((n − 1)−
1
3 + (n − 1)−

2
3 ) > 0. It now follows

that for all sufficiently large n, the positive root r for the function f satisfies r <
(n− 1)−

1
3 + (n− 1)−

2
3 .

The following is immediate from Theorem 1.1, Theorem 3.4 and Remark 3.1.
Corollary 3.5. liminf n→∞λ2(4, n) 3

√
n− 1 = 1.

4. Bounds for large girth. At least part of the motivation for the study of
λ2(g, n) is to develop some insight when g is large relative to n. As noted in Remark
1.3, if both n and g are large, then we expect λ2(g, n) to be close to 1, so that any
primitive matrix in S(g, n) will give rise to a sequence of powers that converges only
very slowly. The purpose of this section is to quantify these notions more precisely.
To that end, we focus on the case that g > 2n/3.

The following result is useful. Its proof appears in [4] and (essentially) in [6] as
well.

Lemma 4.1. Suppose that g > n/2 and that T ∈ S(g, n). Then the characteristic
polynomial for T has the form λn − ∑n

j=g ajλ
n−j , where aj ≥ 0, j = g, . . . , n and∑n

j=g aj = 1.
Our next result appears in [5].
Lemma 4.2. Suppose that g > 2n/3 and that T ∈ S(g, n). Then T has an

eigenvalue of the form ρeiθ, where θ ∈ [2π/n, 2π/g], and where ρ ≥ r(θ), where r(θ) is
the (unique) positive solution to the equation rg sin(nθ)− rn sin(gθ) = sin((n− g)θ).
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Remark 4.1. It is shown in [5] that there is a one-to-one correspondence between
the family of complex numbers r(θ)eiθ , θ ∈ [2π/n, 2π/g], and a family of roots of the
polynomial λn − αλn−g − (1 − α), α ∈ [0, 1]. Specifically, [5] shows that for each
α ∈ [0, 1], there is a θ ∈ [2π/n, 2π/g] such that r(θ)eiθ is a root of λn − αλn−g −
(1−α), and conversely that for each θ ∈ [2π/n, 2π/g], there is an α ∈ [0, 1] such that
λn −αλn−g − (1− α) has r(θ)eiθ as a root. As α runs from 0 to 1, θ runs from 2π/n
to 2π/g, while r(θ)eiθ interpolates between e2πi/n and e2πi/g.

The following result produces lower bounds on λ2(g, n) for g > 2n/3 and for
g ≥ 3(n+ 3)/4.

Theorem 4.3. a) Suppose that n ≥ 27 and that g > 2n/3. Then λ2(g, n) ≥
(1
5 )1/l(n), where l(n) = 2�n

3 � + 1 if n ≡ 0, 1 mod 3, and l(n) = 2�n
3 � if n ≡ 2 mod 3.

b) If n ≥ 3(n+ 3)/4, then λ2(g, n) ≥ ( 2
√

7−1
7 )1/(3�n

4 �).
Proof. a) Let k = �n

3 �, so that n = 3k + i, for some 0 ≤ i ≤ 2. Since g > 2n/3,
it follows that g ≥ 2k + 1 if i = 0, 1, and g ≥ 2k + 2 if i = 2. Let j0 = 1, j1 = 1 and
j2 = 2. From Proposition 1.2 b), we find that λ2(g, n) ≥ λ2(2k + ji, 3k + i). From
Lemma 4.2 it follows that for each T ∈ S(2k + ji, 3k + i), there is a θ ∈ [2π/(3k +
i), 2π/(2k+ ji)] such that |λ2(T )| ≥ r, where r is the positive solution to the equation
r2k+ji sin((3k+ i)θ)−r3k+i sin((2k+ ji)θ) = sin((k+ i−ji)θ). Evidently for such an r
we have r2k+ji (sin((3k+ i)θ)− sin((2k+ ji)θ)) ≥ sin((k+ i− ji)θ), and it now follows
that λ2(g, n)2k+ji ≥ min{ sin((k+i−ji)θ)

sin((3k+i)θ)−sin((2k+ji)θ) |θ ∈ [2π/(3k + i), 2π/(2k + ji)]}.
In order to establish the desired inequality, it suffices to show that for each θ ∈
[2π/(3k + i), 2π/(2k + ji)], 5 sin((k + i− ji)θ) ≥ sin((3k + i)θ) − sin((2k + ji)θ).

To that end, set t = (k + i − ji)θ, so that t ∈ [ 2π
3 − 2π(3ji−2i)

3(3k+i) , π − π(3ji−2i)
2k+ji

] ⊂
[2π

3 − 2π
3k , π − π

2k+2 ]. Set bi = 3ji−2i
k+i−ji

; we find that (3k + i)θ = 3t + bit and that
(2k + ji)θ = 2t + bit. We claim that for each t ∈ [2π/3 − 2π/(3k), π − π/(2k +
2)], 5 sin(t) ≥ sin(3t + bit) − sin(2t + bit). Let cos(t) = x, so that −1 < x < 0. Our
claim is equivalent to proving that

(5 − (4x2 − 2x− 1) cos(bit))
√

1 − x2 ≥ (x − 1)(4x2 + 2x− 1) sin(bit).(4.1)

From the hypothesis, it follows that k ≥ 9, so we find that sin(bit), cos(bit) ≥ 0. First,
we note that if −1 < x ≤ − 1+

√
5

4 , then we have 4x2 − 2x− 1 > 4x2 + 2x− 1 ≥ 0, so
that the left side of (4.1) is positive while the right side is nonpositive.

Next, note that if − 1+
√

5
4 < x ≤ 1−√

5
4 , then 4x2 − 2x − 1 ≥ 0 > 4x2 + 2x − 1.

It then follows that (5 − (4x2 − 2x− 1) cos(bit))
√

1 − x2 ≥ √
1 − x2(6 + 2x− 4x2) ≡

f(x), while (x − 1)(4x2 + 2x − 1) sin(bit) ≤ (x − 1)(4x2 + 2x − 1) ≡ g(x). For
− 1+

√
5

4 < x ≤ 1−√
5

4 , we find readily that f(x) is an increasing function of x, so

that in particular, f(x) ≥
√

5−√
5

2

(
3−√

5
4

) (
7+

√
5

2

)
≈ 1.0368312... on that inter-

val. A straightforward computation also reveals that g(x) is increasing on the in-
terval [− 1+

√
5

4 , 1−√
10

6 ], and is maximized on [−1, 0] at x = 1−√
10

6 , with g(1−√
10

6 ) =(
−5−√

10
6

)(
4

(
1−√

10
6

)2

+ 1−√
10

3 − 1
)

≈ 1.63. Since 1−√
10

6 > −.7, we find from

these considerations that for − 1+
√

5
4 < x ≤ −.7 we have g(x) ≤ g(−.7) ≈ .748 <
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1.036. On the other hand, if −.7 < x ≤ 1−√
5

4 , , then f(x) ≥ f(−.7) ≈ 1.88 > 1.63. It
now follows that for each − 1+

√
5

4 < x ≤ 1−√
5

4 , f(x) ≥ g(x).
Finally, if 1−√

5
4 < x < 0, the left side of (4.1) is easily seen to exceed

5
√

1 − ( 1−√
5

4 )2, which in turn exceeds the maximum value for g(x) on [−1, 0]. We
conclude that (4.1) holds, as desired.

b) Let k = �n
4 �, so that n = 4k + i for some i = 0, 1, 2, 3. Since g ≥ 3(n+ 3)/4,

then we have g ≥ 3k + (9 + 3i)/4. If i = 0, then g ≥ 3k, while if i = 1, 2, 3, then
g ≥ 3k + 3. Consequently, we have λ2(g, n) ≥ λ2(3k, 4k) if i = 0, and λ2(g, n) ≥
λ2(3(k + 1), 4(k + 1)) if i = 1, 2, 3, or equivalently, λ2(g, n) ≥ λ2(3�n

4 �, 4�n
4 �).

Set j = �n
4 �. From Lemma 4.2, we find that λ2(3j, 4j)3j ≥

min{ sin(jθ)
sin(4jθ)−sin(3jθ) |θ ∈ [2π/(4j), 2π/(3j)]}. We claim that min{ sin(jθ)

sin(4jθ)−sin(3jθ) |θ ∈
[2π/(4j), 2π/(3j)]} = (2

√
7−1
7 ), from which the result will follow.

To see the claim, let x = cos(jθ) and note that x ∈ [−1/2, 0]. Further, we have
sin(4jθ) − sin(3jθ) = sin(jθ)(8x3 − 4x2 − 4x + 1). Consequently,
min{ sin(jθ)

sin(4jθ)−sin(3jθ) |θ ∈ [2π/(4j), 2π/(3j)]} = min{ 1
8x3−4x2−4x+1 |x ∈ [−1/2, 0]}. The

claim now follows from a standard calculus computation.
Remark 4.2. Note that 2

√
7−1
7 ≈ 0.6130718... .

Remark 4.3. We note that Theorem 4.3 provides an estimate on r(θ) for the
case that g > 2n/3; that estimate is a clear improvement on that of [6], which proves
a lower bound of

(
1
2 sin[π/(n− 1)]

)2/(n−1) on that quantity.
Our final result considers the case that n→ ∞, while n− g is fixed. In the proof,

we use the notation O( 1
nk ) to denote a sequence sn with the property that nksn is a

bounded sequence.
Theorem 4.4. Suppose that i ≥ 1 is fixed. Then λ2(n− i, n) ≥ 1− π2i2

2n3 +O( 1
n4 ).

Proof. From Lemma 4.2, we find that for n > 3i we have

λ2(n− i, n) ≥
(

min
{

sin(iθ)
sin(nθ) − sin((n− i)θ) |θ ∈ [2π/n, 2π/(n− i)]

}) 1
n−i

.

Let θ0 be a critical point of the function sin(iθ)
sin(nθ)−sin((n−i)θ) on the interval

[2π/n, 2π/(n− i)]. Then we have

sin(iθ0)(n cos(nθ0) − (n− i) cos((n− i)θ0)) = i cos(iθ0)(sin(nθ0) − sin((n− i)θ0)).

Let θ0 = 2π
n + aπ

n2 where a = O(1). We then have nθ0 = 2π + aπ
n , (n − i)θ0 =

2π −
(

(2i−a)π
n + iaπ

n2

)
and iθ0 = 2πi

n + πai
n2 . Expanding the equation above for θ0

to terms in O( 1
n3 ), we have

(
2πi
n + πai

n2

) [
n

(
1 − a2π2

2n2

)
− (n− i)

(
1 − (2i−a)2π2

2n2

)]
=

i
(

1 − 4π2i2

2n2

) [
aπ
n + (2i−a)π

n + iaπ
n2

]
+O( 1

n3 ). Collecting terms and simplifying eventu-

ally yields (2i−a)2−a2

n2 π2 = O( 1
n3 ),from which we conclude that a = i+O( 1

n ).
Next, we write θ0 = 2π

n + iπ
n2 + bπ

n3 , where b = O(1). As above, we find that

nθ0 = 2π+ iπ
n + bπ

n2 , (n− i)θ0 = 2π−
(

iπ
n + (i2−b)π

n2 + ibπ
n3

)
and iθ0 = 2πi

n + πi2

n2 + πbi
n3 .
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From this it follows that

sin(iθ0)
sin(nθ0) − sin((n− i)θ0)

=
2πi
n + πi2

n2 + πbi
n3 − 4π3i3

3n3 +O( 1
n4 )

2πi
n + πi2

n2 + πbi
n3 − π3i3

3n3 +O( 1
n4 )

= 1 − π2i2

2n2
+O

(
1
n3

)
.

(4.2)

Thus we have λ2(n− i, n) ≥
(

1 − π2i2

2n2 +O( 1
n3 )

) 1
n−i

= 1− π2i2

2n3 +O( 1
n4 ), as desired.

Remark 4.4. Suppose that we have a matrix T ∈ S(n − 1, n). Then the
characteristic polynomial of T is given by pα(λ) ≡ λn−αλ−(1−α), for some α ∈ [0, 1].
Conversely, for each α ∈ [0, 1], there is a matrix T ∈ S(n− 1, n) whose characteristic
polynomial is pα, namely the companion matrix of that polynomial. Thus we see that
the eigenvalues of matrices in S(n − 1, n) are in one-to-one correspondence with the
roots of polynomials of the form pα, α ∈ [0, 1]. For such a polynomial, we say that a
root λ is a subdominant root if λ �= 1 and λ has maximum modulus among the roots
of the polynomial that are distinct from 1. In particular, we find that discussing the
subdominant roots of the polynomials pα, α ∈ [0, 1] is equivalent to discussing the
subdominant eigenvalues of the matrices in S(n− 1, n).

Fix a value of n ≥ 4. It follows from Corollary 2.1 of [5] that for each α ∈ [0, 1],
there is precisely one root of pα whose argument lies in [2π/n, 2π/(n− 1)] (including
multiplicities). Denote that root by σ(α). Evidently an analogous statement holds
for the interval [2π− 2π/(n− 1), 2π− 2π/n], and we claim that in fact σ(α) and σ(α)
are subdominant roots for pα.

To see the claim, first suppose that α ∈ (0, 1), and that z1 and z2 are two roots
of pα of equal moduli. Writing z1 = ρeiθ1 , z2 = ρeiθ2 , and substituting each into the
equation pα(λ) = 0, we find that ρ2n = |αρeiθ1 +1−α|2 = |αρeiθ2 +1−α|2. It follows
that α2ρ2 + (1 − α)2 + 2α(1 − α)ρ cos(θ1) = α2ρ2 + (1 − α)2 + 2α(1 − α)ρ cos(θ2),
from which we conclude that cos(θ1) = cos(θ2). Consequently, we find that for each
α ∈ (0, 1), if z1 and z2 are roots of pα that have equal moduli, then either z1 = z2 or
z1 = z2.

For each α ∈ [0, 1], denote the roots of pα that are distinct from 1 and whose argu-
ment fall outside of [2π/n, 2π/(n − 1)] ∪ [2π − 2π/(n − 1), 2π − 2π/n] by
γ1(α), . . . , γn−3(α), labeled in nondecreasing order according to their arguments. Sup-
pose that ∃α1, α2 ∈ (0, 1) such that |σ(α1)| > max{|γi(α1)||i = 1, . . . , n − 3} and
|σ(α2)| < max{|γi(α2)||i = 1, . . . , n − 3}. From the continuity of the roots of pα

in the parameter α, and the intermediate value theorem, we find that ∃α3 ∈ (0, 1)
such that |σ(α3)| = max{|γi(α3)||i = 1, . . . , n− 3}. Hence for some i we have either
γi(α3) = σ(α3) or γi(α3) = σ(α3), a contradiction since the argument of γi falls out-
side of [2π/n, 2π/(n−1)]∪[2π−2π/(n−1), 2π−2π/n]. Consequently, we find that one
of the following alternatives must hold: either |σ(α)| > max{|γi(α)||i = 1, . . . , n− 3}
for all α ∈ (0, 1), or |σ(α)| < max{|γi(α)||i = 1, . . . , n− 3} for all α ∈ (0, 1).

Next, we claim that for all sufficiently small α > 0, σ(α) is a subdominant eigen-
value of pα. To see this, observe that at α = 0, the roots of pα that are distinct from
1 are given by e2πij/n, 1 ≤ j ≤ n− 1. Note that since these roots are distinct, there is
a neighbourhood of α = 0 on which each root of pα is a differentiable function of α.

Fix an index l such that either 1 ≤ l < (n − 2)/2 or (n − 2)/2 < l ≤ n − 3 and
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consider γl(α). We write γl(α) = ρeiθ, where on the right hand side, the explicit
dependence on α is suppressed. Considering the real and imaginary parts of the
equation pα(ρeiθ) = 0, we find that for each 0 < α ≤ 1 we have

ρn cos(nθ) − 1 = α(ρ cos(θ) − 1)(4.3)

and

ρn−1 sin(nθ) = α sin(θ).(4.4)

In particular, crossmultiplying (4.3) and (4.4), canceling the common factor of α, and
simplifying, we find that for each 0 < α ≤ 1, we have

ρn−1 sin(nθ) − ρn sin((n− 1)θ) = sin(θ).(4.5)

(Observe that in fact (4.5) also holds when α = 0, since then ρ = 1 and θ = 2π(l+1)
n .)

Differentiating (4.4) with respect to α and evaluating at α = 0, it follows that
dθ
dα |α=0 = sin(2π(l+1)/n)

n . Differentiating (4.5) with respect to α (via the chain rule)
and evaluating at α = 0 then yields dρ

dα |α=0 = − 1−cos(2π(l+1)/n)
n . Similar arguments

show that if l = (n− 2)/2, then dρ
dα |α=0 = −2

n , and that d|σ|
dα |α=0 = − 1−cos(2π/n)

n .

We conclude that for all sufficiently small α > 0, |σ(α)| = 1 − α
(

1−cos(2π/n)
n

)
+

O(α2) > 1−α
(

1−cos(2π(l+1)/n)
n

)
+O(α2) = |γl(α)|, l = 1 . . . , n−3. Hence, for such α,

σ (and σ) are subdominant roots of pα. From the considerations above, we conclude
that for each α ∈ [0, 1], σ(α) is a subdominant root of pα, as claimed.

From the claim, it now follows that λ2(n − 1, n) = min{|σ(α)||α ∈ [0, 1]} =
min{r(θ)|r(θ)n−1 sin(nθ) − r(θ)n sin((n − 1)θ) = sin(θ), r(θ) > 0, θ ∈ [2π/n, 2π/(n−
1)]}. Arguing as in Theorem 4.4, there is a θ0 ∈ [2π/n, 2π/(n − 1)] such that

sin(θ0)
sin(nθ0)−sin((n−1)θ0)

= 1− π2

2n2 +O
(

1
n3

)
, which yields

(
1 − π2

2n2 +O
(

1
n3

))1/n

≥ r(θ0) ≥

λ2(n − 1, n). Applying Theorem 4.4, we find that
(

1 − π2

2n2 +O
(

1
n3

))1/n

≥ λ2(n −

1, n) ≥
(

1 − π2

2n2 +O
(

1
n3

))1/(n−1)

. But since both the upper and lower bounds on

λ2(n − 1, n) can be written as 1 − π2

2n3 + O( 1
n4 ), we conclude that λ2(n − 1, n) =

1 − π2

2n3 +O( 1
n4 ).
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