GIRTH AND SUBDOMINANT EIGENVALUES FOR STOCHASTIC MATRICES*

S. KIRKLAND ${ }^{\dagger}$

Abstract

The set $\mathcal{S}(g, n)$ of all stochastic matrices of order n whose directed graph has girth g is considered. For any g and n, a lower bound is provided on the modulus of a subdominant eigenvalue of such a matrix in terms of g and n, and for the cases $g=1,2,3$ the minimum possible modulus of a subdominant eigenvalue for a matrix in $\mathcal{S}(g, n)$ is computed. A class of examples for the case $g=4$ is investigated, and it is shown that if $g>2 n / 3$ and $n \geq 27$, then for every matrix in $\mathcal{S}(g, n)$, the modulus of the subdominant eigenvalue is at least $\left(\frac{1}{5}\right)^{1 /(2\lfloor n / 3\rfloor)}$.

Key words. Stochastic matrix, Markov chain, Directed graph, Girth, Subdominant eigenvalue.

AMS subject classifications. 15A18, 15A42, 15A51.

1. Introduction and preliminaries. Suppose that T is an irreducible stochastic matrix. It is well known that the spectral radius of T is 1 , and that in fact 1 is an eigenvalue of T (with the all ones vector $\mathbf{1}$ as a corresponding eigenvector). Indeed, denoting the directed graph of T by D (see [2]), Perron-Frobenius theory (see [8]) gives more information on the spectrum of T, namely that the number of eigenvalues having modulus 1 coincides with the greatest common divisor of the cycle lengths in D. In particular, if that greatest common divisor is 1 , it follows that the powers of T converge. (This in turn leads to a convergence result for the iterates of a Markov chain with transition matrix T.) Denoting the eigenvalues of T by $1=\lambda_{1}(T) \geq\left|\lambda_{2}(T)\right| \geq \ldots \geq\left|\lambda_{n}(T)\right|$ (throughout we will use this convention in labeling the eigenvalues of a stochastic matrix), it is not difficult to see that the asymptotic rate of convergence of the powers of T is governed by $\left|\lambda_{2}(T)\right|$. We refer to $\lambda_{2}(T)$ as a subdominant eigenvalue of T.

In light of these observations, it is natural to wonder whether stronger hypotheses on the directed graph D will yield further information on the subdominant eigenvalue(s) of T. This sort of question was addressed in [6], where it was shown that if T is a primitive stochastic matrix of order n whose exponent (i.e. the smallest $k \in \mathbb{N}$ so that T^{k} has all positive entries) is at least $\left\lfloor\frac{n^{2}-2 n+2}{2}\right\rfloor+2$, then T has at least $2\lfloor(n-4) / 4\rfloor$ eigenvalues with moduli exceeding $\left(\frac{1}{2} \sin [\pi /(n-1)]\right)^{2 /(n-1)}$. Thus a hypothesis on the directed graph D can lead to information about the eigenvalues of T.

In this paper, we consider the influence of the girth of D - that is, the length of the shortest cycle in D - on the modulus of the subdominant eigenvalue(s) of T. (It is straightforward to see that the girth of D is the smallest $k \in \mathbb{N}$ such that $\operatorname{trace}\left(T^{k}\right)>0$.) Specifically, let $\mathcal{S}(g, n)$ be the set of $n \times n$ stochastic matrices having

[^0]digraphs with girth g. If $T \in \mathcal{S}(g, n)$, how large can $\left|\lambda_{2}(T)\right|$ be? How small can $\left|\lambda_{2}(T)\right|$ be?

We note that the former question is readily dealt with. If $g \geq 2$, consider the directed graph G on n vertices that consists of a single g-cycle, say on vertices $1, \ldots, g$, along with a directed path $n \rightarrow n-1 \rightarrow \ldots \rightarrow g+1 \rightarrow 1$. Letting A be the $(0,1)$ adjacency matrix of G, it is straightforward to determine that $A \in \mathcal{S}(g, n)$, and that the eigenvalues of A consist of the g-th roots of unity, along with the eigenvalue 0 of algebraic multiplicity $n-g$. In particular, $\left|\lambda_{2}(A)\right|=1$, so we find that $\max \left\{\mid \lambda_{2}(T) \| T \in \mathcal{S}(g, n)\right\}=1$. Similarly, for the case $g=1$, we note that the identity matrix of order n, I_{n}, is an element of $\mathcal{S}(1, n)$, and again we have $\max \left\{\mid \lambda_{2}(T) \| T \in\right.$ $\mathcal{S}(1, n)\}=1$.

The bulk of this paper is devoted to a discussion of how small $\left|\lambda_{2}(T)\right|$ can be if $T \in \mathcal{S}(g, n)$ (and hence, of how quickly the powers of T can converge). To that end, we let $\lambda_{2}(g, n)$ be given by $\lambda_{2}(g, n)=\inf \left\{\mid \lambda_{2}(T) \| T \in \mathcal{S}(g, n)\right\}$.

Remark 1.1. We begin by discussing the case that $g=1$. Let J denote the $n \times n$ all ones matrix, and observe that for any $n \geq 2$, the $n \times n$ matrix $\frac{1}{n} J$ has the eigenvalues 1 and 0 , the latter with algebraic and geometric multiplicity $n-1$. It follows immediately that that $\lambda_{2}(1, n)=0$.

Indeed there are many stochastic matrices yielding this minimum value for λ_{2}, of all possible admissible Jordan forms. To see this fact, let M be any nilpotent Jordan matrix of order $n-1$. Let v_{1}, \ldots, v_{n-1} be an orthonormal basis of the orthogonal complement of $\mathbf{1}$ in \mathbb{R}^{n}, and let V be the $n \times(n-1)$ matrix whose columns are v_{1}, \ldots, v_{n-1}. We find readily that for all sufficiently small $\epsilon>0$, the matrix $T=$ $\frac{1}{n} J+\epsilon V M V^{T}$ is stochastic; further, the Jordan form for T is given by $[1] \oplus M$, so that the Jordan structure of T corresponding to the eigenvalue 0 coincides with that of M. Evidently for such a matrix T, the powers of T converge in a finite number of iterations; in fact that number of iterations coincides with the size of the largest Jordan block of M.

The following elementary result provides a lower bound on $\lambda_{2}(g, n)$ for $g \geq 2$.
Theorem 1.1. Suppose that $g \geq 2$ and that $T \in \mathcal{S}(g, n)$. Then $\left|\lambda_{2}(T)\right| \geq$ $1 /(n-1)^{\frac{1}{g-1)}}$. Equality holds if and only if $g=2$ and the eigenvalues of T are 1 (with algebraic multiplicity 1) and $\frac{-1}{n-1}$ (with algebraic multiplicity $n-1$). In particular,

$$
\begin{equation*}
\lambda_{2}(g, n) \geq 1 /(n-1)^{\frac{1}{(g-1)}} . \tag{1.1}
\end{equation*}
$$

Proof. Let the eigenvalues of T be $1, \lambda_{2}, \ldots, \lambda_{n}$. Since $\operatorname{trace}\left(T^{g-1}\right)=0$, we find that $\sum_{i=2}^{n} \lambda_{i}^{g-1}=-1$. Hence, $(n-1)\left|\lambda_{2}\right|^{g-1} \geq \sum_{i=2}^{n}\left|\lambda_{i}\right|^{g-1} \geq\left|\sum_{i=2}^{n} \lambda_{i}^{g-1}\right|=1$. The inequality on $\left|\lambda_{2}\right|$ now follows readily.

Now suppose that $\left|\lambda_{2}\right|=1 /(n-1)^{\frac{1}{g-1)}}$. Inspecting the proof above, we find that $\left|\lambda_{i}\right|=\left|\lambda_{2}\right|, i=3, \ldots, n$, and that since equality holds in the triangle inequality, it must be the case that each of $\lambda_{2}, \ldots, \lambda_{n}$ has the same complex argument. Thus $\lambda_{2}=\lambda_{i}$ for each $i=3, \ldots, n$. Since $\operatorname{trace}(T)=0$, we deduce that $\lambda_{2}=-1 /(n-1)$; but then $\operatorname{trace}\left(T^{2}\right)=n /(n-1)>0$, so that $g=2$. The converse is straightforward. \square

Remark 1.2. If $T \in \mathcal{S}(2, n)$ and $\left|\lambda_{2}(T)\right|=1 /(n-1)$, it is straightforward to see that the matrix $S=\frac{n-1}{n} T+\frac{1}{n} I_{n}$ has just two eigenvalues, 1 and 0 , the latter with algebraic multiplicity $n-1$. In particular, S is a matrix in $\mathcal{S}(1, n)$ such that $\lambda_{2}(S)=\lambda_{2}(1, n)=0$.

Remark 1.3. From Theorem 1.1, we see that if $\exists c>0$ such that $g \geq c n$, then necessarily $\lambda_{2}(g, n) \geq 1 /(n-1)^{\frac{1}{(c n-1)}}$. An application of l'Hospital's rule shows that $1 /(n-1)^{\frac{1}{(c n-1)}} \rightarrow 1$ as $n \rightarrow \infty$. Consequently, we find that for each $c>0$, and any $\epsilon>0$, there is a number N such that if $n>N$ and $g \geq c n$, then each matrix $T \in \mathcal{S}(g, n)$ has $\left|\lambda_{2}(T)\right| \geq 1-\epsilon$.

We close this section with a discussion of $\lambda_{2}(g, n)$ as a function of g and n.
Proposition 1.2. Fix g and n with $2 \leq g \leq n-1$. Then
a) $\lambda_{2}(g, n) \geq \lambda_{2}(g, n+1)$, and
b) $\lambda_{2}(g+1, n) \geq \lambda_{2}(g, n)$.

Proof. a) Suppose that $T \in \mathcal{S}(g, n)$, and partition off the last row and column of T, say $T=\left[\begin{array}{l|l}T_{1} & x \\ \hline y^{T} & 0\end{array}\right]$. Now let S be the stochastic matrix of order $n+1$ given by $S=\left[\begin{array}{c|c|c}T_{1} & \frac{1}{2} x & \frac{1}{2} x \\ \hline y^{T} & 0 & 0 \\ \hline y^{T} & 0 & 0\end{array}\right]$. Note that the digraph of S is formed from that of T by adding the vertex $n+1$, along with the arcs $i \rightarrow n+1$ for each i such that $i \rightarrow n$ in the digraph of T, and the arcs $n+1 \rightarrow j$ for each j such that $n \rightarrow j$ in the digraph of T. It now follows that the girth of the digraph of S is also g, so that $S \in \mathcal{S}(g, n+1)$. Observe also that we can write S as $S=A T B$, where the $(n+1) \times n$ matrix A is given by $A=\left[\begin{array}{c|c}I_{n-1} & 0 \\ \hline 0^{T} & 1 \\ 0^{T} & 1\end{array}\right]$, while the $n \times(n+1)$ matrix B is given by $B=\left[\begin{array}{c|cc}I_{n-1} & 0 & 0 \\ \hline 0^{T} & \frac{1}{2} & \frac{1}{2}\end{array}\right]$. It is straightforward to see that $B A=I_{n}$; from this we find that since the matrix $A T B$ and the matrix $T B A$ have the same nonzero eigenvalues, so do S and T. In particular, $\lambda_{2}(S)=\lambda_{2}(T)$, and we readily find that $\lambda_{2}(g, n) \geq \lambda_{2}(g, n+1)$.
b) Let $\epsilon>0$ be given, and suppose that $T \in \mathcal{S}(g+1, n)$ is such that $\left|\lambda_{2}(T)\right|<$ $\lambda_{2}(g+1, n)+\epsilon / 2$. Without loss of generality, we suppose that the digraph of T contains the cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow \ldots \rightarrow g+1 \rightarrow 1$. For each $x \in\left(0, T_{g, g+1}\right)$, let $S(x)=$ $T+x e_{g}\left(e_{1}-e_{g+1}\right)^{T}$, where e_{i} denotes the i-th standard unit basis vector. Note that for each $x \in\left(0, T_{g, g+1}\right), S(x) \in \mathcal{S}(g, n)$. By the continuity of the spectrum, there is a $\delta>0$ such that for any $0<x<\min \left\{\delta, T_{g, g+1}\right\},\left|\lambda_{2}(S(x))\right|-\left|\lambda_{2}(T)\right|<\epsilon / 2$. Hence we find that for $0<x<\min \left\{\delta, T_{g, g+1}\right\}$ we have $\lambda_{2}(g, n) \leq\left|\lambda_{2}(S(x))\right|<\left|\lambda_{2}(T)\right|+\epsilon / 2<$ $\lambda_{2}(g+1, n)+\epsilon$. In particular, we find that for each $\epsilon>0, \lambda_{2}(g, n) \leq \lambda_{2}(g+1, n)+\epsilon$, from which we conclude that $\lambda_{2}(g, n) \leq \lambda_{2}(g+1, n)$.
2. Girths 2 and 3. In this section, we use some elementary techniques to find $\lambda_{2}(2, n)$ and $\lambda_{2}(3, n)$. We begin with a discussion of the former.

Theorem 2.1. For any $n \geq 2, \lambda_{2}(2, n)=1 /(n-1)$.
Proof. From Theorem 1.1, we have $\lambda_{2}(2, n) \geq 1 /(n-1)$; the result now follows upon observing that the matrix $\frac{1}{n-1}(J-I) \in \mathcal{S}(2, n)$, and has eigenvalues 1 and $-1 /(n-1)$, the latter with multiplicity $n-1$.

ELA

Our next result shows that there is just one diagonable matrix that yields the minimum value $\lambda_{2}(2, n)$.

Theorem 2.2. Suppose that $T \in \mathcal{S}(2, n)$. Then T is diagonable with $\left|\lambda_{2}(T)\right|=$ $1 /(n-1)$ if and only if $T=\frac{1}{n-1}(J-I)$.

Proof. Suppose that T is diagonable, with $\left|\lambda_{2}(T)\right|=1 /(n-1)$; from Theorem 1.1 we find that the eigenvalue $\lambda_{2}=-1 /(n-1)$ has algebraic multiplicity $n-1$. Since T is diagonable, the dimension of the λ_{2}-eigenspace is $n-1$. Let x^{T} be the left Perron vector for T, normalized so that $x^{T} \mathbf{1}=1$. It follows that there are right λ_{2}-eigenvectors v_{2}, \ldots, v_{n} and left λ_{2}-eigenvectors w_{2}, \ldots, w_{n} so that $T=\mathbf{1} x^{T}+$ $\frac{-1}{n-1} \sum_{i=2}^{n} v_{i} w_{i}^{T}$ and $I=\mathbf{1} x^{T}+\sum_{i=2}^{n} v_{i} w_{i}^{T}$. Substituting, we see that $T=\frac{1}{n-1}\left(n \mathbf{1} x^{T}-\right.$ I), and since T has trace zero, necessarily, $x^{T}=\frac{1}{n} \mathbf{1}^{T}$, yielding the desired expression for T. The converse is straightforward.

Our next example shows that other Jordan forms are possible for matrices yielding the minimum value $\lambda_{2}(2, n)$.

Example 2.1. Consider the polynomial

$$
\begin{aligned}
\left(\lambda+\frac{1}{n-1}\right)^{n-1} & =\sum_{j=0}^{n-1} \lambda^{j}\left(\frac{1}{n-1}\right)^{n-1-j}\binom{n-1}{j} \\
& =\lambda^{n-1}+\lambda^{n-2}+\sum_{j=0}^{n-3} \lambda^{j}\left(\frac{1}{n-1}\right)^{n-1-j}\binom{n-1}{j}
\end{aligned}
$$

From the fact that $n-j>\frac{j}{n-1}$ for $j=1, \ldots, n-2$, it follows readily that $\left(\frac{1}{n-1}\right)^{n-1-j}\binom{n-1}{j}>\left(\frac{1}{n-1}\right)^{n-j}\binom{n-1}{j-1}$ for each such j.

We thus find that $(\lambda-1)\left(\lambda+\frac{1}{n-1}\right)^{n-1}$ can be written as $\lambda^{n}-\sum_{j=2}^{n} a_{j} \lambda^{n-j}$, where $a_{j}>0$ for $j=2, \ldots, n$, and $\sum_{j=2}^{n} a_{j}=1$. Consequently, the companion matrix $C=\left[\begin{array}{cccccc}0 & 1 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ \vdots & & \ddots & \ddots & & \vdots \\ & & & & & \\ 0 & 0 & 0 & \ldots & 0 & 1 \\ a_{n} & a_{n-1} & a_{n-2} & \ldots & a_{2} & 0\end{array}\right]$ is in $\mathcal{S}(2, n)$, and $\lambda_{2}(C)=-1 /(n-1)$. Note that since any eigenvalue of a companion matrix is geometrically simple, the eigenvalue $-1 /(n-1)$ of C has a single Jordan block of size $n-1$.

Next, we compute $\lambda_{2}(3, n)$ for odd n.
THEOREM 2.3. Suppose that $n \geq 3$ is odd. If $T \in \mathcal{S}(3, n)$, then $\left|\lambda_{2}(T)\right| \geq$ $\frac{\sqrt{n+1}}{n-1}$, with equality holding if and only if the eigenvalues of T are 1 (with algebraic multiplicity one) and $\frac{-1 \pm i \sqrt{n}}{n-1}$ (with algebraic multiplicity $(n-1) / 2$ each). Further, $\lambda_{2}(3, n)=\frac{\sqrt{n+1}}{n-1}$.

Proof. Suppose that $T \in \mathcal{S}(3, n)$, and denote the eigenvalues of T by 1 , and $x_{j}+i y_{j}, j=2, \ldots, n$ (where of course each complex eigenvalue appears with a corresponding complex conjugate). Since $\operatorname{trace}(T)=0$, we have $\sum_{j=2}^{n} x_{j}=-1$, while from the fact that $\operatorname{trace}\left(T^{2}\right)=0$, we have $1+\sum_{j=2}^{n}\left(x_{j}^{2}-y_{j}^{2}\right)=0$. Consequently,
$\sum_{j=2}^{n}\left(x_{j}^{2}+y_{j}^{2}\right)=1+2 \sum_{j=2}^{n} x_{j}^{2} \geq 1+2\left|\sum_{j=2}^{n} x_{j}\right|^{2} /(n-1)=\frac{n+1}{n-1}$, the inequality following from the Cauchy-Schwarz inequality, and the fact that $\sum_{j=2}^{n-1} x_{j}=-1$. Thus we find that $(n-1)\left|\lambda_{2}\right|^{2} \geq \sum_{j=2}^{n}\left(x_{j}^{2}+y_{j}^{2}\right) \geq \frac{n+1}{n-1}$, so that $\left|\lambda_{2}(T)\right| \geq \frac{\sqrt{n+1}}{n-1}$. Inspecting the proof above, we see that $\left|\lambda_{2}(T)\right|=\frac{\sqrt{n+1}}{n-1}$ if and only if each x_{j} is equal to $-1 /(n-1)$, and each y_{j}^{2} is equal to $n /(n-1)^{2}$. The equality characterization now follows.

We claim that for each odd n, the companion matrix for the polynomial $(\lambda-$ 1) $\left(\lambda-\frac{-1+i \sqrt{n}}{n-1}\right)^{(n-1) / 2}\left(\lambda-\frac{-1-i \sqrt{n}}{n-1}\right)^{(n-1) / 2}=(\lambda-1)\left(\lambda^{2}+\frac{2}{n-1} \lambda+\frac{n+1}{(n-1)^{2}}\right)^{(n-1) / 2}$ is in fact a nonnegative matrix, from which it will follow that for each odd n, there is a matrix in $\mathcal{S}(3, n)$ having $\frac{-1+i \sqrt{n}}{n-1}$ as a subdominant eigenvalue. In order to prove that this companion matrix is nonnegative, it suffices to show that the coefficients of the polynomial $q(\lambda)=\left(\lambda^{2}+\frac{2}{n-1} \lambda+\frac{n+1}{(n-1)^{2}}\right)^{(n-1) / 2}$ are increasing with the powers of λ.

Note that $q(\lambda)=\left(\left(\lambda+\frac{1}{n-1}\right)^{2}+\frac{n}{(n-1)^{2}}\right)^{(n-1) / 2}$. Applying the binomial expansion, and collecting powers of λ, we find that
$(2.1) q(\lambda)=\sum_{l=0}^{n-1} \lambda^{l} \sum_{j=\lceil l / 2\rceil}^{(n-1) / 2}\left(\frac{1}{n-1}\right)^{2 j-l}\left(\frac{n}{(n-1)^{2}}\right)^{(n-1) / 2-j}\binom{2 j}{l}\binom{(n-1) / 2}{j}$.
Write $q(\lambda)$ as $\sum_{l=0}^{n-1} \lambda^{l} \alpha_{l}$. We claim that $\alpha_{l} \geq \alpha_{l-1}$ for each $l=1, \ldots, n-1$, which will yield the desired result. Note that for each such l, the inequality $\alpha_{l} \geq \alpha_{l-1}$ is equivalent to $(n-1) \sum_{j=\lceil l / 2\rceil}^{(n-1) / 2}\binom{2 j}{l}\binom{(n-1) / 2}{j} \frac{1}{n^{j}} \geq \sum_{j=\lceil(l-1) / 2\rceil}^{(n-1) / 2}\binom{2 j}{l-1}\binom{(n-1) / 2}{j} \frac{1}{n^{j}}$. Observe that $(n-1)\binom{2 j}{l}-\binom{2 j}{l-1}=\frac{2 j!}{(l-1)!(2 j-l)!}\left(\frac{n-1}{l}-\frac{1}{2 j-l+1}\right) \geq 0$, so in particular, if l is even (so that $\lceil l / 2\rceil=\lceil(l-1) / 2\rceil)$ it follows readily that $\alpha_{l} \geq \alpha_{l-1}$.

Finally, suppose that l is odd with $1 \leq l \leq n-1$ and $l=2 r+1$. Then $\lceil l / 2\rceil=$ $r+1,\lceil(l-1) / 2\rceil=r$, and since $2 r+1 \leq n-1$, we find that $r \leq \frac{n-3}{2}$. In order to show that $\alpha_{l} \geq \alpha_{l-1}$, it suffices to show, in conjunction with the inequalities proven above, that $(n-1)\binom{2 r+2}{2 r+1}\binom{(n-1) / 2}{r+1} \frac{1}{n^{r+1}}-\binom{2 r+2}{2 r}\binom{(n-1) / 2}{r+1} \frac{1}{n^{r+1}}-\binom{2 r}{2 r}\binom{(n-1) / 2}{r} \frac{1}{n^{r}} \geq 0$. That inequality can be seen to be equivalent to $2\left(\frac{n-1}{n}\right)-\frac{2 r+1}{n}-\frac{1}{(n-1) / 2-r} \geq 0$, and since we have $2\left(\frac{n-1}{n}\right)-\frac{2 r+1}{n}-\frac{1}{(n-1) / 2-r} \geq 2\left(\frac{n-1}{n}\right)-\frac{n-2}{n}-1=0$, the desired inequality is thus established. Hence for odd l, we have $\alpha_{l} \geq \alpha_{l-1}$, and it now follows that there is a companion matrix $C \in \mathcal{S}(3, n)$ such that $\left|\lambda_{2}(C)\right|=\frac{\sqrt{n+1}}{n-1}$.

Example 2.2. Another class of matrices in $\mathcal{S}(3, n)$ yielding the minimum value for $\left|\lambda_{2}\right|$ arises in the following combinatorial context. A square $(0,1)$ matrix A of order n is called a tournament matrix if it satisfies the equation $A+A^{T}=J-I$. From that equation, one readily deduces that there are no cycles of length 2 in the digraph of a tournament matrix, and a standard result in the area asserts that the digraph associated with any tournament matrix either contains a cycle of length 3 , or it has no cycles at all. Thus the digraph of any nonnilpotent tournament matrix necessarily has girth 3 .

If, in addition, a tournament matrix A satisfies the identity $A^{T} A=\frac{n+1}{4} I+$ $\frac{n-3}{4} J=A A^{T}$, then A is known as a doubly regular (or Hadamard) tournament ma-
trix; note that necessarily $n \equiv 3 \bmod 4$ in that case. It turns out that doubly regular tournament matrices are co-existent with skew-Hadamard matrices, and so of course the question of whether there is a doubly regular tournament matrix in every admissible order is open, and apparently quite difficult.

In [3] it is shown that if A is a doubly regular tournament matrix, then its eigenvalues consist of $\frac{n-1}{2}$ (of algebraic multiplicity one, and having 1 as a corresponding right eigenvector) and $\frac{-1}{2} \pm i \frac{\sqrt{n}}{2}$, each of algebraic multiplicity $(n-1) / 2$. Consequently, we find that if A is an $n \times n$ doubly regular tournament matrix, then $T=\frac{2}{n-1} A$ is in $\mathcal{S}(3, n)$ and has eigenvalues 1 and $\frac{-1 \pm i \sqrt{n}}{n-1}$, the latter with algebraic multiplicity $(n-1) / 2$ each. From Theorem 2.3, we find that $\left|\lambda_{2}(T)\right|=\lambda_{2}(3, n)$.

We adapt the technique of the proof of Theorem 2.3 in order to compute $\lambda_{2}(3, n)$ for even n.

Theorem 2.4. Suppose that $n \geq 4$ is even. If $T \in \mathcal{S}(3, n)$, then $\left|\lambda_{2}(T)\right| \geq$ $\sqrt{\frac{n+2}{n^{2}-2 n}}$, with equality holding if and only if the eigenvalues of T are 1 (with algebraic multiplicity one), $-2 / n$ (also with algebraic multiplicity one) and $\frac{-1}{n} \pm \frac{i}{n} \sqrt{\frac{n^{2}+n+2}{n-2}}$ (with algebraic multiplicity $(n-2) / 2$ each). Further, $\lambda_{2}(3, n)=\sqrt{\frac{n+2}{n^{2}-2 n}}$.

Proof. Suppose that $T \in \mathcal{S}(3, n)$. Since T is stochastic, it has 1 as an eigenvalue, and since n is even, there is at least one more real eigenvalue for T, say z. Let $x_{j}+i y_{j}, j=2, \ldots, n-1$, denote the remaining eigenvalues of T. From the fact that $\operatorname{trace}(T)=0$, we have $1+z+\sum_{j=2}^{n-1} x_{j}=0$, while $\operatorname{trace}\left(T^{2}\right)=0$ yields $1+z^{2}+$ $\sum_{j=2}^{n-1}\left(x_{j}^{2}-y_{j}^{2}\right)=0$. Thus we have $\sum_{j=2}^{n-1}\left(x_{j}^{2}+y_{j}^{2}\right)=1+z^{2}+2 \sum_{j=2}^{n-1} x_{j}^{2}$. Consequently, we find that $(n-2)\left|\lambda_{2}\right|^{2} \geq \sum_{j=2}^{n-1}\left(x_{j}^{2}+y_{j}^{2}\right)=1+z^{2}+2 \sum_{j=2}^{n-1} x_{j}^{2} \geq 1+z^{2}+2(1+$ $z)^{2} /(n-2)$, the second inequality following from the Cauchy-Schwarz inequality. The expression $1+z^{2}+2(1+z)^{2} /(n-2)$ is readily seen to be uniquely minimized when $z=-2 / n$, with a minimum value of $\frac{n+2}{n}$. Hence we find that $(n-2)\left|\lambda_{2}\right|^{2} \geq \frac{n+2}{n}$, and the lower bound on $\left|\lambda_{2}\right|$ follows.

Inspecting the argument above, we see that if $\left|\lambda_{2}(T)\right|=\sqrt{\frac{n+2}{n^{2}-2 n}}$, then necessarily z must be $-2 / n$, each x_{j} must be $-1 / n$, while each y_{j}^{2} is equal to $\frac{1}{n^{2}} \frac{n^{2}+n+2}{n-2}$. The characterization of equality now follows.

We claim that for each even n, there is a companion matrix in $\mathcal{S}(3, n)$ having $\frac{-1}{n}+$ $\frac{i}{n} \sqrt{\frac{n^{2}+n+2}{n-2}}$ as a subdominant eigenvalue. To see the claim, first consider the polynomial $q(\lambda)=\left(\lambda-\left(\frac{-1}{n}-\frac{i}{n} \sqrt{\frac{n^{2}+n+2}{n-2}}\right)\right)^{(n-2) / 2}\left(\lambda-\left(\frac{-1}{n}+\frac{i}{n} \sqrt{\frac{n^{2}+n+2}{n-2}}\right)\right)^{(n-2) / 2}=$ $\left(\left(\lambda+\frac{1}{n}\right)^{2}+\frac{n^{2}+n+2}{n^{2}(n-2)}\right)^{(n-2) / 2}$ and write it as $q(\lambda)=\sum_{l=0}^{n-2} \lambda^{l} a_{l}$, so that $(\lambda+2 / n) q(\lambda)=$ $\lambda^{n-1}+\sum_{l=1}^{n-2} \lambda^{l}\left(a_{l-1}+2 a_{l} / n\right)+2 a_{0} / n$. As in the proof of Theorem 2.3, it suffices to show that in this last expression, the coefficients of λ^{l} are nondecreasing in l. Also as in the proof of that theorem, we find that for each $l=0, \ldots, n-2, a_{l}=$ $\sum_{j=\lceil l / 2\rceil}^{(n-2) / 2}\left(\frac{1}{n}\right)^{2 j-l}\left(\frac{n^{2}+n+2}{n^{2}(n-2)}\right)^{(n-2) / 2-j}\binom{2 j}{l}\binom{(n-2) / 2}{j}$; straightforward computations now reveal that the coefficients of $\lambda^{n-1}, \lambda^{n-2}, \lambda^{n-3}$ and λ^{n-4} in the polynomial $(\lambda+$

ELA

$2 / n) q(\lambda)$ are $1,1,1$ and $\frac{2 n^{2}-3 n-2}{3 n^{2}}$, respectively. We claim that for each $l=1, \ldots, n-$ $4, a_{l} \geq a_{l-1}$, which is sufficient to give the desired result.

The claim is equivalent to proving that for each $l=1, \ldots, n-4$, $n \sum_{j=\lceil l / 2\rceil}^{(n-2) / 2}\left(\frac{n-2}{n^{2}+n+2}\right)^{j}\binom{2 j}{l}\binom{(n-2) / 2}{j} \geq \sum_{j=\lceil(l-1) / 2\rceil}^{(n-2) / 2}\left(\frac{n-2}{n^{2}+n+2}\right)^{j}\binom{2 j}{l-1}\binom{(n-2) / 2}{j}$. Observe that $n\binom{2 j}{l}-\binom{2 j}{l-1}=\frac{2 j!}{(l-1)!(2 j-l)!}\left(\frac{n}{l}-\frac{1}{2 j-l+1}\right) \geq 0$, so in particular, if l is even (so that $\lceil l / 2\rceil=\lceil(l-1) / 2\rceil$) it follows readily that $a_{l} \geq a_{l-1}$. Now suppose that $l \geq 1$ is odd, say $l=2 r+1$, so that $\lceil l / 2\rceil=r+1$ and $\lceil(l-1) / 2\rceil=r$. Note also that since $l \leq$ $n-4$, in fact $l \leq n-5$, so that $r \leq(n-6) / 2$. In conjunction with the argument above, it suffices to show that $n\left(\frac{n-2}{n^{2}+n+2}\right)^{r+1}\binom{2 r+2}{2 r+1}\binom{(n-2) / 2}{r+1}-\left(\frac{n-2}{n^{2}+n+2}\right)^{r+1}\binom{2 r+2}{2 r}\binom{(n-2) / 2}{r+1}-$ $\left(\frac{n-2}{n^{2}+n+2}\right)^{r}\binom{2 r}{2 r}\binom{(n-2) / 2}{r} \geq 0$. This last inequality can be seen to be equivalent to $\frac{2 n(n-2)}{n^{2}+n+2}-(2 r+1) \frac{n-2}{n^{2}+n+2}-\frac{1}{(n-2) / 2-r} \geq 0$. Note that since $r \leq(n-6) / 2$, we have $\frac{2 n(n-2)}{n^{2}+n+2}-(2 r+1) \frac{n-2}{n^{2}+n+2}-\frac{1}{(n-2) / 2-r} \geq \frac{2 n(n-2)}{n^{2}+n+2}-(n-5) \frac{n-2}{n^{2}+n+2}-\frac{1}{2}=\frac{n^{2}+5 n-22}{2\left(n^{2}+n+2\right)} \geq 0$, the last since $n \geq 4$. Hence we have $a_{l} \geq a_{l-1}$ for each $l=1, \ldots, n-4$, as desired. \square

The following result shows that the lower bound of (1.1) on $\lambda_{2}(g, n)$ is of the correct order of magnitude for $g=3$. Its proof is immediate from Theorems 2.3 and 2.4.

Corollary 2.5. $\lim _{n \rightarrow \infty} \lambda_{2}(3, n) \sqrt{n-1}=1$.
3. A class of examples for girth 4. Our object in this section is to identify, for infinitely many n, a matrix $T \in \mathcal{S}(4, n)$ such that $\left|\lambda_{2}(T)\right|$ is of the same order of magnitude as $1 / \sqrt[3]{n-1}$, the lower bound on $\lambda_{2}(4, n)$ arising from (1.1). Our approach is to identify a certain sequence of candidate spectra, and then show that each candidate spectrum is attained by an appropriate stochastic matrix.

Fix an integer $p \geq 3$, and let $r=\frac{1}{3 p}$. Set $q=9 p^{3}+2 p, l=18 p^{3}+9 p^{2}+p$ and $m=9 p^{2}+3 p$. Letting $n=q+l+m+1$, it follows that $(n-1) r^{3}-2 r^{2}-2 r-1=0$. We would like to show that there is a matrix $T \in \mathcal{S}(4, n)$ whose eigenvalues are: 1 (with multiplicity 1), $-r$ (with multiplicity q), $r e^{ \pm \pi i / 3}$ (each with multiplicity $l / 2$) and $r e^{ \pm 2 \pi i / 3}$ (each with multiplicity $m / 2$).

For each $j \in \mathbb{N}$, let
$s_{j}=1+q(-r)^{j}+(l / 2)\left(r e^{\pi i / 3}\right)^{j}+(l / 2)\left(r e^{-\pi i / 3}\right)^{j}+(m / 2)\left(r e^{2 \pi i / 3}\right)^{j}+(m / 2)\left(r e^{-2 \pi i / 3}\right)^{j}$.
(Observe that if we could find the desired matrix T, then s_{j} would just be the trace of T^{j}.) We find readily that $s_{1}=s_{2}=s_{3}=0$, while $s_{4}=1-r^{2}, s_{5}=1-r^{4}$, and $s_{6}=1+r^{3}+2 r^{4}+2 r^{5}$. Finally, note that for any $j \in \mathbb{N}, s_{j+6}-1=r^{6}\left(s_{j}-1\right)$.

Write the polynomial

$$
(\lambda-1)(\lambda+r)^{q}\left(\lambda-r e^{\pi i / 3}\right)^{\frac{l}{2}}\left(\lambda-r e^{-\pi i / 3}\right)^{\frac{l}{2}}\left(\lambda-r e^{2 \pi i / 3}\right)^{\frac{m}{2}}\left(\lambda-r e^{-2 \pi i / 3}\right)^{\frac{m}{2}}
$$

as $\lambda^{n}+\sum_{j=0}^{n-1} a_{j} \lambda^{j}$. Let $C_{n}=\left[\begin{array}{cccccc}0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & \\ 0 & 0 & & \ldots & 0 & 1 \\ -a_{0} & -a_{1} & & \cdots & & -a_{n-1}\end{array}\right]$
be the asso-

ELA

ciated companion matrix, let $M_{n}=\left[\begin{array}{cccccc}n & 0 & 0 & 0 & \ldots & 0 \\ s_{1} & n-1 & 0 & 0 & \ldots & 0 \\ s_{2} & s_{1} & n-2 & 0 & \ldots & 0 \\ & \ddots & \ddots & \ddots & & \\ & & & & & \\ s_{n-1} & s_{n-2} & \ldots & & s_{1} & 1\end{array}\right]$, and let $A_{n}=\left[\begin{array}{cccccc}s_{1} & n-1 & 0 & 0 & \ldots & 0 \\ s_{2} & s_{1} & n-2 & 0 & \ldots & 0 \\ s_{3} & s_{2} & s_{1} & n-3 & 0 & \ldots \\ & \ddots & \ddots & \ddots & & \\ & & & & & \\ s_{n} & s_{n-1} & & \ldots & s_{2} & s_{1}\end{array}\right]$. Following an idea from [7], we note
that from the Newton identities, it follows that $C_{n} M_{n}=A_{n}$, so that $M_{n}^{-1} C_{n} M_{n}=$ $M_{n}^{-1} A_{n}$. In particular, C_{n} is similar to $M_{n}^{-1} A_{n}$. Much of our goal in this section is to show that $M_{n}^{-1} A_{n}$ is an irreducible nonnegative matrix. Since any irreducible nonnegative matrix with Perron value 1 is diagonally similar to a stochastic matrix, we will then conclude that there is a matrix $T \in \mathcal{S}(4, n)$ such that $\left|\lambda_{2}(T)\right|=r$.

Throughout the remainder of this section, we take the parameters p, n, r and the sequence $\left\{s_{j}\right\}$ to be as defined above. In particular, we will rely on the facts that $p \geq 3, r \leq 1 / 9$ and $(n-1) r^{3}-2 r^{2}-2 r-1=0$.

We begin with some technical results. In what follows, we use 0_{k} denote the k-vector of zeros.

Lemma 3.1. Suppose that $k \in \mathbb{N}$ with $7 \leq k \leq n$. Then

$$
\begin{align*}
M_{k} \mathbf{1}= & \left(k-3-r^{2}\right) \mathbf{1}+\left(3+r^{2}\right) e_{1}+\left(2+r^{2}\right) e_{2}+ \\
& \left(1+r^{2}\right) e_{3}+r^{2} e_{4}+r^{3}\left[\frac{0_{6}}{v}\right] \tag{3.1}
\end{align*}
$$

where $\|v\|_{\infty}=1+r+2 r^{2}$.
Proof. Evidently the first four entries of $M_{k} 1$ are $k, k-1, k-2$ and $k-3$, respectively. For $j \geq 5$, the j-th entry of $M_{k} \mathbf{1}$ is $k-3+t_{j}$, where $t_{j}=\sum_{i=4}^{j}\left(s_{i}-1\right)$. We have $t_{4}=-r^{2}, t_{5}=-r^{2}-r^{4}, t_{6}=-r^{2}+r^{3}+r^{4}+2 r^{5}, t_{7}=-r^{2}+r^{3}+r^{4}+2 r^{5}-r^{6}, t_{8}=$ $-r^{2}+r^{3}+r^{4}+2 r^{5}-2 r^{6}$, and $t_{9}=-r^{2}+r^{3}+r^{4}+2 r^{5}-3 r^{6}$. In particular, for $4 \leq j \leq 9$, note that $-r \leq \frac{t_{j}+r^{2}}{r^{3}} \leq 1+r+2 r^{2}$, with equality holding in the upper bound for $j=6$. Also, for each $4 \leq j \leq 9$ and $i \in \mathbb{N}$, we have $t_{j+6 i}=t_{9} \frac{1-r^{6 i+6}}{1-r^{6}}+t_{j} r^{6 i}$. We find that for such i and $j, 0<\frac{t_{j+6 i}+r^{2}}{r^{3}} \leq \frac{1}{r^{3}}\left(t_{9} /\left(1-r^{6}\right)+r^{2}+r^{6 i} t_{6}\right) \leq \frac{1}{r^{3}}\left(t_{9} /\left(1-r^{6}\right)+\right.$ $r^{2}+r^{6} t_{6}$). An uninteresting computation shows that the rightmost member is equal to $1+r+2 r^{2}+\frac{1}{1-r^{6}}\left(-3 r^{3}-2 r^{5}+2 r^{6}+2 r^{7}+4 r^{8}+r^{11}-r^{12}-r^{13}-2 r^{14}\right)$. Since $r \leq 1 / 9$, it follows that this last quantity is strictly less than $1+r+2 r^{2}$. Consequently, for any $j \geq 4$, we have $\frac{t_{j}+r^{2}}{r^{3}} \leq 1+r+2 r^{2}$, with equality holding for $j=6$. The result now follows.

Proposition 3.2. For each $1 \leq k \leq n$, we have
a) the offdiagonal entries of M_{k}^{-1} are nonpositive, so that M_{k}^{-1} is an M-matrix,

ELA

b) $M_{k}^{-1} \mathbf{1} \geq \frac{1}{k+1} \mathbf{1}$, and
c) $M_{k}^{-1}\left[\begin{array}{c}s_{4} \\ s_{5} \\ \vdots \\ s_{k+3}\end{array}\right]$ is a positive vector.

Proof. We proceed by extended induction on k using a single induction proof for all three statements. Note that each of a), b) and c) is easily established for $k=1, \ldots, 6$. Suppose now that a), b) and c) hold for natural numbers up to and including $k-1 \geq 6$.

First, we consider statement a). We have $M_{k}^{-1}=\left[\begin{array}{c|c}1 / k & 0^{T} \\ \hline-y & M_{k-1}^{-1}\end{array}\right]$, where y can be written as $y=\frac{1}{k}\left[\frac{\begin{array}{c}0 \\ 0 \\ 0\end{array}}{M_{k-4}^{-1}\left[\begin{array}{c}s_{4} \\ s_{5} \\ \vdots \\ s_{k-1}\end{array}\right]}\right]$. From part c) of the induction hypothesis, it follows that y is a nonnegative vector, while from part a) of the induction hypothesis, the offdiagonal entries of M_{k-1}^{-1} are also nonpositive. Hence all offdiagonal entries of M_{k}^{-1} are nonpositive, which completes the proof of the induction step for statement a).

Next, we consider statement b). From Lemma 3.1, it follows that

$$
\begin{array}{r}
M_{k}^{-1} \mathbf{1}=\frac{1}{k-3-r^{2}}\left(\mathbf{1}-\left(3+r^{2}\right) M_{k}^{-1} e_{1}-\left(2+r^{2}\right) M_{k}^{-1} e_{2}-\right. \\
\left.\left(1+r^{2}\right) M_{k}^{-1} e_{3}-r^{2} M_{k}^{-1} e_{4}+r^{3} M_{k}^{-1}\left[\frac{0_{6}}{v}\right]\right)
\end{array}
$$

for some vector v with $\|v\|_{\infty}=1+r+2 r^{2}$. The first four entries of $M_{k}^{-1} \mathbf{1}$ are $1 / k, 1 /(k-1), 1 /(k-2)$ and $1 /(k-3)$, respectively, so it remains only to show that $M_{k}^{-1} \mathbf{1} \geq \frac{1}{k+1} \mathbf{1}$ in positions after the fourth.

Let $\operatorname{trunc}_{4}\left(M_{k}^{-1} \mathbf{1}\right)$ denote the vector formed from $M_{k}^{-1} \mathbf{1}$ by deleting its first four entries. Noting that the entries of $M_{k}^{-1} e_{1}, M_{k}^{-1} e_{2}, M_{k}^{-1} e_{3}$, and $M_{k}^{-1} e_{4}$ are nonpositive after the fourth position, it follows that $\operatorname{trunc}_{4}\left(M_{k}^{-1} \mathbf{1}\right) \geq \frac{1}{k-3-r^{2}} \mathbf{1}+$ $\frac{r^{3}}{k-3-r^{2}}\left[\frac{0_{2}}{M_{k-6}^{-1} v}\right]$.

From part b) of the induction hypothesis, $M_{k-6}^{-1} \mathbf{1}$ is a positive vector, and from part a) of the induction hypothesis, M_{k-6}^{-1} is an M-matrix. Note that M_{k-6}^{-1} has diagonal entries $1 /(k-6), 1 /(k-7), \ldots, 1 / 2,1$. Letting u_{i} be the i-th row sum of M_{k-6}^{-1}, it follows that $\left\|e_{i}^{T} M_{k-6}^{-1}\right\|_{1}=1 /(k-5+i)+\left(1 /(k-5+i)-u_{i}\right) \leq 2 /(k-5+i) \leq 2$. Letting $\|\bullet \bullet\|_{\infty}$ denote the absolute row sum norm (induced by the infinity norm for vectors), we conclude that $\left\|\mid M_{k-6}^{-1}\right\| \|_{\infty} \leq 2$. Hence $M_{k-6}^{-1} v \geq-2\|v\|_{\infty} \mathbf{1}=-2\left(1+r+2 r^{2}\right) \mathbf{1}$. As

ELA

a result, we have $\frac{1}{k-3-r^{2}} \mathbf{1}+\frac{r^{3}}{k-3-r^{2}}\left[\frac{0_{2}}{M_{k-6}^{-1} v}\right] \geq \frac{1}{k-3-r^{2}} \mathbf{1}-2\left(1+r+2 r^{2}\right) \frac{r^{3}}{k-3-r^{2}} \mathbf{1}=$ $\frac{1-2 r^{3}\left(1+r+2 r^{2}\right)}{k-3-r^{2}} \mathbf{1}$.

Since $(k-1) r^{3} \leq 2 r^{2}+2 r+1$, we have

$$
\frac{1-2 r^{3}\left(1+r+2 r^{2}\right)}{k-3-r^{2}} \geq \frac{1-2\left(1+r+2 r^{2}\right)\left(1+2 r+2 r^{2}\right) /(k-1)}{k-3-r^{2}} \geq \frac{k-3.8325}{(k-1)(k-3)}
$$

the last inequality following from the fact that $r \leq 1 / 9$. Since $k \geq 7$, we find readily that $\frac{k-3.8325}{(k-1)(k-3)} \geq \frac{1}{k+1}$. Putting the inequalities together, we have $M_{k}^{-1} \mathbf{1} \geq \frac{1}{k+1} \mathbf{1}$, which completes the proof of the induction step for statement b).

Finally, we consider statement c). We have $\left[\begin{array}{c}s_{4} \\ s_{5} \\ \vdots \\ s_{k+3}\end{array}\right]=\mathbf{1}+\left[\begin{array}{c}s_{4}-1 \\ s_{5}-1 \\ \vdots \\ s_{k+3}-1\end{array}\right]=$ $\mathbf{1}+\left[\begin{array}{c}-r^{2} \\ -r^{4} \\ r^{3}\left(1+2 r+2 r^{2}\right) \\ -r^{6} \\ -r^{6} \\ -r^{6} \\ 0_{k-6}\end{array}\right]+\left[\begin{array}{c}0_{6} \\ \hline s_{10}-1 \\ \vdots \\ s_{k+3}-1\end{array}\right]$. Recall that for $4 \leq j \leq 9$ and $i \in \mathbb{N}$, $s_{j+6 i}-1=r^{6 i}\left(s_{j}-1\right)$, so that $\frac{\left|s_{j+6 i}-1\right|}{r^{8}} \leq \frac{\left|s_{j}-1\right|}{r^{2}} \leq 1$. Hence $\left[\begin{array}{c}s_{4} \\ s_{5} \\ \vdots \\ s_{k+3}\end{array}\right]=\mathbf{1}-r^{2} e_{1}-$ $r^{4} e_{2}+r^{3}\left(1+2 r+2 r^{2}\right) e_{3}-r^{6}\left(e_{4}+e_{5}+e_{6}\right)+r^{8}\left[\frac{0_{6}}{v}\right]$, where $\|v\|_{\infty} \leq 1$. Thus we have

$$
\begin{array}{r}
M_{k}^{-1}\left[\begin{array}{c}
s_{4} \\
s_{5} \\
\vdots \\
s_{k+3}
\end{array}\right]=M_{k}^{-1} \mathbf{1}-M_{k}^{-1}\left(r^{2} e_{1}+r^{4} e_{2}+r^{6}\left(e_{4}+e_{5}+e_{6}\right)\right)+ \\
r^{3}\left(1+2 r+2 r^{2}\right) M_{k}^{-1} e_{3}+r^{8}\left[\frac{0_{6}}{M_{k-6}^{-1} v}\right]
\end{array}
$$

Certainly the first six entries of $M_{k}^{-1}\left[\begin{array}{c}s_{4} \\ s_{5} \\ \vdots \\ s_{k+3}\end{array}\right]$ are positive, so it remains only to show that the remaining entries are positive. Note also that the entries of $M_{k}^{-1}\left(r^{2} e_{1}+\right.$

ELA

$\left.r^{4} e_{2}+r^{6}\left(e_{4}+e_{5}+e_{6}\right)\right)$ below the sixth position are all nonpositive, that $M_{k}^{-1} e_{3}=$ $\left[\right.$| 0_{6} | |
| :---: | :---: |
| $\frac{-1}{k-2} M_{k-6}^{-1}\left[\begin{array}{c}s_{4} \\ s_{5} \\ \vdots \\ s_{k-3}\end{array}\right]$ | |$]$, and that the infinity norm of \(\left[\begin{array}{c}s_{4}

s_{5}

\vdots

s_{k-3}\end{array}\right]\) is bounded above by $s_{6}=1+r^{3}\left(1+2 r+2 r^{2}\right)$.

Let $\operatorname{trunc}_{6}\left(M_{k}^{-1}\left[\begin{array}{c}s_{4} \\ s_{5} \\ \vdots \\ s_{k+3}\end{array}\right]\right)$ denote the vector formed from $M_{k}^{-1}\left[\begin{array}{c}s_{4} \\ s_{5} \\ \vdots \\ s_{k+3}\end{array}\right]$ by
deleting its first six entries, and define $\operatorname{trunc}_{6}\left(M_{k}^{-1} \mathbf{1}\right)$ similarly. From the considerations above, we find that

$$
\begin{aligned}
& \operatorname{trunc}_{6}\left(M_{k}^{-1}\left[\begin{array}{c}
s_{4} \\
s_{5} \\
\vdots \\
s_{k+3}
\end{array}\right]\right) \geq \\
& \operatorname{trunc}_{6}\left(M_{k}^{-1} \mathbf{1}\right)-\frac{r^{3}\left(1+2 r+2 r^{2}\right)}{k-2} M_{k-6}^{-1}\left[\begin{array}{c}
s_{4} \\
s_{5} \\
\vdots \\
s_{k-3}
\end{array}\right]+r^{8} M_{k-6}^{-1} v .
\end{aligned}
$$

As above, since M_{k-6}^{-1} is an M-matrix, we find that $\left\|\left\|M_{k-6}^{-1}\right\|\right\|_{\infty} \leq 2$. Applying b), and using the bound on the norm of M_{k-6}^{-1}, we have

$$
\begin{array}{r}
\operatorname{trunc}_{6}\left(M_{k}^{-1} \mathbf{1}\right)-\frac{r^{3}\left(1+2 r+2 r^{2}\right)}{k-2} M_{k-6}^{-1}\left[\begin{array}{c}
s_{4} \\
s_{5} \\
\vdots \\
s_{k-3}
\end{array}\right]+r^{8} M_{k-6}^{-1} v \geq \\
\frac{1}{k+1} \mathbf{1}-\frac{r^{3}\left(1+2 r+2 r^{2}\right)\left(2+2 r^{3}+4 r^{4}+4 r^{5}\right)}{k-2} \mathbf{1}-2 r^{8} \mathbf{1} .
\end{array}
$$

Thus, it is sufficient to show that $\frac{1}{k+1}$ $\frac{r^{3}\left(1+2 r+2 r^{2}\right)\left(2+2 r^{3}+4 r^{4}+4 r^{5}\right)}{k-2}-2 r^{8}>0$.

Since $r^{3} \leq \frac{2 r^{2}+2 r+1}{k-1}$, it follows that $\frac{1}{k+1}-\frac{r^{3}\left(1+2 r+2 r^{2}\right)\left(2+2 r^{3}+4 r^{4}+4 r^{5}\right)}{k-2}-2 r^{8} \geq$ $\frac{1}{k+1}-\frac{2\left(1+2 r+2 r^{2}\right)^{2}\left(k-1+\left(1+2 r+2 r^{2}\right)^{2}\right)}{(k-1)^{2}(k-2)}-\frac{2 r^{2}\left(1+2 r+2 r^{2}\right)^{2}}{(k-1)^{2}}$. Now using the fact that $r \leq$ $1 / 9$, it eventually follows that $\frac{1}{k+1}-\frac{2\left(1+2 r+2 r^{2}\right)^{2}\left(k-1+\left(1+2 r+2 r^{2}\right)^{2}\right)}{(k-1)^{2}(k-2)}-\frac{2 r^{2}\left(1+2 r+2 r^{2}\right)^{2}}{(k-1)^{2}} \geq$ $\frac{k^{3}-6.54 k^{2}+1.84 k-2.62}{(k+1)(k-2)(k-1)^{2}}$. This last is positive, since $k \geq 7$. This completes the proof of the induction step for statement c).

The preceding results lead to the following.
Theorem 3.3. $M_{n}^{-1} A_{n}$ is an irreducible nonnegative matrix.
Proof. We claim that for each $4 \leq k \leq n, M_{k}^{-1} A_{k}$ is irreducible and nonnegative. The statement clearly holds if $k=4$, and we proceed by induction. Suppose that the claim holds for some $4 \leq k \leq n-1$. Note that $M_{k+1}=\left[\begin{array}{c|c}k+1 & 0^{T} \\ \hline s & M_{k}\end{array}\right]$, where $s=\left[\begin{array}{c}s_{1} \\ \vdots \\ s_{k}\end{array}\right]$. We also have $A_{k+1}=\left[\begin{array}{c|c}0 & k e_{1}^{T} \\ \hline \sigma & A_{k}\end{array}\right]$, where $\sigma=\left[\begin{array}{c}s_{2} \\ \vdots \\ s_{k+1}\end{array}\right]$. It then follows that $M_{k+1}^{-1} A_{k+1}=\left[\begin{array}{c|c}0 & \frac{k}{k+1} e_{1}^{T} \\ \hline \frac{1}{k+1} M_{k}^{-1} \sigma & M_{k}^{-1} A_{k}-\frac{k}{k+1} M_{k}^{-1} s e_{1}^{T}\end{array}\right]$.

From the induction hypothesis, $M_{k}^{-1} A_{k} e_{j} \geq 0$ for each $1 \leq j \leq k$. Note also that $M_{k}^{-1} A_{k} e_{1}=M_{k}^{-1} s \geq 0$, so that the first column of $M_{k}^{-1} A_{k}-\frac{k}{k+1} M_{k}^{-1} s e_{1}^{T}$ is just $\frac{1}{k} M_{k}^{-1} s$, which is nonnegative, and has the same zero-nonzero pattern as the first column of $M_{k}^{-1} A_{k}$. Thus the $(2,2)$ block of $M_{k+1}^{-1} A_{k+1}$ is nonnegative and irreducible by the induction hypothesis, while the $(1,2)$ block is a nonnegative nonzero vector. Further, from Proposition 3.2 it follows that $M_{k}^{-1} \sigma$ is also nonnegative and nonzero. Hence $M_{k+1}^{-1} A_{k+1}$ is both nonnegative and irreducible, completing the induction step. \square

Here is the main result of this section; it follows from Theorem 3.3.
Theorem 3.4. For infinitely many n, $\lambda_{2}(4, n) \leq r$, where r is the positive root of the equation $(n-1) r^{3}-2 r^{2}-2 r-1=0$.

REMARK 3.1. Let $f(x)=(n-1) x^{3}-2 x^{2}-2 x-1$. A straightforward computation shows that for all sufficiently large $n, f\left((n-1)^{-\frac{1}{3}}+(n-1)^{-\frac{2}{3}}\right)>0$. It now follows that for all sufficiently large n, the positive root r for the function f satisfies $r<$ $(n-1)^{-\frac{1}{3}}+(n-1)^{-\frac{2}{3}}$.

The following is immediate from Theorem 1.1, Theorem 3.4 and Remark 3.1.
Corollary 3.5. $\liminf _{n \rightarrow \infty} \lambda_{2}(4, n) \sqrt[3]{n-1}=1$.
4. Bounds for large girth. At least part of the motivation for the study of $\lambda_{2}(g, n)$ is to develop some insight when g is large relative to n. As noted in Remark 1.3 , if both n and g are large, then we expect $\lambda_{2}(g, n)$ to be close to 1 , so that any primitive matrix in $\mathcal{S}(g, n)$ will give rise to a sequence of powers that converges only very slowly. The purpose of this section is to quantify these notions more precisely. To that end, we focus on the case that $g>2 n / 3$.

The following result is useful. Its proof appears in [4] and (essentially) in [6] as well.

Lemma 4.1. Suppose that $g>n / 2$ and that $T \in \mathcal{S}(g, n)$. Then the characteristic polynomial for T has the form $\lambda^{n}-\sum_{j=g}^{n} a_{j} \lambda^{n-j}$, where $a_{j} \geq 0, j=g, \ldots, n$ and $\sum_{j=g}^{n} a_{j}=1$.

Our next result appears in [5].
Lemma 4.2. Suppose that $g>2 n / 3$ and that $T \in \mathcal{S}(g, n)$. Then T has an eigenvalue of the form $\rho e^{i \theta}$, where $\theta \in[2 \pi / n, 2 \pi / g]$, and where $\rho \geq r(\theta)$, where $r(\theta)$ is the (unique) positive solution to the equation $r^{g} \sin (n \theta)-r^{n} \sin (g \theta)=\sin ((n-g) \theta)$.

Remark 4.1. It is shown in [5] that there is a one-to-one correspondence between the family of complex numbers $r(\theta) e^{i \theta}, \theta \in[2 \pi / n, 2 \pi / g]$, and a family of roots of the polynomial $\lambda^{n}-\alpha \lambda^{n-g}-(1-\alpha), \alpha \in[0,1]$. Specifically, [5] shows that for each $\alpha \in[0,1]$, there is a $\theta \in[2 \pi / n, 2 \pi / g]$ such that $r(\theta) e^{i \theta}$ is a root of $\lambda^{n}-\alpha \lambda^{n-g}-$ $(1-\alpha)$, and conversely that for each $\theta \in[2 \pi / n, 2 \pi / g]$, there is an $\alpha \in[0,1]$ such that $\lambda^{n}-\alpha \lambda^{n-g}-(1-\alpha)$ has $r(\theta) e^{i \theta}$ as a root. As α runs from 0 to $1, \theta$ runs from $2 \pi / n$ to $2 \pi / g$, while $r(\theta) e^{i \theta}$ interpolates between $e^{2 \pi i / n}$ and $e^{2 \pi i / g}$.

The following result produces lower bounds on $\lambda_{2}(g, n)$ for $g>2 n / 3$ and for $g \geq 3(n+3) / 4$.

Theorem 4.3. a) Suppose that $n \geq 27$ and that $g>2 n / 3$. Then $\lambda_{2}(g, n) \geq$ $\left(\frac{1}{5}\right)^{1 / l(n)}$, where $l(n)=2\left\lfloor\frac{n}{3}\right\rfloor+1$ if $n \equiv 0,1 \bmod 3$, and $l(n)=2\left\lceil\frac{n}{3}\right\rceil$ if $n \equiv 2 \bmod 3$. b) If $n \geq 3(n+3) / 4$, then $\lambda_{2}(g, n) \geq\left(\frac{2 \sqrt{7}-1}{7}\right)^{1 /\left(3\left\lceil\frac{n}{4}\right\rceil\right)}$.

Proof. a) Let $k=\left\lfloor\frac{n}{3}\right\rfloor$, so that $n=3 k+i$, for some $0 \leq i \leq 2$. Since $g>2 n / 3$, it follows that $g \geq 2 k+1$ if $i=0,1$, and $g \geq 2 k+2$ if $i=2$. Let $j_{0}=1, j_{1}=1$ and $j_{2}=2$. From Proposition 1.2 b), we find that $\lambda_{2}(g, n) \geq \lambda_{2}\left(2 k+j_{i}, 3 k+i\right)$. From Lemma 4.2 it follows that for each $T \in \mathcal{S}\left(2 k+j_{i}, 3 k+i\right)$, there is a $\theta \in[2 \pi /(3 k+$ $\left.i), 2 \pi /\left(2 k+j_{i}\right)\right]$ such that $\left|\lambda_{2}(T)\right| \geq r$, where r is the positive solution to the equation $r^{2 k+j_{i}} \sin ((3 k+i) \theta)-r^{3 k+i} \sin \left(\left(2 k+j_{i}\right) \theta\right)=\sin \left(\left(k+i-j_{i}\right) \theta\right)$. Evidently for such an r we have $r^{2 k+j_{i}}\left(\sin ((3 k+i) \theta)-\sin \left(\left(2 k+j_{i}\right) \theta\right)\right) \geq \sin \left(\left(k+i-j_{i}\right) \theta\right)$, and it now follows that $\lambda_{2}(g, n)^{2 k+j_{i}} \geq \min \left\{\left.\frac{\sin \left(\left(k+i-j_{i}\right) \theta\right)}{\sin ((3 k+i) \theta)-\sin \left(\left(2 k+j_{i}\right) \theta\right)} \right\rvert\, \theta \in\left[2 \pi /(3 k+i), 2 \pi /\left(2 k+j_{i}\right)\right]\right\}$. In order to establish the desired inequality, it suffices to show that for each $\theta \in$ $\left[2 \pi /(3 k+i), 2 \pi /\left(2 k+j_{i}\right)\right], 5 \sin \left(\left(k+i-j_{i}\right) \theta\right) \geq \sin ((3 k+i) \theta)-\sin \left(\left(2 k+j_{i}\right) \theta\right)$.

To that end, set $t=\left(k+i-j_{i}\right) \theta$, so that $t \in\left[\frac{2 \pi}{3}-\frac{2 \pi\left(3 j_{i}-2 i\right)}{3(3 k+i)}, \pi-\frac{\pi\left(3 j_{i}-2 i\right)}{2 k+j_{i}}\right] \subset$ $\left[\frac{2 \pi}{3}-\frac{2 \pi}{3 k}, \pi-\frac{\pi}{2 k+2}\right]$. Set $b_{i}=\frac{3 j_{i}-2 i}{k+i-j_{i}}$; we find that $(3 k+i) \theta=3 t+b_{i} t$ and that $\left(2 k+j_{i}\right) \theta=2 t+b_{i} t$. We claim that for each $t \in[2 \pi / 3-2 \pi /(3 k), \pi-\pi /(2 k+$ $2)], 5 \sin (t) \geq \sin \left(3 t+b_{i} t\right)-\sin \left(2 t+b_{i} t\right)$. Let $\cos (t)=x$, so that $-1<x<0$. Our claim is equivalent to proving that

$$
\begin{equation*}
\left(5-\left(4 x^{2}-2 x-1\right) \cos \left(b_{i} t\right)\right) \sqrt{1-x^{2}} \geq(x-1)\left(4 x^{2}+2 x-1\right) \sin \left(b_{i} t\right) \tag{4.1}
\end{equation*}
$$

From the hypothesis, it follows that $k \geq 9$, so we find that $\sin \left(b_{i} t\right), \cos \left(b_{i} t\right) \geq 0$. First, we note that if $-1<x \leq-\frac{1+\sqrt{5}}{4}$, then we have $4 x^{2}-2 x-1>4 x^{2}+2 x-1 \geq 0$, so that the left side of (4.1) is positive while the right side is nonpositive.

Next, note that if $-\frac{1+\sqrt{5}}{4}<x \leq \frac{1-\sqrt{5}}{4}$, then $4 x^{2}-2 x-1 \geq 0>4 x^{2}+2 x-1$. It then follows that $\left(5-\left(4 x^{2}-2 x-1\right) \cos \left(b_{i} t\right)\right) \sqrt{1-x^{2}} \geq \sqrt{1-x^{2}}\left(6+2 x-4 x^{2}\right) \equiv$ $f(x)$, while $(x-1)\left(4 x^{2}+2 x-1\right) \sin \left(b_{i} t\right) \leq(x-1)\left(4 x^{2}+2 x-1\right) \equiv g(x)$. For $-\frac{1+\sqrt{5}}{4}<x \leq \frac{1-\sqrt{5}}{4}$, we find readily that $f(x)$ is an increasing function of x, so that in particular, $f(x) \geq \sqrt{\frac{5-\sqrt{5}}{2}}\left(\frac{3-\sqrt{5}}{4}\right)\left(\frac{7+\sqrt{5}}{2}\right) \approx 1.0368312 \ldots$ on that interval. A straightforward computation also reveals that $g(x)$ is increasing on the interval $\left[-\frac{1+\sqrt{5}}{4}, \frac{1-\sqrt{10}}{6}\right]$, and is maximized on $[-1,0]$ at $x=\frac{1-\sqrt{10}}{6}$, with $g\left(\frac{1-\sqrt{10}}{6}\right)=$ $\left(\frac{-5-\sqrt{10}}{6}\right)\left(4\left(\frac{1-\sqrt{10}}{6}\right)^{2}+\frac{1-\sqrt{10}}{3}-1\right) \approx 1.63$. Since $\frac{1-\sqrt{10}}{6}>-.7$, we find from these considerations that for $-\frac{1+\sqrt{5}}{4}<x \leq-.7$ we have $g(x) \leq g(-.7) \approx .748<$

ELA

1.036. On the other hand, if $-.7<x \leq \frac{1-\sqrt{5}}{4}$, then $f(x) \geq f(-.7) \approx 1.88>1.63$. It now follows that for each $-\frac{1+\sqrt{5}}{4}<x \leq \frac{1-\sqrt{5}}{4}, f(x) \geq g(x)$.

Finally, if $\frac{1-\sqrt{5}}{4}<x<0$, the left side of (4.1) is easily seen to exceed $5 \sqrt{1-\left(\frac{1-\sqrt{5}}{4}\right)^{2}}$, which in turn exceeds the maximum value for $g(x)$ on $[-1,0]$. We conclude that (4.1) holds, as desired.
b) Let $k=\left\lfloor\frac{n}{4}\right\rfloor$, so that $n=4 k+i$ for some $i=0,1,2,3$. Since $g \geq 3(n+3) / 4$, then we have $g \geq 3 k+(9+3 i) / 4$. If $i=0$, then $g \geq 3 k$, while if $i=1,2,3$, then $g \geq 3 k+3$. Consequently, we have $\lambda_{2}(g, n) \geq \lambda_{2}(3 k, 4 k)$ if $i=0$, and $\lambda_{2}(g, n) \geq$ $\lambda_{2}(3(k+1), 4(k+1))$ if $i=1,2,3$, or equivalently, $\lambda_{2}(g, n) \geq \lambda_{2}\left(3\left\lceil\frac{n}{4}\right\rceil, 4\left\lceil\frac{n}{4}\right\rceil\right)$.

Set $j=\left\lceil\frac{n}{4}\right\rceil$. From Lemma 4.2, we find that $\lambda_{2}(3 j, 4 j)^{3 j} \geq$ $\min \left\{\left.\frac{\sin (j \theta)}{\sin (4 j \theta)-\sin (3 j \theta)} \right\rvert\, \theta \in[2 \pi /(4 j), 2 \pi /(3 j)]\right\}$. We claim that $\min \left\{\left.\frac{\sin (j \theta)}{\sin (4 j \theta)-\sin (3 j \theta)} \right\rvert\, \theta \in\right.$ $[2 \pi /(4 j), 2 \pi /(3 j)]\}=\left(\frac{2 \sqrt{7}-1}{7}\right)$, from which the result will follow.

To see the claim, let $x=\cos (j \theta)$ and note that $x \in[-1 / 2,0]$. Further, we have $\sin (4 j \theta)-\sin (3 j \theta)=\sin (j \theta)\left(8 x^{3}-4 x^{2}-4 x+1\right)$. Consequently, $\min \left\{\left.\frac{\sin (j \theta)}{\sin (4 j \theta)-\sin (3 j \theta)} \right\rvert\, \theta \in[2 \pi /(4 j), 2 \pi /(3 j)]\right\}=\min \left\{\left.\frac{1}{8 x^{3}-4 x^{2}-4 x+1} \right\rvert\, x \in[-1 / 2,0]\right\}$. The claim now follows from a standard calculus computation. \quad]

Remark 4.2. Note that $\frac{2 \sqrt{7}-1}{7} \approx 0.6130718 \ldots$.
Remark 4.3. We note that Theorem 4.3 provides an estimate on $r(\theta)$ for the case that $g>2 n / 3$; that estimate is a clear improvement on that of [6], which proves a lower bound of $\left(\frac{1}{2} \sin [\pi /(n-1)]\right)^{2 /(n-1)}$ on that quantity.

Our final result considers the case that $n \rightarrow \infty$, while $n-g$ is fixed. In the proof, we use the notation $O\left(\frac{1}{n^{k}}\right)$ to denote a sequence s_{n} with the property that $n^{k} s_{n}$ is a bounded sequence.

ThEOREM 4.4. Suppose that $i \geq 1$ is fixed. Then $\lambda_{2}(n-i, n) \geq 1-\frac{\pi^{2} i^{2}}{2 n^{3}}+O\left(\frac{1}{n^{4}}\right)$.
Proof. From Lemma 4.2, we find that for $n>3 i$ we have

$$
\lambda_{2}(n-i, n) \geq\left(\min \left\{\left.\frac{\sin (i \theta)}{\sin (n \theta)-\sin ((n-i) \theta)} \right\rvert\, \theta \in[2 \pi / n, 2 \pi /(n-i)]\right\}\right)^{\frac{1}{n-i}}
$$

Let θ_{0} be a critical point of the function $\frac{\sin (i \theta)}{\sin (n \theta)-\sin ((n-i) \theta)}$ on the interval $[2 \pi / n, 2 \pi /(n-i)]$. Then we have

$$
\sin \left(i \theta_{0}\right)\left(n \cos \left(n \theta_{0}\right)-(n-i) \cos \left((n-i) \theta_{0}\right)\right)=i \cos \left(i \theta_{0}\right)\left(\sin \left(n \theta_{0}\right)-\sin \left((n-i) \theta_{0}\right)\right)
$$

Let $\theta_{0}=\frac{2 \pi}{n}+\frac{a \pi}{n^{2}}$ where $a=O(1)$. We then have $n \theta_{0}=2 \pi+\frac{a \pi}{n},(n-i) \theta_{0}=$ $2 \pi-\left(\frac{(2 i-a) \pi}{n}+\frac{i a \pi}{n^{2}}\right)$ and $i \theta_{0}=\frac{2 \pi i}{n}+\frac{\pi a i}{n^{2}}$. Expanding the equation above for θ_{0} to terms in $O\left(\frac{1}{n^{3}}\right)$, we have $\left(\frac{2 \pi i}{n}+\frac{\pi a i}{n^{2}}\right)\left[n\left(1-\frac{a^{2} \pi^{2}}{2 n^{2}}\right)-(n-i)\left(1-\frac{(2 i-a)^{2} \pi^{2}}{2 n^{2}}\right)\right]=$ $i\left(1-\frac{4 \pi^{2} i^{2}}{2 n^{2}}\right)\left[\frac{a \pi}{n}+\frac{(2 i-a) \pi}{n}+\frac{i a \pi}{n^{2}}\right]+O\left(\frac{1}{n^{3}}\right)$. Collecting terms and simplifying eventually yields $\frac{(2 i-a)^{2}-a^{2}}{n^{2}} \pi^{2}=O\left(\frac{1}{n^{3}}\right)$, from which we conclude that $a=i+O\left(\frac{1}{n}\right)$.

Next, we write $\theta_{0}=\frac{2 \pi}{n}+\frac{i \pi}{n^{2}}+\frac{b \pi}{n^{3}}$, where $b=O(1)$. As above, we find that $n \theta_{0}=2 \pi+\frac{i \pi}{n}+\frac{b \pi}{n^{2}},(n-i) \theta_{0}=2 \pi-\left(\frac{i \pi}{n}+\frac{\left(i^{2}-b\right) \pi}{n^{2}}+\frac{i b \pi}{n^{3}}\right)$ and $i \theta_{0}=\frac{2 \pi i}{n}+\frac{\pi i^{2}}{n^{2}}+\frac{\pi b i}{n^{3}}$.

From this it follows that
$\frac{\sin \left(i \theta_{0}\right)}{\sin \left(n \theta_{0}\right)-\sin \left((n-i) \theta_{0}\right)}=\frac{\frac{2 \pi i}{n}+\frac{\pi i^{2}}{n^{2}}+\frac{\pi b i}{n^{3}}-\frac{4 \pi^{3} i^{3}}{3 n^{3}}+O\left(\frac{1}{n^{4}}\right)}{\frac{2 \pi i}{n}+\frac{\pi i^{2}}{n^{2}}+\frac{\pi b i}{n^{3}}-\frac{\pi^{3} i^{3}}{3 n^{3}}+O\left(\frac{1}{n^{4}}\right)}=1-\frac{\pi^{2} i^{2}}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right)$.
Thus we have $\lambda_{2}(n-i, n) \geq\left(1-\frac{\pi^{2} i^{2}}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right)\right)^{\frac{1}{n-i}}=1-\frac{\pi^{2} i^{2}}{2 n^{3}}+O\left(\frac{1}{n^{4}}\right)$, as desired.
Remark 4.4. Suppose that we have a matrix $T \in \mathcal{S}(n-1, n)$. Then the characteristic polynomial of T is given by $p_{\alpha}(\lambda) \equiv \lambda^{n}-\alpha \lambda-(1-\alpha)$, for some $\alpha \in[0,1]$. Conversely, for each $\alpha \in[0,1]$, there is a matrix $T \in \mathcal{S}(n-1, n)$ whose characteristic polynomial is p_{α}, namely the companion matrix of that polynomial. Thus we see that the eigenvalues of matrices in $\mathcal{S}(n-1, n)$ are in one-to-one correspondence with the roots of polynomials of the form $p_{\alpha}, \alpha \in[0,1]$. For such a polynomial, we say that a root λ is a subdominant root if $\lambda \neq 1$ and λ has maximum modulus among the roots of the polynomial that are distinct from 1. In particular, we find that discussing the subdominant roots of the polynomials $p_{\alpha}, \alpha \in[0,1]$ is equivalent to discussing the subdominant eigenvalues of the matrices in $\mathcal{S}(n-1, n)$.

Fix a value of $n \geq 4$. It follows from Corollary 2.1 of [5] that for each $\alpha \in[0,1]$, there is precisely one root of p_{α} whose argument lies in $[2 \pi / n, 2 \pi /(n-1)]$ (including multiplicities). Denote that root by $\sigma(\alpha)$. Evidently an analogous statement holds for the interval $[2 \pi-2 \pi /(n-1), 2 \pi-2 \pi / n]$, and we claim that in fact $\sigma(\alpha)$ and $\overline{\sigma(\alpha)}$ are subdominant roots for p_{α}.

To see the claim, first suppose that $\alpha \in(0,1)$, and that z_{1} and z_{2} are two roots of p_{α} of equal moduli. Writing $z_{1}=\rho e^{i \theta_{1}}, z_{2}=\rho e^{i \theta_{2}}$, and substituting each into the equation $p_{\alpha}(\lambda)=0$, we find that $\rho^{2 n}=\left|\alpha \rho e^{i \theta_{1}}+1-\alpha\right|^{2}=\left|\alpha \rho e^{i \theta_{2}}+1-\alpha\right|^{2}$. It follows that $\alpha^{2} \rho^{2}+(1-\alpha)^{2}+2 \alpha(1-\alpha) \rho \cos \left(\theta_{1}\right)=\alpha^{2} \rho^{2}+(1-\alpha)^{2}+2 \alpha(1-\alpha) \rho \cos \left(\theta_{2}\right)$, from which we conclude that $\cos \left(\theta_{1}\right)=\cos \left(\theta_{2}\right)$. Consequently, we find that for each $\alpha \in(0,1)$, if z_{1} and z_{2} are roots of p_{α} that have equal moduli, then either $z_{1}=z_{2}$ or $z_{1}=\overline{z_{2}}$.

For each $\alpha \in[0,1]$, denote the roots of p_{α} that are distinct from 1 and whose argument fall outside of $[2 \pi / n, 2 \pi /(n-1)] \cup[2 \pi-2 \pi /(n-1), 2 \pi-2 \pi / n]$ by $\gamma_{1}(\alpha), \ldots, \gamma_{n-3}(\alpha)$, labeled in nondecreasing order according to their arguments. Suppose that $\exists \alpha_{1}, \alpha_{2} \in(0,1)$ such that $\left|\sigma\left(\alpha_{1}\right)\right|>\max \left\{\mid \gamma_{i}\left(\alpha_{1}\right) \| i=1, \ldots, n-3\right\}$ and $\left|\sigma\left(\alpha_{2}\right)\right|<\max \left\{\mid \gamma_{i}\left(\alpha_{2}\right) \| i=1, \ldots, n-3\right\}$. From the continuity of the roots of p_{α} in the parameter α, and the intermediate value theorem, we find that $\exists \alpha_{3} \in(0,1)$ such that $\left|\sigma\left(\alpha_{3}\right)\right|=\max \left\{\mid \gamma_{i}\left(\alpha_{3}\right) \| i=1, \ldots, n-3\right\}$. Hence for some i we have either $\gamma_{i}\left(\alpha_{3}\right)=\sigma\left(\alpha_{3}\right)$ or $\gamma_{i}\left(\alpha_{3}\right)=\sigma\left(\alpha_{3}\right)$, a contradiction since the argument of γ_{i} falls outside of $[2 \pi / n, 2 \pi /(n-1)] \cup[2 \pi-2 \pi /(n-1), 2 \pi-2 \pi / n]$. Consequently, we find that one of the following alternatives must hold: either $|\sigma(\alpha)|>\max \left\{\mid \gamma_{i}(\alpha) \| i=1, \ldots, n-3\right\}$ for all $\alpha \in(0,1)$, or $|\sigma(\alpha)|<\max \left\{\left|\gamma_{i}(\alpha)\right| \mid i=1, \ldots, n-3\right\}$ for all $\alpha \in(0,1)$.

Next, we claim that for all sufficiently small $\alpha>0, \sigma(\alpha)$ is a subdominant eigenvalue of p_{α}. To see this, observe that at $\alpha=0$, the roots of p_{α} that are distinct from 1 are given by $e^{2 \pi i j / n}, 1 \leq j \leq n-1$. Note that since these roots are distinct, there is a neighbourhood of $\alpha=0$ on which each root of p_{α} is a differentiable function of α.

Fix an index l such that either $1 \leq l<(n-2) / 2$ or $(n-2) / 2<l \leq n-3$ and

ELA

consider $\gamma_{l}(\alpha)$. We write $\gamma_{l}(\alpha)=\rho e^{i \theta}$, where on the right hand side, the explicit dependence on α is suppressed. Considering the real and imaginary parts of the equation $p_{\alpha}\left(\rho e^{i \theta}\right)=0$, we find that for each $0<\alpha \leq 1$ we have

$$
\begin{equation*}
\rho^{n} \cos (n \theta)-1=\alpha(\rho \cos (\theta)-1) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho^{n-1} \sin (n \theta)=\alpha \sin (\theta) \tag{4.4}
\end{equation*}
$$

In particular, crossmultiplying (4.3) and (4.4), canceling the common factor of α, and simplifying, we find that for each $0<\alpha \leq 1$, we have

$$
\begin{equation*}
\rho^{n-1} \sin (n \theta)-\rho^{n} \sin ((n-1) \theta)=\sin (\theta) \tag{4.5}
\end{equation*}
$$

(Observe that in fact (4.5) also holds when $\alpha=0$, since then $\rho=1$ and $\theta=\frac{2 \pi(l+1)}{n}$.) Differentiating (4.4) with respect to α and evaluating at $\alpha=0$, it follows that $\left.\frac{d \theta}{d \alpha}\right|_{\alpha=0}=\frac{\sin (2 \pi(l+1) / n)}{n}$. Differentiating (4.5) with respect to α (via the chain rule) and evaluating at $\alpha=0$ then yields $\left.\frac{d \rho}{d \alpha}\right|_{\alpha=0}=-\frac{1-\cos (2 \pi(l+1) / n)}{n}$. Similar arguments show that if $l=(n-2) / 2$, then $\left.\frac{d \rho}{d \alpha}\right|_{\alpha=0}=\frac{-2}{n}$, and that $\left.\frac{n|\sigma|}{d \alpha}\right|_{\alpha=0}=-\frac{1-\cos (2 \pi / n)}{n}$.

We conclude that for all sufficiently small $\alpha>0,|\sigma(\alpha)|=1-\alpha\left(\frac{1-\cos (2 \pi / n)}{n}\right)+$ $O\left(\alpha^{2}\right)>1-\alpha\left(\frac{1-\cos (2 \pi(l+1) / n)}{n}\right)+O\left(\alpha^{2}\right)=\left|\gamma_{l}(\alpha)\right|, l=1 \ldots, n-3$. Hence, for such α, σ (and $\bar{\sigma}$) are subdominant roots of p_{α}. From the considerations above, we conclude that for each $\alpha \in[0,1], \sigma(\alpha)$ is a subdominant root of p_{α}, as claimed.

From the claim, it now follows that $\lambda_{2}(n-1, n)=\min \{\mid \sigma(\alpha) \| \alpha \in[0,1]\}=$ $\min \left\{r(\theta) \mid r(\theta)^{n-1} \sin (n \theta)-r(\theta)^{n} \sin ((n-1) \theta)=\sin (\theta), r(\theta)>0, \theta \in[2 \pi / n, 2 \pi /(n-\right.$ $1)]\}$. Arguing as in Theorem 4.4, there is a $\theta_{0} \in[2 \pi / n, 2 \pi /(n-1)]$ such that $\frac{\sin \left(\theta_{0}\right)}{\sin \left(n \theta_{0}\right)-\sin \left((n-1) \theta_{0}\right)}=1-\frac{\pi^{2}}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right)$, which yields $\left(1-\frac{\pi^{2}}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right)\right)^{1 / n} \geq r\left(\theta_{0}\right) \geq$ $\lambda_{2}(n-1, n)$. Applying Theorem 4.4, we find that $\left(1-\frac{\pi^{2}}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right)\right)^{1 / n} \geq \lambda_{2}(n-$ $1, n) \geq\left(1-\frac{\pi^{2}}{2 n^{2}}+O\left(\frac{1}{n^{3}}\right)\right)^{1 /(n-1)}$. But since both the upper and lower bounds on $\lambda_{2}(n-1, n)$ can be written as $1-\frac{\pi^{2}}{2 n^{3}}+O\left(\frac{1}{n^{4}}\right)$, we conclude that $\lambda_{2}(n-1, n)=$ $1-\frac{\pi^{2}}{2 n^{3}}+O\left(\frac{1}{n^{4}}\right)$.

Ackowledgment. The author is grateful to an anonymous referee, whose careful reading and constructive comments led to a number of improvements to this paper.

REFERENCES

[1] A. Berman and R. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia, 1994.
[2] R. Brualdi and H. Ryser. Combinatorial Matrix Theory. Cambridge University Press, Cambridge, 1991.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 12, pp. 25-41, January 2005

ELA

[3] D. de Caen, D. Gregory, S. Kirkland, N. Pullman, and J. Maybee. Algebraic multiplicity of the eigenvalues of a tournament matrix. Linear Algebra and its Applications, 169:179-193, 1992.
[4] C. Johnson, R. Kellogg, and A. Stephens. Complex eigenvalues of a non-negative matrix with a specified graph II. Linear and Multilinear Algebra, 7:129-143, 1979.
[5] S. Kirkland. On the spectrum of a Leslie matrix with a near-periodic fecundity pattern. Linear Algebra and its Applications, 178:261-279, 1993.
[6] S. Kirkland. A note on the eigenvalues of a primitive matrix with large exponent. Linear Algebra and its Applications, 253:103-112, 1997.
[7] R. Reams. An inequality for nonnegative matrices and the inverse eigenvalue problem. Linear and Multilinear Algebra, 41:367-375, 1996.
[8] E. Seneta. Non-negative Matrices and Markov Chains. Springer-Verlag, New York, 1981.

[^0]: * Received by the editors 27 August 2004. Accepted for publication 2 December 2004. Handling Editor: Abraham Berman.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, S4S 0A2, CANADA (kirkland@math.uregina.ca). Research supported in part by an NSERC Research Grant.

