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POSITIVE ENTRIES OF STABLE MATRICES∗

SHMUEL FRIEDLAND† , DANIEL HERSHKOWITZ‡ , AND SIEGFRIED M. RUMP§

Abstract. The question of how many elements of a real positive stable matrix must be positive
is investigated. It is shown that any real stable matrix of order greater than 1 has at least two
positive entries. Furthermore, for every stable spectrum of cardinality greater than 1 there exists a
real matrix with that spectrum with exactly two positive elements, where all other elements of the
matrix can be chosen to be negative.
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1. Introduction. For a square complex matrix A let σ(A) be the spectrum of
A, that is, the set of eigenvalues of A listed with their multiplicities. Recall that a
(multi) set of complex numbers is called (positive) stable if all the elements of the set
have positive real parts, and that a square complex matrix A is called stable if σ(A)
is stable. In this paper we investigate the question of how many elements of a real
stable matrix must be positive.

We first show that a stable real matrix A has either positive diagonal elements
or it has at least one positive diagonal element and one positive off-diagonal element.
We then show that for any stable n-tuple ζ of complex numbers, n > 1, such that ζ
is symmetric with respect to the real axis, there exists a real stable n × n matrix A
with exactly two positive entries such that σ(A) = ζ.

The stable n × n matrix with exactly two positive entries, whose existence is
proven in Section 2, has (n− 1)2 zeros in it. In Section 3 we prove that for any stable
n-tuple ζ of complex numbers, n > 1, such that ζ is symmetric with respect to the
real axis, there exists a real stable n × n matrix A with two positive entries and all
other entries negative such that σ(A) = ζ.

In Section 4 we suggest some alternative approaches to obtain the results of
Section 2.

2. Positive entries of stable matrices. Our aim in this section is to show
that for any stable n-tuple ζ of complex numbers, n > 1, consisting of real numbers
and conjugate pairs, there exists a real stable n×nmatrix A with exactly two positive
entries such that σ(A) = ζ. We shall first show that every real stable matrix of order
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greater than 1 has at least two positive elements. In fact we show more than that,
that is, that for a stable real matrix A either all diagonal elements of A are positive
or A must have at least one positive entry on the main diagonal and one off the main
diagonal.

Notation 2.1. For an n-tuple ζ = {ζ1, . . . , ζn} of complex numbers we denote
by s1(ζ), . . . , sn(ζ) the elementary symmetric functions of ζ, that is,

sk(ζ) =
∑

1≤i1<...<ik≤n

ζi1 · . . . · ζik
, k = 1, . . . , n.

Also, we let s0(ζ) = 1 and sk(ζ) = 0 whenever k > n or k < 0. We say that ζ has
positive elementary symmetric functions whenever sk(ζ) > 0, k = 1, . . . , n.

Lemma 2.2. Let ζ = {ζ1, . . . , ζn} be an n-tuple of complex numbers with positive
elementary symmetric functions. Then ζ contains no nonpositive real numbers.

Proof. Note that ζ has positive elementary symmetric functions if and only if the
polynomial p(x) =

∏n
i=1(x + ζi) has positive coefficients. It follows that p(x) cannot

have nonnegative roots, implying that none of the ζi’s is a nonpositive real number.

Notation 2.3. For F = R,C, the fields of real and complex numbers respectively,
we denote by Mn(F) the algebra of n×n matrices with entries in F. For A = (aij)n1 ∈
Mn(F) we denote by trA the trace of A, that is, the sum

∑n
i=1 aii.

Proposition 2.4. Let A = (aij)n1 ∈ Mn(R), and assume that σ(A) has positive
elementary symmetric functions. Then either all the diagonal elements of A are
positive or A has at least one positive diagonal element and one positive off-diagonal
element.

Proof. As is well known, the trace of A is equal to s1(σ(A)), and so we have∑n
i=1 aii > 0, and it follows that at least one diagonal element of A is positive.

Assume that all off-diagonal elements of A are nonpositive. Such a real matrix is
called a Z-matrix. Since the elementary symmetric functions of σ(A) are positive, it
follows by Lemma 2.2 that A has no nonpositive real eigenvalues. Since a Z-matrix
has no nonpositive real eigenvalues if and only if all its principal minors are positive,
e.g., [1, Theorem (6.2.3), page 134], it follows that all the diagonal elements of A are
positive.

Notation 2.5. For an n-tuple ζ = {ζ1, . . . , ζn} of complex numbers we denote
by ζ be the n-tuple {ζ1, . . . , ζn}. We say that ζ = ζ whenever the two n-tuples ζ and
ζ are identical sets.

Note that ζ = ζ if and only if all elementary symmetric functions of ζ are real.

The following result is well known, and we provide a proof for the sake of com-
pleteness.

Proposition 2.6. Let ζ be a stable n-tuple of complex numbers such that ζ = ζ.
Then ζ has positive elementary symmetric functions.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 12, pp. 17-24, January 2005



ELA

Positive Entries of Stable Matrices 19

Proof. We prove our claim by induction on n. For n = 1, 2 the result is trivial.
Assume that the result holds for n ≤ m where m ≥ 2, and let n = m + 1. Assume
first that ζ contains a positive number λ, and let ζ′ be the (n− 1)-tuple obtained by
eliminating λ from ζ. Note that ζ′ is stable and ζ′ = ζ′. By the inductive assumption
we have sk(ζ′) > 0, k = 1, . . . , n− 1, and it follows that

sk(ζ) = sk(ζ′) + λsk−1(ζ′) > 0, k = 1, . . . , n.

If ζ does not contain a positive number then it contains a conjugate pair {λ, λ}, where
Re(λ) > 0. Let ζ′′ be the (n− 2)-tuple obtained by eliminating λ and λ from ζ. Note
that the ζ′′ is stable and ζ′′ = ζ′′. By the inductive assumption we have sk(ζ′′) > 0,
k = 1, . . . , n− 2, and it follows that

sk(ζ) = sk(ζ′′) + 2Re(λ)sk−1(ζ′′) > 0 + |λ|2sk−2(ζ′′) > 0, k = 1, . . . , n,

proving our claim.

It is easy to show that the converse of Proposition 2.6 holds when n ≤ 2. However,
the converse does not hold for a larger n, as is demonstrated by the nonstable triple
ζ = { 3 , −1 + 3i , −1− 3i }, whose elementary symmetric functions are positive.

As a corollary of Propositions 2.4 and 2.6 we obtain:

Corollary 2.7. Let A be a stable real square matrix. Then either all the
diagonal elements of A are positive or A has at least one positive diagonal element
and one positive off-diagonal element.

In order to prove the existence of a real stable n× n matrix A with exactly two
positive entries, we introduce:

Notation 2.8. Let n be a positive integer. For an n-tuple ζ of complex numbers
we denote by C1(ζ), C2(ζ) and C3(ζ) the matrices

C1(ζ) =




0 0 0 . . . 0 0 0 (−1)n−1sn(ζ)
1 0 0 . . . 0 0 0 (−1)n−2sn−1(ζ)
0 1 0 . . . 0 0 0 (−1)n−3sn−2(ζ)
...

...
...

...
...
...

...
...

...
...

0 0 0 . . . 0 1 0 −s2(ζ)
0 0 0 . . . 0 0 1 s1(ζ)



,

C2(ζ) =




0 0 0 . . . 0 0 0 sn(ζ)
−1 0 0 . . . 0 0 0 sn−1(ζ)
0 −1 0 . . . 0 0 0 sn−2(ζ)
...

...
...

...
...
...

...
...

...
...

0 0 0 . . . 0 −1 0 s2(ζ)
0 0 0 . . . 0 0 −1 s1(ζ)



,
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C3(ζ) =




0 0 0 . . . 0 0 0 −sn(ζ)
−1 0 0 . . . 0 0 0 −sn−1(ζ)
0 −1 0 . . . 0 0 0 −sn−2(ζ)
...

...
...

...
...
...

...
...

...
...

0 0 0 . . . 0 −1 0 −s2(ζ)
0 0 0 . . . 0 0 1 s1(ζ)



.

Recall that A ∈ Mn(C) is called nonderogatory if for every eigenvalue λ of A
the Jordan canonical form of A has exactly one Jordan block corresponding to λ.
Equivalently, the minimal polynomial of A is equal to the characteristic polynomial
of A.

Lemma 2.9. Let n be a positive integer, n > 1, and let ζ = {ζ1, . . . , ζn} be an n-
tuple of complex numbers. Then the matrices C1(ζ), C2(ζ) and C3(ζ) are diagonally
similar, are nonderogatory and share the spectrum ζ.

Proof. The matrix C1(ζ) is the companion matrix of the polynomial q(x) =∏n
i=1(x− ζi). Hence σ(C1(ζ)) = ζ and C1(ζ) is nonderogatory. Clearly

C2(ζ) = D1C1(ζ)D1, where D1 = diag((−1)1, (−1)2, . . . , (−1)n),
and

C3(ζ) = D2C2(ζ)D2, where D2 = diag(1, 1, . . . , 1,−1).
Our claim follows.

In view of Lemma 2.9, the claim of Proposition 2.6 on C3(ζ) yields the following
main result of this section.

Theorem 2.10. Let n be a positive integer, n > 1, and let ζ be an n-tuple of
complex numbers such that ζ = ζ. If ζ has positive elementary symmetric functions
then there exists a matrix A ∈ Mn(R) such that σ(A) = ζ and A has one positive
diagonal entry and one positive off-diagonal entry, while all other entries of A are
nonpositive. In particular, every nonderogatory stable matrix A ∈ Mn(R) is similar
to a real n× n matrix which has exactly two positive entries.

3. Eliminating the zero entries. The proof of Theorem 2.10 uses the matrix
C3(ζ) which has (n−1)2 zero entries. The aim of this section is to strengthen Theorem
2.10 by replacing C3(ζ) with a real matrix A, having exactly two positive entries, all
other entries being negative and σ(A) = ζ.

We start with a weaker result, which one gets easily using perturbation techniques.
Let A ∈ Mn(R) and let ‖ · ‖ : Mn(R) → [0,∞) be the l2 operator norm. Since the
eigenvalues of a A depend continuously on the entries of the A, it follows that if σ(A)
has positive elementary symmetric functions, then for ε > 0 sufficiently small, every
matrix Ã ∈ Mn(R) with ‖Ã−A‖ < ε has a spectrum σ(Ã) with positive elementary
symmetric functions. Also, if A is stable then for ε > 0 sufficiently small, every matrix
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Ã ∈ Mn(R) with ‖Ã − A‖ < ε is stable. Consequently, it follows immediately from
Theorem 2.10 that

Corollary 3.1. For a positive integer n, n > 1, there exists a matrix A ∈ Mn(R)
such that σ(A) has positive elementary symmetric functions and A has one positive
diagonal entry and one positive off-diagonal entry, while all other entries of A are
negative. Furthermore, the matrix A can be chosen to be stable.

In the rest of this section we prove that one can find such a matrix A with any
prescribed stable spectrum.

Lemma 3.2. Let n be a positive integer, n > 1, let ζ be an n-tuple of com-
plex numbers such that ζ = ζ, and assume that ζ has positive elementary symmetric
functions. Suppose that there exists X ∈ Mn(R) such that

(C3(ζ))ij = 0 =⇒ (C3(ζ)X −XC3(ζ))ij < 0, i, j = 1, . . . , n.

Then there exists A ∈ Mn(R) similar to C3(ζ) such that ann, an,n−1 > 0 and all other
entries of A are negative.

Proof. Assume the existence of such a matrix X . Define the matrix T (t) = I−tX ,
t ∈ R. Let r = ||X ||−1. Using the Neumann series expansion, e.g., [2, page 7], for
|t| < r we have T (t)−1 =

∑∞
i=0 t

iX i. The matrix A(t) = T (t)C3(ζ)T (t)−1 thus
satisfies

A(t) = C3(ζ) + t(C3(ζ)X −XC3(ζ)) +O(t2).

Therefore, there exists ε ∈ (0, r) such that for t ∈ (0, ε) the matrix A(t) has posi-
tive entries in the (n, n − 1) and (n, n) positions, while all other entries of A(t) are
negative.

The following lemma is well known, and we provide a proof for the sake of com-
pleteness.

Lemma 3.3. Let A,B ∈ Mn(F) where F is R or C. The following are equivalent.
(i) The system AX −XA = B is solvable over F.
(ii) For every matrix E ∈ Mn(F) that commutes with A we have trBE = 0.

Proof. (i)=⇒(ii). Let E ∈ Mn(F) commute with A. Then

trBE = tr(AX −XA)E = trAXE − trXEA = trXEA− trXEA = 0.

(ii)=⇒(i). Consider the linear operator L : Mn(F) → Mn(F) defined by L(X) =
AX − XA. Its kernel consists of all matrices in Mn(F) commuting with A. By
the previous implication, the image of L is contained in the subspace V of Mn(F)
consisting of all matrices C such that trCE = 0 wheneverE ∈ kernel(L). Since clearly
dim(V ) = n2 − dim(kernel(L)) = dim(image(L)), it follows that image(L) = V .

Theorem 3.4. Let n be a positive integer, n > 1, and let ζ be an n-tuple of
complex numbers. Let bij, i = 1, . . . , n, j = 1, . . . , n−1 be given complex numbers, and
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let C = Ck(ζ) for some k ∈ {1, 2, 3}. Then there exists unique bin ∈ C, i = 1, . . . , n,
such that for the matrix B = (bij)n1 ∈ Mn(C) the system CX −XC = B is solvable.
Furthermore, if ζ = ζ and bij is real for i = 1, . . . , n, j = 1, . . . , n−1, then the matrix
B is real, and the solution X can be chosen to be real.

Proof. Since C2(ζ) and C3(ζ) are diagonally similar to C1(ζ), where the corre-
sponding diagonal matrices are real, it is enough to prove the theorem for C = C1(ζ).
So, let C = C1(ζ) and consider the system

CX −XC = B. (3.5)

As is well known, e.g., [3, Corollary 1, page 222], since C = C1(ζ) is nonderogatory,
every matrix that commutes with C is a polynomial in C. Therefore, it follows from
Lemma 3.3 that the system (3.5) is solvable if and only if

trBCk = 0, k = 0, . . . , n− 1. (3.6)

Denote vk = bn+1−k,n, k = 1, . . . , n. Note that (3.6) is a system of n equations in the
variables v1, . . . , vn. Furthermore, it is easy to verify that the first nonzero element
in the nth row of Ck is located at the position (n, n− k) and its value is 1. It follows
that if we write (3.6) as Ev = f , where E ∈ Mn(C) and v = (v1, . . . , n)T , then E is a
lower triangular matrix with 1’s along the main diagonal. It follows that the matrix
B is uniquely determined by (3.6).

If ζ = ζ and bij is real for i = 1, . . . , n, j = 1, . . . , n − 1 then C = C1(ζ) is real and
hence the system (3.6) has real coefficients, and the uniquely determined B is real. It
follows that the system (3.5) is real, and so it has a real solution X .

If we choose the numbers bij , i = 1, . . . , n, j = 1, . . . , n− 1, to be negative, then
Lemma 3.2 and Theorem 3.4 yield

Corollary 3.7. Let n be a positive integer, n > 1, let ζ be an n-tuple of complex
numbers, and assume that the elementary symmetric functions of ζ are positive. Then
there exists a matrix A ∈ Mn(R) with σ(A) = ζ such that A has one positive diagonal
element, one positive off-diagonal element and all other entries of A are negative. In
particular, the above holds for stable n-tuples ζ such that ζ = ζ.

4. Other types of companion matrices. Another way to prove some of the
results of Section 2 is to parameterize the companion matrices in Notation 2.8. Con-
sider

C =




0 0 0 · · · 0 0 0 γ0

β0 0 0 · · · 0 0 0 γ1

0 β1 0 · · · 0 0 0 γ2

· · · · · · · · ·
0 0 0 · · · 0 βn−3 0 γn−2

0 0 0 · · · 0 0 βn−2 γn−1



.

Looking at the directed graph of C, which is
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1 2 3 nn-1n-2

one can immediately see that there is exactly one simple cycle of length k for 1 ≤
k ≤ n, that is, (n, . . . , n + 1 − k). Therefore, the only nonzero principal minors of
C are those whose rows and columns are indexed by {k, . . . , n}, k = 1, . . . , n, and
their respective values are (−1)n−kγk−1βk−1 · · ·βn−2 for k < n and γn−1 for k = n.
It follows that the characteristic polynomial χC(x) of C is

χC(x) = xn − γn−1x
n−1 − γn−2βn−2x

n−2 − γn−3βn−3βn−2x
n−3 − . . .

. . .− γ1β1β2 · · ·βn−2x− γ0β0β1 · · ·βn−2.
(4.1)

Using this explicit formula, one can prove directly the claim contained in Lemma 2.9
that the matrices C1(ζ), C2(ζ) and C3(ζ) share the spectrum ζ.

There are other possibilities to generate companion matrices. For example, con-
sider the matrix

L =




γn−1 0 0 · · · 0 0 0 βn−2

βn−3 0 0 · · · 0 0 0 0
0 βn−4 0 · · · 0 0 0 0

· · · · · · · · ·
0 0 0 · · · 0 β0 0 0

γn−2 γn−3 γn−4 · · · γ2 γ1 γ0 0



.

The directed graph of L is

1 2 3 nn-1n-2

Again it is clear that there is exactly one simple cycle of length k for any 1 ≤ k ≤ n,
that is, (1) for k = 1 and (n, k − 1, . . . , 1) for 1 < k ≤ n. Therefore, the only
nonzero 1 × 1 principal minor of L is l11 = γn−1, and for 1 < k ≤ n the only

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 12, pp. 17-24, January 2005



ELA

24 S. Friedland, D. Hershkowitz, and S.M. Rump

nonzero k × k principal minor of L is the one whose rows and columns are indexed
by {1, . . . , k − 1, n}, and its value is (−1)n−kγk−1βk−1 · · ·βn−2. It follows that the
characteristic polynomial χL(x) of L is identical to χC(x). Note that there is no
permutation matrix P with PTCP = L or PTCTP = L.

Now, take the following specific choice of the parameters β and γ:

L1 =




−pn−1 0 0 · · · 0 0 0 1
1 0 0 · · · 0 0 0 0

1 0 · · · 0 0 0 0
· · · · · · · · ·

0 0 0 · · · 0 1 0 0
−pn−2 −pn−3 −pn−4 · · · −p2 −p1 −p0 0



.

By (4.1), the characteristic polynomial computes to

χL1(x) =
n∑

ν=0

pνx
ν ,

where pn = 1.

So L1 is another kind of companion matrix. Note that L1 is almost lower triangular,
with only one nonzero element above the main diagonal and one on the main diagonal.

Another specific choice of the parameters β and γ can be used to produce another
direct proof of Theorem 2.10. For an n-tuple ζ of complex numbers with ζ = ζ and

positive elementary symmetric functions, the polynomial q(x) =
n∏

i=1

(x− ζi) =
n∑

i=0

qix
i

has coefficients qi, 0 ≤ i ≤ n of alternating signs, where qn = 1. By (4.1), the
polynomial q(x) is the characteristic polynomial of the matrix




−qn−1 0 0 · · · 0 0 0 1
−1 0 0 · · · 0 0 0 0
0 −1 0 · · · 0 0 0 0

· · · · · · · · ·
0 0 0 · · · 0 −1 0 0

−qn−2 qn−3 −qn−4 · · · (−1)n−3q2 (−1)n−2q1 (−1)n−1q0 0



,

which has exactly two positive entries, that is, −qn−1 on the diagonal and 1 in the
right upper corner.
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