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INTERPOLATION BY MATRICES∗

ALLAN PINKUS†

Abstract. Assume that two sets of k vectors in R
n are given, namely {x1, . . . , xk} and

{y1, . . . , yk}, and a class of matrices, e.g., positive definite matrices, positive matrices, strictly
totally positive matrices, or P-matrices. The question considered in this paper is that of determining
necessary and sufficient conditions on these sets of vectors such that there exists an n × n matrix A
in the given class satisfying Axj = yj (j = 1, . . . , k).
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1. Introduction. In this paper we consider a class of matrix interpolation prob-
lems. Rather than attempt to formulate the general problem we will, for clarity of
exposition, first define this problem on the class of positive definite matrices.

Assume we are given two sets of k vectors in Rn, namely {x1, . . . ,xk} and
{y1, . . . ,yk}. What are the exact conditions on these sets of vectors such that there
exists an n × n positive definite matrix A satisfying

Axj = yj , j = 1, . . . , k?(1.1)

Note that we can easily reformulate this problem. For example, we might say:
Assume we are given a set of k vectors {x1, . . . ,xk} in Rn. What are the exact
conditions on another set of k vectors {y1, . . . ,yk} in Rn such that there exists an
n × n positive definite matrix A satisfying

Axj = yj , j = 1, . . . , k?

That is, given a subspace in R
n what is the possible range of the positive definite

matrices on this subspace. Or alternatively, let X be a linear subspace of Rn and T
a linear operator from X into Rn. What are the exact conditions on X and T such
that there exists an n × n positive definite matrix A for which

Ax = Tx, x ∈ X?

That is, when can T be extended to or embedded in a positive definite matrix?
We ask this same question for Hermitian positive definite matrices, positive matri-

ces, strictly totally positive matrices and P-matrices. You may ask this same question
for your favorite class of matrices. We present a complete characterization when deal-
ing with positive definite, Hermitian positive definite, positive and strictly positive
matrices. For the classes of strictly totally positive matrices and P-matrices we have
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necessary conditions that we conjecture to be sufficient, and some partial results. This
paper contains many unanswered questions.

What we are studying is not a matrix completion problem. There is no matrix
to start with. It is an extension or an embedding problem. We chose to term it an
interpolation problem; see (1.1). This is also the name given in Johnson, Smith [5]
where this problem is considered in the case k = 1 for certain classes of matrices.

We have organized the paper as follows. In section 2 we provide a characterization
for the class of positive definite and Hermitian positive definite matrices. We do not
have a similar characterization for the class of Hermitian positive semi-definite and
positive semi-definite matrices. In section 3 we provide a characterization for the
class of positive and strictly positive matrices (they need not be square matrices). In
section 4 we consider strictly totally positive matrices and in section 5 P-matrices. In
these latter two sections we present only partial results. Nonetheless we do present
conjectures on what we believe to be the correct characterizations.

2. Positive Definite. In this section we consider both Hermitian positive defi-
nite and positive definite matrices. An n×n complex matrix A is said to be Hermitian
positive definite if

(Ax,x) > 0(2.1)

for all x ∈ Cn\{0}. An n × n real matrix A is said to be positive definite if

(Ax,x) > 0(2.2)

for all x ∈ Rn\{0}. Here, and in what follows, ( · , · ) denotes the usual inner product,
i.e., for x,y ∈ Cn (or Rn),

(x,y) =
n∑

i=1

xiyi.

Note that the inequalities (2.1) imply that for A = (aij)ni,j=1 we have aij = aji.
However the inequalities (2.2) do not imply the symmetry of A. We say that the
n × n matrix A is Hermitian positive semi-definite and positive semi-definite if weak
inequalities hold in (2.1) and (2.2), respectively.

In this section we always assume, for ease of exposition, that the x1, . . . ,xk are
linearly independent. From the above definition of Hermitian positive definiteness
it immediately follows that given two sets of k vectors in Cn, namely {x1, . . . ,xk}
and {y1, . . . ,yk}, then a necessary condition for the existence of an n× n Hermitian
positive definite matrix A satisfying

Axj = yj , j = 1, . . . , k ,

is that (
k∑

j=1

cjyj ,

k∑
j=1

cjxj

)
> 0
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for all (c1, . . . , ck)T ∈ Ck\{0}. The analogous necessary condition over the reals holds
for the existence of a positive definite matrix.

We prove that this necessary condition is also sufficient. This is hardly surprising.
We were only surprised not to have so far found this result in the literature.

Theorem 2.1. Assume we are given two sets of k vectors in Cn, namely
{x1, . . . ,xk} and {y1, . . . ,yk}. The necessary and sufficient condition for the ex-
istence of an n × n Hermitian positive definite matrix A satisfying

Axj = yj , j = 1, . . . , k ,

is that (
k∑

j=1

cjyj ,

k∑
j=1

cjxj

)
> 0(2.3)

for all (c1, . . . , ck)T ∈ Ck\{0}. Similarly, given two sets of k vectors in Rn, namely
{x1, . . . ,xk} and {y1, . . . ,yk}, the necessary and sufficient condition for the existence
of an n × n positive definite matrix A such that

Axj = yj , j = 1, . . . , k ,

is that (
k∑

j=1

cjyj ,
k∑

j=1

cjxj

)
> 0

for all (c1, . . . , ck)T ∈ Rk\{0}.
Proof. As stated above, the fact that the above conditions are necessary is an

immediate consequence of the definition. We prove that these conditions are also
sufficient. Our proof is essentially the same in both cases. As such we shall assume
we are in the Hermitian positive definite case. For k = n there is nothing to prove.
Assume k < n.

Set

X = span{x1, . . . ,xk} ,

and

Y = span{y1, . . . ,yk} .

Let U = X⊥ and V = Y ⊥. As dimX = k and dimY = k (from (2.3)), it follows that
dimU = dimV = n − k.

We first claim that span{X, V } = span{Y, U} = Cn. To see this assume, in the
negative, that span{X, V } �= Cn. Then there exists an x ∈ X\{0} and a v ∈ V \{0}
such that x+ v = 0. Assume x =

∑k
j=1 cjxj . Thus

0 =

(
k∑

j=1

cjyj ,

k∑
j=1

cjxj + v

)
=

(
k∑

j=1

cjyj ,

k∑
j=1

cjxj

)
+

(
k∑

j=1

cjyj ,v

)
.
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The first bracket on the right-hand side is strictly positive from (2.3) while the second
bracket is zero since v ∈ V = Y ⊥. This is a contradiction. Thus span{X, V } = Cn.
This same reasoning gives us span{Y, U} = Cn.

Let u1, . . . ,un−k be a basis for U . No v ∈ V , v �= {0}, is in U⊥. This follows
from the fact that U⊥ = X and span{X, V } = Cn. This, in turn, implies that there
exist v1, . . . ,vn−k that span a basis for V and satisfy

(vj ,ui) = δij , i, j = 1, . . . , k.(2.4)

We define A as the unique n × n matrix satisfying

Axj = yj , j = 1, . . . , k ,

and

Avi = ui , i = 1, . . . , n − k .

Now (
A

( ∑k
j=1 cjxj +

∑n−k
i=1 divi

)
,
∑k

j=1 cjxj +
∑n−k

i=1 divi

)

=

( ∑k
j=1 cjyj +

∑n−k
i=1 diui,

∑k
j=1 cjxj +

∑n−k
i=1 divi

)

=

( ∑k
j=1 cjyj ,

∑k
j=1 cjxj

)
+

(∑k
j=1 cjyj ,

∑n−k
i=1 divi

)

+

( ∑n−k
i=1 diui,

∑k
j=1 cjxj

)
+

( ∑n−k
i=1 diui,

∑n−k
i=1 divi

)

=

( ∑k
i=1 cjyj ,

∑k
j=1 cjxj

)
+

∑n−k
i=1 |di|2

(2.5)

since from the orthogonality(
k∑

j=1

cjyj ,

n−k∑
i=1

divi

)
=

(
n−k∑
i=1

diui,

k∑
j=1

cjxj

)
= 0,

and from (2.4), (
n−k∑
i=1

diui,

n−k∑
i=1

divi

)
=

n−k∑
i=1

|di|2 .

Both of the last summands in (2.5) are nonnegative and they equal zero if and
only if the coefficients cj and di are all zero. This proves the result.

As stated, in the real case this same analysis proves the existence of an n×n real
matrix A satisfying

(Ax,x) > 0
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for all x ∈ Rn\{0}. It is worth recalling, however, that this does not imply the
symmetry of A. What additional conditions on the xj and the yj , j = 1, . . . , k, are
necessary so that the resulting A is also symmetric? To obtain a symmetric n × n
real matrix A satisfying

(Ax,x) > 0

for all x ∈ Rn\{0} it is necessary and sufficient that(
k∑

j=1

cjyj ,

k∑
j=1

cjxj

)
> 0

for all (c1, . . . , ck)T ∈ Ck\{0}. If A is real and symmetric and satisfies(
k∑

j=1

cjyj ,
k∑

j=1

cjxj

)
> 0

for all (c1, . . . , ck)T ∈ Rk\{0}, then it also satisfies(
k∑

j=1

cjyj ,

k∑
j=1

cjxj

)
> 0

for all (c1, . . . , ck)T ∈ C
k\{0}. Conversely, if the above set of inequalities is satisfied

for all (c1, . . . , ck)T ∈ Ck\{0} and the xj and yj are all real, then from the construc-
tion in the proof of Theorem 2.1 we may obtain a real Hermitian positive definite A,
i.e., a symmetric real positive definite matrix.

The situation for Hermitian positive semi-definite and positive semi-definite ma-
trices is more complicated. We do not have a characterization in this case. The
conditions (

k∑
j=1

cjyj ,

k∑
j=1

cjxj

)
≥ 0

for all (c1, . . . , ck)T ∈ Ck and Rk, respectively, are necessary. However they are not
sufficient. Let x = (1, 1) and y = (1,−1). Then

(cy, cx) = 0

for all c ∈ C. However there is no 2× 2 Hermitian positive semi-definite matrix A for
which Ax = y.

3. Positive. In this section we consider positive and strictly positive (not nec-
essarily square) matrices. An m × n matrix

A = (aij)mi=1
n
j=1
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is said to be positive if

aij ≥ 0

for all i = 1, . . . , m, j = 1, . . . , n. We will say it is strictly positive if

aij > 0

for all i = 1, . . . , m, j = 1, . . . , n.
From the above definition it immediately follows that given two sets of k vectors,

namely {x1, . . . ,xk} in Rn and {y1, . . . ,yk} in Rm, then a necessary condition for
the existence of an m × n positive matrix A satisfying

Axj = yj , j = 1, . . . , k ,

is that if

k∑
j=1

cjxj ≥ 0,

then

k∑
j=1

cjyj ≥ 0.

(This implies that the zero vector is mapped to the zero vector.) A necessary condition
for the existence of an m × n strictly positive matrix A satisfying

Axj = yj , j = 1, . . . , k ,

is that if

k∑
j=1

cjxj = 0,

then

k∑
j=1

cjyj = 0,

while if
∑k

j=1 cjxj �= 0 and

k∑
j=1

cjxj ≥ 0,
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then necessarily

k∑
j=1

cjyj > 0.

We prove that these necessary conditions are also sufficient.
Theorem 3.1. Assume we are given two sets of k vectors, namely {x1, . . . ,xk}

in R
n and {y1, . . . ,yk} in R

m.
a) The necessary and sufficient condition for the existence of an m × n positive

matrix A satisfying

Axj = yj , j = 1, . . . , k ,

is that if

k∑
j=1

cjxj ≥ 0,

then

k∑
j=1

cjyj ≥ 0.

b) The necessary and sufficient condition for the existence of an m × n strictly
positive matrix A satisfying

Axj = yj , j = 1, . . . , k ,

is that if
∑k

j=1 cjxj = 0, then
∑k

j=1 cjyj = 0, and if
∑k

j=1 cjxj �= 0 and

k∑
j=1

cjxj ≥ 0,

then

k∑
j=1

cjyj > 0.

Remark 3.2. If the set span {x1, . . . ,xk} does not contain a non-trivial non-
negative vector, then there exists a strictly positive vector a ∈ Rn orthogonal to each
of the xj. In this case we can take any m × n matrix B satisfying Bxj = yj,
j = 1, . . . , k, and add to each row of B a suitable positive multiple of a to obtain the
desired result.

Proof. The fact that the above conditions are necessary is, as previously stated,
an immediate consequence of the definition. Let us prove that these conditions are
also sufficient.
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We first prove (a). We may assume that the {x1, . . . ,xk} are linearly independent.
For if these vectors are linearly dependent and

∑k
j=1 cjxj = 0, then from the above

conditions we must have
∑k

j=1 cjyj = 0.
Denote the ith coordinate of yj by yj

i , i = 1, . . . , m. The existence of the desired
matrix A is equivalent to the existence, for each i ∈ {1, . . . , m}, of a vector ai ∈ R

n

satisfying ai ≥ 0 and

(ai,xj) = yj
i , j = 1, . . . , k.

This ai will then be the ith row of A. The existence of ai is an immediate consequence
of Farkas’ Lemma; see e.g. Bazarra, Shetty [2, p. 46].

Recall from Farkas’ Lemma that if X is an n × k matrix and y a vector in Rk,
then either there exists an a ≥ 0 satisfying

aT X = y

or there exists a vector b ∈ Rk such that

Xb ≥ 0 and (b,y) < 0.(3.1)

In our case we let X denote the n × k matrix whose columns are x1, . . . ,xk,
respectively, and y = (y1

i , . . . , yk
i )

T . We wish to prove the existence of an a ∈ Rn

satisfying a ≥ 0 and

aT X = y.

If not, then there exists a b ∈ Rk satisfying (3.1), i.e.,

k∑
j=1

bjxj ≥ 0,

where b = (b1, . . . , bk)T , and

k∑
j=1

bjy
j
i =

(
k∑

j=1

bjyj

)
i

< 0.

But this contradicts the condition given in (a).
The proof of (b) is similar. From the assumption in (b) we may assume that

the {x1, . . . ,xk} are linearly independent. Based on the above Remark 3.2 we also
assume that there exists a non-trivial non-negative vector in span {x1, . . . ,xk}.

From a simple variation on Farkas’ Lemma it follows that if X is an n× k matrix
of rank k and y a vector in Rk\{0}, then either there exists an a ∈ Rn satisfying
a > 0 and

aT X = y
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or there exists a vector b ∈ Rk\{0} such that

Xb ≥ 0 and (b,y) ≤ 0.(3.2)

As previously, we let X denote the n × k matrix whose columns are x1, . . . ,xk,
respectively. By assumption X is of rank k. Let y = (y1

i , . . . , yk
i )

T , as above. Since∑k
j=1 cjyj > 0 for some choice of c1, . . . , ck, we have that y �= 0. We wish to prove

the existence of an a ∈ Rn satisfying a > 0 and

aT X = y.

If not, there then exists a b = (b1, . . . , bk)T ∈ Rk\{0} satisfying (3.2), i.e.,

k∑
j=1

bjxj ≥ 0,

where
∑k

j=1 bjxj �= 0, and

k∑
j=1

bjy
j
i =

(
k∑

j=1

bjyj

)
i

≤ 0,

contradicting the condition given in (b).

4. Strictly Totally Positive. An m × n matrix A = (aij)mi=1
n
j=1 is said to be

strictly totally positive (STP) if all its minors are strictly positive. STP matrices were
independently introduced by Schoenberg in 1930 (see [7]; also to be found in [8]) and
by Krein and Gantmacher in the 1930’s. One of the important equivalent properties
defining STP matrices is that of variation diminishing. This was Schoenberg’s initial
contribution to the theory. To explain this more precisely we define, for each x ∈ Rn,
two sign change counts. These are S−(x), which is simply the number of ordered
sign changes in the vector x where zero entries are discarded, and S+(x), which is
the maximum number of ordered sign changes in the vector x where zero entries are
given arbitrary values. Thus, for example,

S−(1, 0, 2,−3, 0, 1) = 2, and S+(1, 0, 2,−3, 0, 1) = 4 .

Note also that S−(0) = 0, while we will set S+(0) = n for 0 ∈ Rn.
The following result is essentially to be found, with variants, in Ando [1], Karlin

[6], and Schoenberg [7].
Theorem VD. Let A be an m × n STP matrix. Then
a) for each vector x ∈ Rn, x �= 0,

S+(Ax) ≤ S−(x),

b) if S+(Ax) = S−(x), then the sign of the first (and last) component of Ax
(if zero, the sign given in determining S+(Ax)) agrees with the sign of the
first (and last) nonzero component of x. (If Ax = 0, then we do not concern
ourselves with the signs.)
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Conversely, if (a) and (b) hold for some m × n matrix A and every x ∈ Rn, x �= 0,
then A is STP.

One consequence of the above theorem is the following. Assume we are given
k linearly independent vectors x1, . . . ,xk in Rn and vectors y1, . . . ,yk in Rm. A
necessary condition for the existence of an m × n STP matrix A satisfying

Axj = yj , j = 1, . . . , k ,

is that

S+

(
k∑

j=1

cjyj

)
≤ S−

(
k∑

j=1

cjxj

)
(4.1)

for all (c1, . . . , ck)T ∈ R
k\{0}, and if equality occurs in (4.1) then the sign patterns

necessarily agree, as in the statement of Theorem VD.
From Theorem VD we have that this condition is also sufficient if k = n. We

conjecture that this condition is always sufficient. We have proved this conjecture
when k = 1. However the proof is technical and cumbersome and does not seem to
generalize. As such, we will not reproduce it here. In our proof we first reduce the
problem to that of a totally positive (see below) nonsingular square matrix. We then
use the basic fact that all totally positive nonsingular square matrices are products of
matrices with strictly positive diagonal entries, and all other entries zero aside from
one positive entry in one of the first off-diagonals. These one positive off-diagonal
entries permit us to add a positive multiple of any one coefficient of x to its neighbor.
These are the essentials ingredients used in the proof. Anyone particularly interested
in the proof can e-mail me and I will send him/her a TeX file with a proof.

An m × n matrix A = (aij)mi=1
n
j=1 is said to be totally positive (TP) if all its

minors are non-negative. An analogue of Theorem VD holds for TP matrices, except
that each S+(Ax) is replaced by S−(Ax). We expect that something similar to the
above conjecture will also hold in the case of TP matrices.

This problem, for STP matrices, is related to the problem of embedding functions
in a Markov system.

5. P-matrices. An n × n (real) matrix A is said to be a P-matrix if all its
principal minors are strictly positive. P-matrices were introduced by Fiedler, Pták
[3], [4], and one of the equivalent definitions of a P-matrix is that A is a P-matrix if
and only if for every x ∈ Rn\{0} we have

max
i=1,...,n

(Ax)i xi > 0 .

As such it is natural to conjecture the following. Assume we are given k lin-
early independent vectors x1, . . . ,xk in Rn and vectors y1, . . . ,yk in Rn. Then the
necessary and sufficient conditions implying the existence of an n × n P-matrix A
satisfying

Axj = yj , j = 1, . . . , k .
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is that

max
i=1,...,n

(
k∑

j=1

cjyj)i (
k∑

j=1

cjxj)i > 0 ,

for every choice of (c1, . . . , ck)T ∈ R
k\{0}. It is proven in Johnson, Smith [5] that

this conjecture is valid in the case k = 1. An explanation thereof is sufficiently simple
to warrant repeating. Assume we are given x,y ∈ Rn\{0} with xmym > 0. Let
A = (aij)ni,j=1 where

aij =




ym

xm
, i = j = m

1, i = j �= m
yi−xi

xm
, i �= m, j = m

0, otherwise.

Then, as is easily checked, Ax = y and A is a P-matrix.
In Johnson, Smith [5] can also be found the solution to this same problem for

M-matrices in the case k = 1.
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