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Abstract. A multilinear approach based on Grassmann representatives and matrix compounds
is presented for the identification of reducing pairs of subspaces that are common to two or more
matrices. Similar methods are employed to characterize the deflating pairs of subspaces for a regular
matrix pencil A + sB, namely, pairs of subspaces (L,M) such that AL ⊆ M and BL ⊆ M.
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1. Introduction. The notions of invariant, reducing and deflating subspaces
are well known in linear algebra and matrix theory. Invariant and reducing subspaces
play a key role in studying the spectral properties and canonical forms of matrices
and have a number of important applications [3]. The concept of a deflating subspace
is of particular importance in matrix pencil theory and in solving matrix algebraic
equations arising in optimization and control theory [1]. The existence of a non-trivial
common invariant subspace for two matrices is considered in [2] and [9] by employing
some basic tools of multilinear algebra. Under certain assumptions, a procedure to
check whether such a subspace exists is proposed in [2], and a general necessary and
sufficient condition is obtained in [9]. In this paper, the approach of [9] is extended to
characterize and study the existence of non-trivial reducing and deflating subspaces
for two matrices. In particular, Section 3 contains necessary and sufficient conditions
for the existence of a reducing subspace of dimension k (1 ≤ k < n) for a pair of
matrices. The main result in Section 4 is a characterization of the deflating subspaces
for a regular matrix pencil that also yields some reducibility conditions. The results
and their usage are illustrated in Section 5.

2. Preliminaries. Let 〈. , .〉 be the usual inner product on Cn, i.e., 〈x, y〉 = x∗y
(x, y ∈ Cn), where * denotes complex conjugate transposition. Recall first that the
sum of two subspaces L and M of Cn is defined as L + M = {z ∈ Cn : z =
x+ y, x ∈ L, y ∈ M}. The sum is said to be direct if L∩M = {0} in which case it is
denoted by L+̇M. The subspaces L and M are complementary (direct complements)
if L∩M = {0} and L+̇M = Cn. Subspaces L and M are orthogonal if 〈x, y〉 = 0 for
every x ∈ L and y ∈ M; they are orthogonal complements if, in addition, they are
complementary. In the latter case we write L = M⊥ and M = L⊥.

For any A ∈ Cn×n and S ⊆ Cn, AS denotes the set {Ax : x ∈ S}. A subspace
L ⊆ Cn is invariant for A ∈ Cn×n (or A−invariant) if AL ⊆ L. An A−invariant
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subspace L is A−reducing if there exists a direct complement M to L in Cn that
is also A−invariant; the pair of subspaces (L,M) is then called a reducing pair for
A. Clearly, {0}, Cn and the generalized eigenspaces of A ∈ Cn×n are examples of
A−reducing subspaces.

Let A, B ∈ Cn×n and L,M ⊆ Cn be k−dimensional subspaces, where 0 ≤ k ≤ n.
Then L and M are called deflating subspaces for A and B if AL ⊆ M and BL ⊆ M.
As k = 0 and k = n correspond to the trivial cases L = M = {0} and L = M = Cn,
respectively, we shall consider the cases 1 ≤ k < n.

The following basic notation and facts from multilinear algebra will be used;
see e.g., [6]. Given positive integers k ≤ n, let Qk,n be the set of all k−tuples of
{1, . . . , n} with elements in increasing order. The members of Qk,n are considered
ordered lexicographically.

For any matrix X ∈ Cm×n and nonempty α ⊆ {1, . . . , m}, β ⊆ {1, . . . , n},
let X [α |β] denote the submatrix of X in rows and columns indexed by α and β,
respectively. Given an integer 0 < k ≤ min{m, n}, the k−th compound of X is
defined as the

(
m
k

) × (
n
k

)
matrix

X(k) = (det X [α |β])α∈Qk,m,β∈Qk,n
.

Matrix compounds satisfy (XY )(k) = X(k)Y (k). The exterior product of the vectors
xi ∈ Cn (i = 1, . . . , k), denoted by x1 ∧ . . . ∧ xk, is the

(
n
k

)−component vector equal
to the k−th compound of X = [x1 | . . . |xk]; i.e.,

x1 ∧ . . . ∧ xk = X(k).

Consequently, if A ∈ Cn×n and 0 < k ≤ n, the first column of A(k) is precisely the
exterior product of the first k columns of A. Exterior products satisfy the following:

x1 ∧ . . . ∧ xk = 0 ⇐⇒ x1, . . . , xk are linearly dependent.(2.1)

µ1x1 ∧ . . . ∧ µkxk =
k∏

i=1

µi(x1 ∧ . . . ∧ xk) (µi ∈ C).(2.2)

A(k)(x1 ∧ . . . ∧ xk) = Ax1 ∧ . . . ∧ Axk.(2.3)

A vector x ∈ Λk(Cn) in the k−th Grassmann space over Cn, is called decomposable
if x = x1 ∧ . . . ∧ xk for some xi ∈ Cn (i = 1, . . . , k). We refer to x1, . . . , xk as the
factors of x. By conditions (2.2) and (2.3), those decomposable vectors whose factors
are linearly independent eigenvectors of A ∈ Cn×n are eigenvectors of A(k). The
spectrum of A(k) coincides with the set of all possible k−products of the eigenvalues
of A. In general, not all eigenvectors of a matrix compound are decomposable.

Consider now a k−dimensional subspace L ⊆ Cn spanned by {x1, . . . , xk}. By
(2.1) and the definition of the exterior product it follows that

L = {x ∈ C
n : x ∧ x1 ∧ . . . ∧ xk = 0}.
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The vector x1∧. . .∧xk is known as a Grassmann representative of L. As a consequence,
two k−dimensional subspaces spanned by {x1, . . . , xk} and {y1, . . . , yk}, respectively,
coincide if and only if for some nonzero µ ∈ C,

x1 ∧ . . . ∧ xk = µ(y1 ∧ . . . ∧ yk);(2.4)

that is, Grassmann representatives for a subspace differ only by a nonzero scalar
factor.

Finally, let A ∈ Cn×n and let L ⊆ Cn be an A−invariant subspace with basis
{x1, . . . , xk}. We shall use the fact that any Grassmann representative of L is an
eigenvector of A(k). This is seen by noting that if AL ⊆ L, then properties (2.1) and
(2.3) imply that A(k)(x1 ∧ . . . ∧ xk) is either 0 or a Grassmann representative of L;
that is, A(k)(x1 ∧ . . . ∧ xk) is indeed a scalar multiple of x1 ∧ . . . ∧ xk �= 0.

3. Reducing subspaces. In this section, we present reducibility conditions for
two matrices based on a relationship between Grassmann representatives of reduc-
ing subspaces and eigenvectors of matrix compounds. First is an auxiliary result
characterizing complementary subspaces.

Lemma 3.1. Let L,M ⊂ Cn be subspaces with dim L = k and dim M = n − k,
1 ≤ k < n, and let x, y ∈ Λk(Cn) be Grassmann representatives of L and M⊥,
respectively. The following are equivalent.

(i) L and M are direct complements in Cn.
(ii) Vectors x and y satisfy 〈x, y〉 �= 0.
Proof. Since dim L+ dim M = n, condition (i) is equivalent to

L ∩M = {0}.(3.1)

Let {x1, . . . , xk} and {y1, . . . , yk} be bases of L and M⊥, respectively, and consider
the n × k matrices X = [x1 | . . . |xk] and Y = [y1 | . . . | yk]. Then, up to nonzero
scalar multiples, x = x1 ∧ . . .∧xk and y = y1∧ . . .∧yk. By the Cauchy-Binet formula
for the determinant it can be seen that 〈x, y〉 = det X∗Y. Hence, in order to prove
the lemma, we need only show that (3.1) is equivalent to det X∗Y �= 0.

Assume first that X∗Y is singular. Then there exists a nonzero vector u ∈ Ck

such that u∗X∗Y v = 〈Xu, Y v〉 = 0 for all v ∈ C
k. Thus, 0 �= Xu ∈ L and since

M⊥ = {Y v : v ∈ Ck}, it follows that Xu ∈ M, which contradicts (3.1). Conversely,
if L and M have a common nonzero vector z, then z = Xu for some u ∈ Ck and also
z is orthogonal to all vectors in M⊥; i.e., u∗X∗Y v = 0 for all v ∈ Ck. This implies
that X∗Y is singular.

Recall that if A ∈ Cn×n and λ, µ are distinct eigenvalues of A, then by the
biorthogonality principle (see e.g., [5]), each left eigenvector of A corresponding to µ
is orthogonal to each right eigenvector of A corresponding to λ.

Given matrices A, B ∈ C
n×n and vectors x, y ∈ C

n, we shall say that (x, y) is
a common pair of right and left eigenvectors of A and B if x is a common right
eigenvector of A and B and y is a common left eigenvector of A and B.

Theorem 3.2. Let A, B ∈ Cn×n and 1 ≤ k < n. The following are equivalent.
(i) There exist subspaces L,M ⊂ Cn of dimensions k and n−k, respectively, such

that (L,M) is a common reducing pair for A and B.
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(ii) For all s ∈ C, (A+ sI)(k) and (B + sI)(k) have a common pair (x, y) of right
and left eigenvectors x, y ∈ Λk(Cn) that are decomposable and satisfy 〈x, y〉 �= 0.

(iii) There exists ŝ ∈ C such that (A+ ŝI) and (B+ ŝI) are nonsingular, and such
that (A+ ŝI)(k), (B + ŝI)(k) have a common pair (x, y) of right and left eigenvectors
x, y ∈ Λk(Cn) that are decomposable and satisfy 〈x, y〉 �= 0.

Moreover, when either of these conditions hold, x and y in (ii) and (iii) are
Grassmann representatives of L and M⊥, respectively.

Proof. (i) ⇒ (ii). Let (L,M) be a reducing pair for A and B with dim L = k
and dim M = n − k; i.e., L and M are common invariant subspaces of A and
B that are complementary in Cn. Let {x1, . . . , xk} and {y1, . . . , yk} be bases of L
and M⊥, respectively. Since AL ⊆ L and BL ⊆ L if and only if (A + sI)L ⊆ L
and (B + sI)L ⊆ L for all s ∈ C, it follows by the discussion in Section 2 that
x = x1 ∧ . . . ∧ xk is a common right eigenvector of (A + sI)(k) and (B + sI)(k).
Similarly, (A + sI)M ⊆ M and (B + sI)M ⊆ M for all s ∈ C, which is also
equivalent to (A+ sI)∗M⊥ ⊆ M⊥ and (B + sI)∗M⊥ ⊆ M⊥. Thus, y = y1 ∧ . . .∧ yk

is a common right eigenvector of ((A+sI)∗)(k) and ((B+sI)∗)(k); due to the compound
matrix property ((X)∗)(k) = ((X)(k))∗, we have that y is a common left eigenvector
of (A + sI)(k) and (B + sI)(k). Since L and M are complementary, it follows by
Lemma 3.1 that 〈x, y〉 �= 0.

(ii) ⇒ (iii). Follows trivially.
(iii)⇒ (i). Let ŝ be such that (A+ ŝI) and (B+ ŝI) are nonsingular and let (x, y)

with x = x1∧ . . .∧xk, y = y1∧ . . .∧yk be a common pair of right and left eigenvectors
of (A + ŝI)(k) and (B + ŝI)(k) such that 〈x, y〉 �= 0. Then (A + ŝI)(k) is nonsingular
and there exists nonzero λ ∈ C such that

(A + ŝI)(k)x = (A + ŝI)x1 ∧ . . . ∧ (A + ŝI)xk

= λ(x1 ∧ . . . ∧ xk).(3.2)

By the biorthogonality principle, 〈x, y〉 �= 0 implies that y corresponds to the same
eigenvalue λ of (A + ŝI)(k), i.e.,

((A + ŝI)(k))∗y = ((A + ŝI)∗)(k)y

= (A + ŝI)∗y1 ∧ . . . ∧ (A + ŝI)∗yk

= λ(y1 ∧ . . . ∧ yk).(3.3)

By (3.2) it follows that the subspace spanned by {x1, . . . , xk} coincides with the
subspace spanned by {(A + ŝI)x1, . . . , (A + ŝI)xk}. Thus, L = span {x1, . . . , xk} is
an invariant subspace of (A + ŝI) and hence of A. Similarly, it follows from (3.3)
that span {y1, . . . , yk} is an invariant subspace of A∗ or, equivalently, that M =
(span {y1, . . . , yk})⊥ is an invariant subspace of A. Since x and y are right and left
eigenvectors of (B + ŝI)(k), respectively, the same argument as above shows that L
and M also are invariant subspaces of B. By Lemma 3.1, the inequality 〈x, y〉 �= 0
implies that L and M are direct complements, completing the proof.

Obviously,the above result can be easily extended to the case of any number of
matrices having a common pair of reducing subspaces. In the special case of M = L⊥

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 11, pp. 246-257, November 2004



ELA

250 V. Monov and M. Tsatsomeros

in condition (i) of Theorem 3.2, we obtain conditions for simultaneous reducibility of
A and B by orthogonal complements.

Corollary 3.3. Let A, B ∈ Cn×n and 1 ≤ k < n. The following are equivalent.
(i) There exists a subspace L ⊂ Cn of dimension k such that (L,L⊥) is a common

reducing pair for A and B.
(ii) There exists decomposable x ∈ Λk(Cn) such that for all s ∈ C, x is a common

eigenvector of (A + sI)(k), (A∗ + sI)(k), (B + sI)(k) and (B∗ + sI)(k).

(iii) There exists decomposable x ∈ Λk(Cn) and ŝ ∈ C such that (A + ŝI) and
(B + ŝI) are nonsingular and x is a common eigenvector of (A+ ŝI)(k), (A∗ + ŝI)(k),
(B + ŝI)(k) and
(B∗ + ŝI)(k).

Moreover, when either of these conditions hold, x in (ii) and (iii) is a Grassmann
representative of L.

It should be noted that the above corollary also follows from [9, Theorem 2.2 ]
by recalling that (L,L⊥) is a common reducing pair for A and B if and only if L is a
common invariant subspace of A, A∗, B and B∗.

As another special case, we note that Theorem 3.2 and Corollary 3.3 provide
reducibility conditions for a single matrix. It is clear that not every A ∈ Cn×n has an
A−reducing subspace of arbitrary dimension k. For instance, if A is an n−dimensional
Jordan block, it can be shown that the only A−reducing subspaces are {0} and Cn.
In the next example, we illustrate how Theorem 3.2 can be employed to rule out the
existence of reducing subspaces of a given matrix.

Example 3.4. Let n = 4, k = 1 and

A =




1 1 0 0
0 1 0 0
0 0 −1 1
0 0 0 −1


 .

The distinct eigenvalues of A are λ1 = 1 and λ2 = −1. A(1) = A has a pair of
right and left eigenvectors x1 = [1 0 0 0]T and y1 = [0 1 0 0]T corresponding to
λ1 = 1, and a pair of right and left eigenvectors x2 = [0 0 1 0]T and y2 = [0 0 0 1]T

corresponding to λ2 = −1. Since we consider the first compound of A, the requirement
for decomposability of x1, x2, y1 and y2 is trivially satisfied. Notice, however, that
〈x1, y1〉 = 〈x2, y2〉 = 0, showing that conditions (ii) and (iii) of Theorem 3.2 are not
satisfied and thus A does not have any reducing subspaces of dimension k = 1; neither
does any matrix similar to A. A similar argument applies to the case k = 3.

4. Deflating subspaces. Given two matrices A, B ∈ Cn×n, the generalized
Schur theorem [4] shows that for each 1 ≤ k < n there exist k−dimensional deflating
subspaces for A and B. The problem of computing these subspaces is well-studied
from a numerical point of view due to its application in solving generalized eigenvalue
problems [7] and a large class of matrix algebraic equations [1]. In this section, we give
a characterization of the non-trivial deflating subspaces for a regular matrix pencil
using basically the multilinear approach. This characterization also enables us to
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formulate conditions for reducibility of a matrix pencil by equivalence transformations.
We begin with the following necessary condition.

Proposition 4.1. Let A, B ∈ Cn×n and L,M ⊂ Cn be subspaces of dimension
k (1 ≤ k < n). If L,M are deflating subspaces for A and B, then there exist nonzero
decomposable vectors x, y ∈ Λk(Cn) and r, q ∈ C such that

A(k)x = ry and B(k)x = qy.(4.1)

Moreover, x and y are Grassmann representatives of L and M, respectively.
Proof. Let {x1, . . . , xk} and {y1, . . . , yk} be bases of L and M, respectively.

Augment these into bases of Cn, thus forming invertible matrices

L = [x1 | . . . |xk |xk+1 | . . . |xn] and M = [y1 | . . . | yk | yk+1 | . . . | yn].

Then, as by assumption AL ⊆ M and BL ⊆ M,

R := M−1AL =
[

A′
11 A′

12

0 A′
22

]
and Q := M−1BL =

[
B′

11 B′
12

0 B′
22

]
,

where A′
11 and B′

11 are k × k matrices. Taking k-th compounds of the equations
above, we obtain

A(k)L(k) = M (k)R(k) and B(k)L(k) = M (k)Q(k).

Since R and Q are block upper triangular, and since the first columns of L(k) and
M (k) are

x = x1 ∧ . . . ∧ xk and y = y1 ∧ . . . ∧ yk,

respectively, we have that (4.1) holds. Notice that r = detA′
11, q = detB′

11 and that
x, y are Grassmann representatives of L and M, respectively.

Given deflating subspaces L,M for A and B, and referring to the notation in
Proposition 4.1, it can be seen that

AL = M and BL = M if and only if r �= 0 and q �= 0.

Indeed, if r �= 0, A(k)x is a Grassmann representative of M and thus {Ax1, . . . , Axk}
is a basis for M; i.e., AL = M. Moreover, if r �= 0 and q �= 0, it follows from (4.1)
that (

1
r
A(k) − 1

q
B(k)

)
x = 0 and A(k)x �= 0.(4.2)

Conversely, if (4.2) holds for some r �= 0, q �= 0 and a nonzero decomposable vector
x = x1 ∧ . . . ∧ xk, then

A(k)x =
q

r
B(k)x �= 0
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or

Ax1 ∧ . . . ∧ Axk =
q

r
(Bx1 ∧ . . . ∧ Bxk) �= 0,

which is equivalent to

span{Ax1, . . . , Axk} = span{Bx1, . . . , Bxk}.
Since A(k)x �= 0, letting

L := span{x1, . . . , xk} and M := span{Ax1, . . . , Axk},
we have that AL ⊆ M and BL ⊆ M; i.e., L and M are k-dimensional deflating
subspaces for A and B. In fact, as r �= 0 and q �= 0, it follows that AL = M and
BL = M. We have thus shown the following result.

Theorem 4.2. Let A, B ∈ Cn×n and L,M ⊂ Cn be subspaces of dimension k
(1 ≤ k < n). The following are equivalent.

(i) AL = M and BL = M.
(ii) There exist nonzero s1, s2 ∈ C and Grassmann representative x ∈ Λk(Cn) of

L such that (
s1A

(k) + s2B
(k)

)
x = 0

and such that A(k)x �= 0 is a Grassmann representative of M.
In the rest of this section, we consider matrix pencils of the form A+sB, denoted

by (A, B). Recall that (A, B) is called regular if det (A + sB) is not identically zero
as a function of s.

Lemma 4.3. Let A, B ∈ Cn×n and L,M ⊂ Cn be subspaces of dimension k
(1 ≤ k < n). Suppose that (A, B) is a regular pencil. The following are equivalent.

(i) AL ⊆ M and BL ⊆ M.
(ii) (A + ŝB)L = M for some ŝ ∈ C and BL ⊆ M.
(iii) (A + sB)L ⊆ M for all s ∈ C and BL ⊆ M.
Proof. (i) ⇒ (ii). Since A + sB is a regular pencil, there exists ŝ ∈ C such

that A + ŝB is invertible. Thus (A + ŝB)L is also a k-dimensional subspace and so
(A + ŝB)L = M.

(ii) ⇒ (iii). For any s ∈ C, (A+ sB)L = (A+ ŝB + (s− ŝ)B)L ⊆ M+M = M.
(iii)⇒ (i). Choose s = 0 in (iii).
Of course, in the above lemma, the equivalence of (i) and (iii) and the implication

(ii) ⇒ (i) hold for all matrix pencils.
Theorem 4.4. Let A, B ∈ Cn×n and L,M ⊂ Cn be subspaces of dimension k

(1 ≤ k < n). Suppose that (A, B) is a regular pencil. The following are equivalent.
(i) L and M are deflating subspaces for A and B, i.e., AL ⊆ M and BL ⊆ M.
(ii) There exist ŝ, t̂, s1, s2 ∈ C, s1 �= 0, s2 �= 0, and Grassmann representative

x ∈ Λk(Cn) of L such that
(
s1(A + ŝB)(k) + s2

(
B + t̂(A + ŝB)

)(k)
)

x = 0
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and such that (A + ŝB)(k)x �= 0 is a Grassmann representative of M.
Proof. As (A, B) is a regular pencil, by Lemma 4.3 applied to A and B, (i) is

equivalent to

(A + ŝB)L = M for some ŝ ∈ C and BL ⊆ M.

In turn, by Lemma 4.3 applied to B and A + ŝB, it follows that (i) is equivalent to

(A + ŝB)L = M and
(
B + t̂(A + ŝB)

)L = M for some t̂ ∈ C.(4.3)

Now the claimed equivalence of (i) and (ii), as well as the nature of x and (A+ŝB)(k)x
as Grassmann representatives follow from Theorem 4.2.

Remark 4.5. Under the assumption that (A, B) is a regular pencil, ŝ can be
chosen such that A+ŝB is invertible and in this case, the inequality (A+ŝB)(k)x �= 0 in
(ii) is satisfied for all nonzero x ∈ Λk(Cn). However, it can be seen that in Theorem 4.4,
condition (ii) implies (i) without the regularity assumption for (A, B). That is, if (ii) is
satisfied then the factors of x and (A+ŝB)(k)x are basis vectors for two k−dimensional
deflating subspaces for A and B.

Theorem 4.4 can be used to obtain necessary and sufficient reducibility conditions
for a regular matrix pencil via equivalence transformations as follows.

Proposition 4.6. Let A, B ∈ Cn×n, L,M ⊂ Cn be subspaces of dimension
k (1 ≤ k < n) and L̃,M̃ ⊂ Cn be direct complements of L and M, respectively.
Suppose that (A, B) is a regular pencil. The following are equivalent.

(i) (L,M) and (L̃,M̃) are deflating pairs for A and B, i.e.,

AL ⊆ M, BL ⊆ M and AL̃ ⊆ M̃, BL̃ ⊆ M̃.

(ii) There exist ŝi, t̂i ∈ C (i = 1, 2), nonzero si ∈ C (i = 1, . . . , 4) and Grassmann
representatives x, y ∈ Λk(Cn) of L and M̃⊥, respectively, such that

(
s1(A + ŝ1B)(k) + s2

(
B + t̂1(A + ŝ1B)

)(k)
)

x = 0,(4.4)

(
s3(A + ŝ2B)(k) + s4

(
B + t̂2(A + ŝ2B)

)(k)
)∗

y = 0,(4.5)

〈y, (A + ŝ1B)(k)x〉 �= 0, 〈x,
(
(A + ŝ2B)(k)

)∗
y〉 �= 0,(4.6)

and such that (A + ŝ1B)(k)x �= 0,
(
(A + ŝ2B)(k)

)∗
y �= 0 are Grassmann represen-

tatives of M and L̃⊥, respectively. The proof of this proposition is an immediate
application of Theorem 4.4 and Lemma 3.1.

Remark 4.7. Assuming (A, B) to be a regular pencil, ŝ1 and t̂1 in (4.4) can be
chosen such that A + ŝ1B and B + t̂1(A + ŝ1B) are invertible; in this case one can
take in (4.5) ŝ2 = ŝ1, t̂2 = t̂1 and omit the second inequality in (4.6). As mentioned
in Remark 4.5, condition (ii) above implies (i) for every matrix pencil, without the
requirement of regularity.

Remark 4.8. Proposition 4.6 with L̃ = L⊥ and M̃ = M⊥ provides reducibility
conditions for (A, B) via unitary equivalence transformations.
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5. Practical considerations. In this section we illustrate strategies for finding
(common) reducing pairs of subspaces and deflating subspaces. For the case of reduc-
ing pairs, we will use the following criterion for the existence of a common eigenvector
among two matrices.

Theorem 5.1. ([8]) Let X, Y ∈ Cp×p and

K(X, Y ) =
p−1∑

m,�=1

[Xm, Y �]∗[Xm, Y �],

where [Xm, Y �] denotes the commutator XmY � − Y �Xm. Then X and Y have a
common eigenvector if and only if K is not invertible.

Example 5.2. Let us consider whether

A =




0.5 −6 −6 −1.5
0.5 3 1 −0.5

−0.5 0 2 0.5
−1.5 −6 −6 0.5


 and B =




2.5 −3 −4 0.5
0.5 −2 −4 −0.5

−0.5 0 2 0.5
0.5 −3 −2 2.5




have a common reducing pair of subspaces of dimension k = 2. For that purpose,
recall Theorem 3.2 and in particular its third clause. The spectrum of A is {−1, 2, 3}
and the spectrum of B is {−2, 1, 3}. Thus A and B are nonsingular and we can take
ŝ = 0. Next compute the second compounds of A and B:

X = A(2) =




4.5 3.5 0.5 12 7.5 4.5
−3 −2 −0.5 −12 −3 0
−12 −12 −2 0 −12 −12
1.5 1.5 0 6 1.5 1.5
1.5 −1.5 −0.5 −12. −1.5 −2.5
3 6 0.5 12 3 4




,

Y = B(2) =




−3.5 −8 −1.5 4 2.5 4
−1.5 3 1.5 −6 −1.5 −3
−6 −3 6 −6 −6 −9
−1 −1 0 −4 −1 −1
−0.5 1 1.5 −8 −6.5 −11
1.5 0 −1.5 6 1.5 6




.

Referring to Theorem 5.1, the matrices K = K(X, Y ) and K ′ = K(XT , Y T ) are
singular and so X, Y have common right and left eigenvectors. Note that if either
K or K ′ were nonsingular, Theorem 3.2 would imply that A and B do not have a
common reducing pair of subspaces.

Using Matlab’s null routine, we find that

Nul (X + 3I) = span{x}, where x = [−1 0 0 0 1 0 ]T ;

notice that Y x = −6x and thus x is a common right eigenvector of X, Y . Similarly,
we see that

Nul (Y T + 6I) = span{y}, where y = [−1 −1 0 0 1 1 ]T ;
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notice that XT y = −3y and thus y is a common left eigenvector of X, Y .
Next we examine the decomposability of x, y. The quadratic Plücker relations for

decomposability can be used in this instance (see [6, Vol. II, §4.1, Definition 1.1]).
For example,

[x1, . . . , x6]T ∈ Λ2(C4) is decomposable if and only if x1x6 − x2x5 + x3x4 = 0.

It follows that x, y are decomposable. In fact, x = α1 ∧α2 and y = β1 ∧ β2, where

α1 = [ 1 1 0 1 ]T , α2 = [ 1 −1 0 1 ]T ,

β1 = [ 0 1 1 0 ]T , β2 = [ 1 0 0 1 ]T .

Notice that 〈x, y〉 �= 0. Hence, letting

L = span{α1, α2} and M = (span{β1, β2})⊥,

by Theorem 3.2 we have that (L,M) is a common reducing pair for A and B. Indeed,
if

L =




1 0 1 1
0 1 1 −1
0 −1 0 0

−1 0 1 1


 ,

where the first two columns of L have been computed to be a basis for M as defined
above, we obtain the following simultaneous reductions of A and B:

L−1AL =



2 0 0 0
1 2 0 0
0 0 −2 1
0 0 −5 4


 and L−1BL =



2 1 0 0
1 2 0 0
0 0 −1 4
0 0 1 2


 .

Example 5.3. In this example let us consider whether

A =




2 −4 3 1
−6 7 −5 0
9 −11 8 0
4 −7 6 2


 and B =



7 −9 8 4
3 −6 6 4
4 −2 1 −1
6 −6 5 2




have a pair of deflating subspaces of dimension k = 2. For that purpose, compute the
second compounds of A and B:

A(2) =




−10 8 6 −1 −7 5
14 −11 −9 1 11 −8
2 0 0 −3 −1 0
3 −3 0 1 0 0
14 −16 −12 7 14 −10

−19 22 18 −10 −22 16




,
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B(2) =




−15 18 16 −6 −12 8
22 −25 −23 7 17 −12
12 −13 −10 3 6 −4
18 −21 −19 6 14 −10
18 −21 −18 6 12 −8

−12 14 14 −4 −10 7




.

Referring to Theorem 4.2 (ii) and taking s1 = s2 = 1, we have that A(2) + B(2) is
singular and its nullspace is spanned by

x = [−1 −1 0 −1 1 1 ]T .

Consider also y = A(2)x. The vectors x, y are decomposable since

x = α1 ∧ α2 and y = β1 ∧ β2,

where

α1 = [−1 0 1 −1 ]T , α2 = [ 1 1 0 1 ]T ,

β1 = [ 1 0 1 1 ]T , β2 = [ 1 1 0 1 ]T .

It follows from Theorem 4.2 that if we let

L = span{α1, α2} and M = span{β1, β2}
then AL = M and BL = M. By the proof of Theorem 4.2, if we choose invertible
matrices L and M whose first two columns are α1, α2 and β1, β2, respectively, then
a simultaneous deflation of A and B is achieved via the equivalences M−1AL and
M−1BL.

To conclude, our results and their illustration above raise the question of whether
a subspace of the k-th Grassmann space over C

n contains a nonzero decomposable
vector or not. Also, the question arises of how to take full advantage of our results
by computing bases for the reducing or deflating subspaces; that is, how to find the
factors of a decomposable vector. The answers to these questions are related to the
dimension of the Grassmann variety and are examined in [9]. However, these issues
present substantial challenges in theoretical and computational terms.
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