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ON CAYLEY’S FORMULA FOR COUNTING TREES IN NESTED
INTERVAL GRAPHS∗

DON COPPERSMITH† AND ZVI LOTKER‡

Abstract. In this paper it is shown that the spectrum of a nested interval graph has a very
simple structure. From this result a formula is derived to the number of spanning trees in a nested
interval graph; this is a generalization of the Cayley formula.
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1. Introduction. Given a graph G = (V,E) with vertices V = V (G) and edges
E = E(G), a spanning tree T = (V,E′) of G is a connected subgraph of G having
no cycles. That is, T is a connected graph with V (T ) = V (G), E(T ) ⊆ E(G), and
|E′| = |V | − 1. One natural and very old problem is to determine the number t(G) of
labeled spanning trees for a fixed graph G, or better yet, give a formula of t(Gi) for
each graph Gi in a family G = {G1, G2, . . .}.

Related Work. The first result on counting the number of spanning trees in Kn

(the complete graph) is due to Cayley [1], who proved that t(Kn) = nn−2. This result
was originally stated in terms of counting the number of labeled trees on n vertices,
his motivation coming from the enumeration of certain chemical isomers. Kirchoff [2]
was later able to find a general algebraic method to find t(G), known as the Matrix
Tree Theorem. Let A = A(G) be the adjacency matrix of G, i.e. ai,j = 1 if vertex
vi is adjacent to vertex vj and ai,j = 0 otherwise. The Laplacian matrix of graph
G is L(G) = D(G) − A(G), where D(G) is a diagonal matrix where di,i is equal to
the degree di of vertex vi of the graph. We sometimes write L instead of L(G). We
denote row i of L(G) by

−−−→
L(G)i. One property of L(G) is that its smallest eigenvalue

is 0 and the corresponding eigenvector is (1, 1, . . . , 1). If G is connected, all other
eigenvalues are greater than 0. Let L(G)[u] denote the submatrix of L(G) obtained
by deleting row u and column u. Then, by the Matrix Tree Theorem, for each vertex
u ∈ V we have t(G) = | det(L(G)[u])|. One can phrase the Matrix Tree Theorem in
terms of the spectrum of the Laplacian matrix. The next theorem appears in [4, p.
284]; it connects the eigenvalues of the Laplacian of G and t(G).

Theorem 1.1. Let G be a graph on n vertices, and λ1 ≤ λ2 ≤ · · · ≤ λn be the
eigenvalues of the Laplacian of G. Then the number of labeled spanning trees in G is
1
n

∏n
i=2 λi.
Finding the Laplacian spectrum of infinite families of graphs is a well explored

problem; for instance, the spectrum of Kn is {01, nn−1}. For more families of graphs
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see the survey [3].

2. Interval Graphs. A graph G is called an interval graph if its vertices can
be assigned to intervals on the real line so that two vertices are adjacent in G if and
only if their assigned intervals intersect. The set of intervals assigned to the vertices
of G is called a realization of G. If the set of intervals can be chosen to be nested
(i.e. if the intersection of two intervals is not empty then one of the intervals is nested
in the other), then G is called a nested interval graph.

Let G = (V,E) be a nested interval graph with Ii = [ai, bi], i = 1, 2, . . . , n
intervals. For the sake of simplicity, we denote the node that represents the interval
Ii by i. We denote the neighborhood of vertex i by N(i) = {j : Ii ∩ Ij �= ∅}; note
that then i ∈ N(i). Without loss of generality, we assume that all the vertices that
have the same neighborhood have the same interval; i.e. if N(i) = N(j) then Ii = Ij .
Vertices i, j are similar if N(i) = N(j). Let π = (π1, π2, . . . , πt) be the partition of
the vertices generated by the similar equivalence relation and let r1, . . . , rt ∈ V be the
representatives of the partition. Let Π(i) be the set of all vertices that have the same
neighborhood as the vertex i, Π(i) = {j : N(j) = N(i)}. Since all the vertices in πi

have the same neighborhood, we can define the degree of πi to be dπi = |N(vi)| − 1.
For the vertex i we define three sets and one function. Let D

+
(i) be the set of

those vertices whose intervals properly contain Ii, formally D
+
(i) = {j : Ii ⊂ Ij};

note that i �∈ D+
(i). Let D

−
(i) be the set of all vertices whose intervals are properly

contained in the interval Ii; i.e. D
−
(i) = {j : Ij ⊂ Ii}. Let ∆(i) be the set of vertices

that are not in the neighborhood of vertex i; i.e. ∆(i) = {j : Ij ∩ Ii = ∅}. Lastly, let
γ(i) denote the number of disjoint intervals in

⋃

k∈D− (i)

Ik.

Again we can extend the definition to equivalence classes by setting γ(πi) = γ(ri).
Let −→e1 ,−→e2 , . . . ,−→en be the standard base of R

n, and let 〈−→• ,−→• 〉 be the standard inner
product in R

n. Finally we define the closure of a set to be the set union with the
relevant equivalence class; for example, D+(i) = D

+
(i)∪Π(i), D−(i) = D

−
(i)∪Π(i).

In the next three lemmas we specify all the eigenvalues and eigenvectors of L.
Lemma 2.1. Let G be a nested interval graph. Let 1 ≤ i < j ≤ n. If N(i) = N(j),

then the vector −→v = −→ei −−→ej is an eigenvector with the eigenvalue di + 1.
Proof. Since N(i) = N(j) it follows that row i is equal to row j in the Laplacian

matrix L, except for the diagonal entries; therefore

L · −→v = L · −→ei − L · −→ej =
n∑

k=1

(Lk,i − Lk,j) · −→ek

= (di + 1) · −→ei − (dj + 1) · −→ej = (dj + 1) · −→v .

Corollary 2.2. Let G be a nested interval graph. Let π be the similar partition.
Then,
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1. For each πi ∈ π we can use Lemma 2.1 and find |πi| − 1 linear independent
eigenvectors.

2. The total number of eigenvectors we get from Lemma 2.1 is n − t. Denote
those eigenvectors by −→x 1, . . . ,−→x n−t and X = {−→x 1, . . . ,−→x n−t}.

3. The product of all those eigenvalues is
∏t

k=1(dπk
+ 1)|πk|−1.

Lemma 2.3. Let 1 ≤ i < j ≤ n. Assume that N(i) �= N(j) and that D
+
(i) =

D
+
(j). Then,

−→v = |D−(j)| ·




∑

k∈D− (i)

−→ek


 − |D−(i)| ·




∑

k∈D− (j)

−→ek




is an eigenvector with the eigenvalue |D+
(i)|.

Proof. First note that for all k ∈ ∆(i) ∩ ∆(j) we have Ik
⋂⋃

l∈D− (j) Il = ∅.
Therefore 〈−→Lk,−→v 〉·−→ek = 0. Next, since D

+
(i) = D

+
(j) it follows that for all k ∈ D+

(i)
we have

〈−→L k,−→v 〉 · −→e k =




∑

k∈D− (i)

−|D−(j)|+
∑

k∈D− (j)

|D−(i)|


 · −→e k

= (−|D−(i)| · |D−(j)|+ |D−(j)| · |D−(i)|) · −→e k

= 0.

Now, by a simple matrix multiplication we get that

L · −→v =
∑

k∈D− (i)

〈−→L k,−→v 〉 · −→e k +
∑

k∈D− (j)

〈−→L k,−→v 〉 · −→e k

= |D−(j)|
∑

k∈D− (i)

(
dk − |D−(i) ∩N(k)|+ 1

)
· −→ek +

−|D−(i)|
∑

k∈D− (j)

(
dk − |D−(i) ∩N(k)|+ 1

)
· −→ek.

Since di = |D+
(i)|+ |D−(i)| − 1, it follows that

L · −→v = |D−(j)|




∑

k∈D− (i)

|D+
(i)| · −→ek


 − |D−(i)|




∑

k∈D− (j)

|D+
(j)| · −→ek




= |D+
(i)| · −→v .

In order to describe all the eigenvectors coming out from Lemma 2.3 we define
F = {πj ∈ π|D−

(rj) = ∅}.
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Corollary 2.4. Let G be a nested interval graph. Let π be the similar partition.
Then,

1. For each πi ∈ π \ F we can use Lemma 2.3 and find γ(πi)− 1 linearly inde-
pendent eigenvectors.

2. The total number of eigenvectors we get from Lemma 2.3 is |F | − 1. Denote
those eigenvectors by −→y 1, . . . ,

−→y |F |−1, and Y = {−→y 1, . . . ,
−→y |F |−1}.

3. The product of all those eigenvalues is
∏

πk �∈F |D+(πk)|γ(πk)−1.
Lemma 2.5. Let πi ∈ π, ri be the representative of πi. Assume that i �∈ F . Then,

−→v = |D−
(ri)| · −→eri −

∑

k∈D− (ri)

−→ek

is an eigenvector with the eigenvalue dri + 1.
Proof. First note that for all k ∈ ∆(ri) we have 〈−→Lk,−→v 〉 · −→ek = 0. Next, assume

that k ∈ D+
(ri) ∪ πi \ {ri}. In this case we get that

〈−→Lk,−→v 〉 · −→ek = −|D−
(ri)| · −→ek +

∑

k∈D− (ri)

−→ek = 0

Now, by matrix multiplication we get that

L · −→v = 〈−→L ri ,
−→v 〉 · −→e ri +

∑

k∈D− (πi)

〈−→L k,−→v 〉 · −→e k

=
(
D

−
(ri) · (dri + 1)

)
· −→e ri +

∑

k∈D− (πi)

(
−(|D−

(ri)|)−D+
(ri)

)
· −→e k

= (dri + 1) · −→v .
Corollary 2.6. Let G be a nested interval graph. Let π be the similar partition.

Then,
1. For each πi ∈ π \ F we can use Lemma 2.5 and find one eigenvector.
2. The total number of eigenvectors we get from Lemma 2.5 is t− |F |. Denote

those eigenvectors by −→z 1, . . . ,−→z t−|F |, and Z = {−→z 1, . . . ,−→z t−|F |}.
3. The product of all those eigenvalues is

∏
πk �∈F (dπk

+ 1).

2.1. Vector Independence. In this subsection we show that indeed we find all
the eigenvectors and eigenvalues. We do this using a dimension argument.

Lemma 2.7. Z⊥Y .
Proof. Assume that −→v ∈ Z, i.e., −→v = (|D−

(ri)| − |πi|) · −→eri −
∑

k∈D− (ri)\πi

−→ek
and that −→u ∈ Y , i.e., −→u = |D−

(j′)| · (∑k∈D− (i′)
−→ek)− |D−

(i′)| · (∑k∈D− (j′)
−→ek). It is

enough to show that 〈−→v ,−→u 〉 = 0. Suppose first that Iri ⊆ Ii′ . Clearly, Iri ∩Ij′ = ∅. It
follows that 〈−→v ,−→u 〉 = |D−

(j′)|(|D−
(ri)|− |πi|− |D−

(ri)|+ |πi|) = 0. Now we assume
that Ij′ ⊂ Ivi . Since D

+
(i′) = D

+
(j′), it follows that Ij′ ⊂ Iri . And therefore, we get

〈−→v ,−→u 〉 = |D−
(j′)| · |D−

(i′)| − |D−
(i′)| · |D−

(j′)| = 0. We end the proof by assuming
that Ivi ∩ (Ii′ ∪ Ij′ ) = ∅; in this case we get that 〈−→v ,−→u 〉 = 0.
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Lemma 2.8. X⊥Y .
Proof. Assume that −→v ∈ X , i.e., −→v = −→ei − −→ej and that −→u ∈ Y , i.e., −→u =

|D−
(j′)| · (∑k∈D− (i′)

−→ek)− |D−
(i′)| · (∑k∈D− (j′)

−→ek). We will show that 〈−→v ,−→u 〉 = 0.

Now if i, j ∈ D−
(i′) then we get that 〈−→v ,−→u 〉 = |D−

(j)|(〈−→ei ,−→ei 〉 − 〈−→ej ,−→ej 〉) = 0. We
can use the same argument for the case i, j ∈ D−

(j′). Finally if i, j �∈ D−
(i′)∪D−

(j′)
then since 〈−→ei ,−→u 〉 = 〈−→ej ,−→u 〉 = 0, we get that 〈−→v ,−→u 〉 = 0.

Lemma 2.9. dim(span(X
⋃
Z)) = n− |F |.

Proof. In order to prove this lemma we have to define an order on the nodes.
Let 1 ≤ i ≤ j ≤ n. Since the intervals are nested we can assume, without loss of
generality, that one of the next two condition holds:

1. [ai, bi] ⊆ [aj , bj ].
2. bi < aj .

Finally we assume that the representative vi of partition πi is the first node in πi.
That is, for all j ∈ πi, i ≤ j. Let −→w = (w1, w2, . . . , wn) ∈ R

n; we define P(−→w ) =
{k|wk �= 0}. Now we define an order on the eigenvectors. Let −→p ,−→q ∈ R

n be two
eigenvectors. We say that −→p ≺ −→q if

∑
k∈P(−→p )

2k <
∑

k∈P(−→q )
2k. Now by writing

the eigenvectors according the order ≺ we get that the column rank is n− |F |.
From Corollaries 2.2, 2.4, 2.6 and Lemmas 2.7, 2.8, 2.9 we get that we find n− 1

independent eigenvectors. The last eigenvector is (1, 1, . . . ., 1) with a 0 eigenvalue.
Since L has n eigenvectors we have found all of them.

Theorem 2.10. The number of spanning trees in a nested interval graph G is
(∏t

k=1(dπk
+ 1)|πk|

)
·
(∏

πk �∈F |D+(πk)|γ(πk)−1
)

n · ∏πi∈F (dπi + 1)
.

3. Conclusion. In this paper we count the number of spanning trees in nested
interval graphs. Our proof is based on the spectral decomposition of the Laplacian
matrix. It is interesting to think of a combinatorial proof of this result. Another
natural problem is to extend this result to interval graphs in general.
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