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Abstract. Let (K; h�; �i) be a Hilbert space equipped with an inde�nite inner product [�; �]. Then
(K; [�; �]) is a (complex)Krein space. One can de�ne the Krein space numerical range of an operatorA
acting on K as the collection of complex numbers of the form [Av; v] with v 2 K satisfying [v; v] = 1.
In this paper, the shapes of Krein space numerical ranges of operators in the complex plane using
the joint numerical range of self-adjoint operators on (K; h�; �i) are studied. Krein space numerical
ranges of operators acting on a two-dimensional space are fully described. A Matlab program is
developed to generate the sets in the �nite dimensional case.
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1. Introduction. Let (K; h�; �i) be a Hilbert space. Suppose S is an inde�nite
self-adjoint invertible operator acting on (K; h�; �i). (All operators on K in our dis-
cussion are assumed to be linear and bounded with respect to h � ; � i.) Then K can
be viewed as a (complex) Krein space with respect to the inde�nite inner product
[u; v] = hSu; vi. For any operator A acting on K, the Krein space numerical range of
A (with respect to [�; �]) is de�ned by

W+
S (A) = f[Av; v] : v 2 K; [v; v] = 1g:

This is a generalization of the (classical) numerical range of A de�ned by

W (A) = fhAv; vi : v 2 K; hv; vi = 1g:

The classical numerical range has been studied extensively, and there are many results
concerning the interplay between the algebraic and analytic properties of an operator
and the geometrical properties of its numerical range. Likewise, there is substantial
interest in studying these relations for Krein space operators; see, e.g., [B, LR, LTU,
S]. It is worthwhile to mention that the more symmetrically de�ned set

WS(A) = f[Av; v]=[v; v] : v 2 K; [v; v] 6= 0g;

has also been studied [LTU,S], especially in connection with the spectral containment
property. One easily checks that

WS (A) = W+
S (A) [�W

+
(�S)(A):
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Thus, one can focus on W+
S (A) in studying the geometrical shape of WS(A).

In contrast with the classical numerical range W (A), the set W+
S (A) is generally

neither bounded nor closed, even when K is �nite dimensional. Nonetheless, it is
convex; see [B,LTU].

In this paper we use the approach of [LTU], namely, relate the Krein space numer-
ical range of A and the joint numerical range of (H;G; S), where H = (SA+A�S)=2
and G = (SA � A�S)=(2i), de�ned by

W (H;G; S) = f(hHv; vi; hGv; vi; hSv; vi) 2 R3 : v 2 K; hv; vi = 1g:

Here A� denotes the adjoint operator of A, i.e., hAu; vi = hu;A�vi for all u; v 2 K. It
is known [AT] that W (H;G; S) is always convex if dim K > 2, and is the surface of
an (possibly degenerate) ellipsoid if dim K = 2. Let

K(H;G; S) =
[
��0

�W (H;G; S)

= f(hHv; vi; hGv; vi; hSv; vi) 2 R3 : v 2 Kg

be the convex cone generated by W (H;G; S). The connection with Krein space
numerical ranges is given by

Proposition 1.1. Let A : K ! K be an operator, and let SA = H + iG, where
H = (SA +A�S)=2 and G = (SA �A�S)=(2i). Then

x+ iy 2 W+
S (A)() (x; y; 1) 2 K(H;G; S):

For instance, one easily deduces from this proposition the result in [B] thatW+
S (A)

is always convex. Proposition 1.1 was used extensively in [LTU] and [S], and we shall
further exploit it in this paper. In particular, we use it to determine the conditions
on A so that W+

S (A) is a half space or contained in a line. A Matlab program is
developed to generate Krein space numerical ranges for �nite dimensional operators.
Since the Krein space numerical range is not bounded in general, it is di�cult to get
an accurate computer plot. On the contrary, W (H;G; S) is always compact for �nite
dimensional operators, and is easy to generate using computer programs (cf. Section
4). In view of this, many of our results include equivalent conditions stated in terms
ofW (H;G; S). Furthermore, the results will be stated for both �nite dimensional and
in�nite dimensional Krein spaces whenever possible. Also, we describe in full detail
the Krein space numerical range of a 2� 2 matrix in Section 3.

Throughout our paper we �x an operator A : K ! K, and let SA = H + iG,
where H = (SA +A�S)=2 and G = (SA �A�S)=(2i).

In our subsequent discussion we often apply the following transformations that
preserve the shape of Krein space numerical ranges.

Proposition 1.2.

(i) If an operator T is invertible, then W+
T�ST (T

�1AT ) = W+
S (A).

(ii) W+
S (A+ �I) = W+

S (A) + � for any � 2 C .
(iii) Let H0 = aH+bG, G0 = cH+dG, where the numbers a; b; c; d are real and the 2�2
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matrix

�
a b
c d

�
is invertible, and let A0 = S�1(H0+ iG0). Then ~x+ i~y 2W+

S (A0) if

and only if

�
~x
~y

�
=

�
a b
c d

� �
x
y

�
for some x+ iy 2W+

S (A).

Proposition 1.2 can be easily veri�ed with the help of Proposition 1.1. We remark
that by Proposition 1.2, one can apply suitable a�ne transforms toW+

S (A) to simplify
the statements of results and proofs substantially. In particular, if one identi�es C
with R2, then

W+
S (A0 + �I) =

�
a b
c d

�
W+

S (A) +

�
Re�
Im�

�
;

where A0; �, etc. satisfy conditions (ii) and (iii) of Proposition 1.2, and Re� and Im�
are the real and imaginary parts of �.

2. Numerical Ranges with Special Shapes. It is well known that the clas-
sical numerical range W (A) of an operator A is a singleton if and only if A is a scalar
operator; W (A) � R if and only if A is self-adjoint. Similar studies have been carried
out for the Krein space numerical range. We summarize and re�ne below some results
in this direction. We start with the following proposition.

Proposition 2.1. Let A be an operator acting on K. Then W+
S (A) = f�g if and

only if A = �I. Moreover, if W+
S (A) is not a singleton, then W+

S (A) is unbounded.
This is a particular case of Theorem 2.3 of [LR]; see also [LTU, Theorem 2.3]. It

is known that W+
S (A) � R if and only if A is S-self-adjoint, i.e., SA = A�S. The

case when W+
S (A) is a line under the assumption that W+

S (A) is the intersection of
half spaces was discussed in [LR, Theorem 4.1]. More generally, we have the following
result.

Theorem 2.2. Suppose SA = H + iG and A 6= �I for any � 2 C . The following
conditions are equivalent.
(a) W+

S (A) is a subset of a line.
(b) W (H;G; S) is contained in a two dimensional subspace.
(c) H;G; S are linearly dependent.
(d) There exist a nonzero � 2 C and � 2 f0; 1g such that the matrix B = �A� i�I is
S-self-adjoint), i.e., SB = B�S.
Moreover, if one (and therefore all) of (a) - (d) holds, then one of the two mutually
exclusive alternatives occurs for the matrix B satisfying condition (d):
(i) There exists � 2 R such that �S + SB is either positive semide�nite or negative
semide�nite, and W+

S (A) is a half line, which may or may not contain its endpoint.
(ii) The operator �S + SB is inde�nite for any � 2 R, and W+

S (A) is a line.
Proof. Since A is not a scalar operator, H + iG is not a multiple of S. Clearly,

W+
S (A) is a subset of a line if and only if W (H;G; S) belongs to a two dimensional

subspace of R3. The latter condition is equivalent to the fact that H;G; S are linearly
dependent. Thus, (a), (b) and (c) are equivalent.

Evidently, condition (d) implies condition (a). Now, if (c) holds, then there exists
a nonzero vector (a; b; c) 2 R3 such that ax+by+cz = 0 for all (x; y; z) 2 W (H;G; S).
It follows that h(aH + bG + cS)v; vi = 0 for all unit vectors v 2 K, and hence
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aH + bG+ cS = 0. If c = 0, let � = (b+ ia), � = 0, and B = S�1(bH� aG). If c 6= 0,
let � = �c(b + ia) 6= 0, � = 1, and B = �S�1(bH � aG)=c. In both cases, we have
B = �A� i�I as asserted.

To prove that either (i) or (ii) holds, we may apply a suitable a�ne transformation
to A (cf. Proposition 1.2) and assume that A = B, where B is S-self-adjoint. Then
W+

S (A) is just the intersection of the sets

f(x; 0; z) : x+ iz 2 �W (SB + iS); � � 0g \ f(x; y; 1) : x; y 2 Rg:

It is then clear that (i) or (ii) holds depending on whether 0 belongs to the closure
or to the exterior of W (SB + iS), or equivalently, whether or not there exist a; b 2 R
such that aS + bSB is semide�nite. Since S is inde�nite, it su�ces to check whether
or not there exists an a 2 R such that aS + SB is semide�nite.

If W+
S (A) is a subset of a line (and not a point), the line can be easily identi�ed.

Indeed, if �, � and B are de�ned as in Theorem 2.2(d), then for every vector v such
that hSv; vi = 1 we have

hHv; vi = (Re�) hSBv; vi � �(Im�); hGv; vi = (Im�)hSBv; vi + �(Re�):

Eliminating hSBv; vi from these equations, we obtain the equation of the line that
contains W+

S (A), namely

(Im�)x� (Re�)y + �j�j2 = 0:

Note that checking computationallywhether there exists � 2 Rsuch that �S+SB
is positive semide�nite can be reduced to checking whether 0 is the solution of the
following optimization problem.

sup
�2R

inf �(�S + SB);

where �(X) denotes the spectrum of X. In the �nite dimensional case, there are
standard optimization packages for solving this problem; see [FNO].

In case condition (i) in the above theorem holds, one may ask whether the end-
point of the half line belongs to W+

S (A). One easily sees from our proof that
(1) W+

S (A) is a half line without the endpoint if and only if W (H;G; S) is prop-
erly contained in a 2-dimensional plane and no support line of the convex hull of
W (H;G; S) passing through the origin contains a point (x; y; z) 2 W (H;G; S) with
z > 0.
(2) W+

S (A) is a half line with the endpoint if and only if W (H;G; S) is properly
contained in a 2-dimensional plane and there is a support line of the convex hull of
W (H;G; S) that passes through the origin and contains a point (x; y; z) 2W (H;G; S)
with z > 0.

For example, if SA = H + iG are such that

S =

�
1 0
0 �1

�
; H = 02; G =

�
1 1
1 1

�
;
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then W+
S (A) = fiy : y > 0g; if SA = H + iG are such that

S = [1]�

�
1 0
0 �1

�
; H = 03; G = [0]�

�
1 1
1 1

�
;

then W+
S (A) = fiy : y � 0g.

Holtz and Strauss [HS] raised the question of studying those A for which W+
S (A)

is a half plane. We have the following answer.
Theorem 2.3. Suppose SA = H + iG. The following conditions are equivalent.

(a) W+
S (A) is a half plane, with or without some of its boundary points.

(b) The set W (H;G; S) is not contained in a two dimensional subspace, the origin of
R
3 lies on its boundary, and there is a unique support plane of W (H;G; S) passing

through the origin.
(c) The operators H;G; S are linearly independent, and there is a unique unit vector
(a; b; c) 2 R3 satisfying the equation

sup
�;�;2R

inf �(�H + �G+ S) = inf �(aH + bG+ cS) = 0:

If one (and therefore all) of (a) - (c) holds, and if (a; b; c) 2 R
3 satis�es condition

(c), then the interior of W+
S (A) coincides with the open half plane f(x; y) 2 R

2 :
ax+ by + c > 0g.

Proof. Clearly, (b) and (c) are equivalent, and each condition implies (a). Suppose
(a) holds. Then W (H;G; S) cannot lie in a two dimensional subspace. Otherwise,
W (H;G; S) will be a subset of a line by Theorem 2.2. Also, 0 cannot be in the in-
terior of W (H;G; S). Otherwise, W+

S (A) = C . Also, 0 cannot be in the exterior of
W (H;G; S). Otherwise, K(H;G; S) will be a pointed cone in R3 and its intersection
with f(x; y; 1) : x; y 2 Rg will not be a half plane. Suppose there are two support
planes of W (H;G; S) at 0. They must intersect at a line on the (x; y)-plane. Oth-
erwise, the two planes and f(x; y; 1) : x; y 2 Rg will intersect at a sharp point, and
W+

S (A) will not be a half plane. Apply a rotation to the (x; y)-plane, we may assume
that the two support planes intersect at the x-axis. Then W (G + iS) lies on the
(y; z)-plane and has a sharp point at (0; 0). In other words, there are in�nitely many
support lines of the convex set W (G+ iS) at 0. By a theorem of Hildebrandt [H], 0
belongs to the approximate spectrum of G+ iS, i.e., there exists a sequence fwng1n=1
of unit vectors (in the sense of h�; �i ) of K such that limn!1(G + iS)wn = 0. Since
0 is a boundary point of W (G + iS), there is a non-trivial real linear combination
aG+ bS of G and S such that the resulting operator is positive semide�nite. Now

2hGwn; wni = h(G+ iS)wn; wni + h(G+ iS)�wn; wni ! 0;

and similarly hSwn; wni ! 0. By the positive semide�niteness of aG+ bS, it follows
that (aG+ bS)wn ! 0, and combining with the property (G+ iS)wn ! 0, we obtain
Swn ! 0, a contradiction with the invertibility of S. Thus, there can only be one
support plane of W (H;G; S) at 0.

There still remains a question concerning the situation when W+
S (A) is a half

plane: What part of the boundary of the half plane belongs to W+
S (A)? Denote by T
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the set of boundary points ofW+
S (A) lying inW

+
S (A). Let (a; b; c) 2 R3 be the unique

unit vector of Theorem 2.3(c). Then (x; y) 2 T if and only if (x; y) = (hHv; vi; hGv; vi)
for some v 2 K such that hSv; vi = 1 and ahHv; vi + bhGv; vi + chSv; vi = 0. By
Theorem 2.3(c), such vectors v necessarily belong to

L
def
= Ker (aH + bG+ cS):

Now several situations are possible. If S is negative semide�nite on L, then obviously
T = ;. If S is positive semide�nite and invertible on L, then T is essentially the
classical numerical range of H + iG with respect to the positive de�nite scalar prod-
uct induced by S on L, and therefore T is a closed bounded line segment, perhaps
degenerated to a point. If the restriction of S on L is inde�nite but invertible, then
by Theorem 2.2 T is either a line or a half line with or without the endpoint (unless
H + iG is a scalar multiple of S on L). Finally, T being a convex subset of a straight
line, it is possible for T to be a bounded segment without one or both endpoints. We
illustrate in the following examples that all these cases can indeed occur.
Examples. In the seven examples below, the vector (a; b; c) of Theorem 2.3(c) is

(a; b; c) = (1; 0; 0). Let X =

�
1 1
1 1

�
, Y =

�
0 i
�i 0

�
, and Z =

�
1 0
0 �1

�
. Then

(1) T = ; if S = Z and SA = X + iY ;
(2) T = f0g if S = [1]� Z and SA = ([0]�X) + i([0]� Y );
(3) T = f0 + iy : y 2 [0; 1]g if S = I2 � Z and SA = (02 �X) + i(diag(0; 1)� Y );
(4) T = f0+iy : y 2 (0; 1]g if S = Z�I and SA = (X�0)+i(Y �diag(1; 1=2; 1=3; : : :));
(5) T = f0 + iy : y � 0g if S = Z � Z and SA = (X � 02) + i(Y � diag(0; 1));
(6) T = f0 + iy : y > 0g if S = Z � Z � I and SA = (X � 02 � 0) + i(Y � Z �
diag(1; 1=2; 1=3; : : :));
(7) T = f0+iy : y 2 Rg if S = Z�Z�Z and SA = (X�04)+i(Y �diag(0; 1; 0;�1)).

One can easily modify Example (4) so that T is a line segment without endpoints
on both ends. Moreover, in each example one can apply a suitable a�ne transforma-
tion to A so that the boundary of W+

S (A) lies on any prescribed straight line.
We note also the following easily veri�ed fact.
Proposition 2.4. Let A 2 K. The following conditions are equivalent.

(a) W+
S (A) = C .

(b) �H + �G+ S is inde�nite for every unit vector (�; �; ) 2 R3.
(c) The convex hull of W (H;G; S) has non-empty interior containing the origin.

Indeed, the inde�niteness of �H + �G + S for every unit vector (�; �; ) 2 R3

means that no support plane ofW (H;G; S) passes through the origin, i.e., the origin is
an interior point of the convex hull of W (H;G; S). Then W+

S (A) = C by Proposition
1.1. Conversely, if W+

S (A) = C , then K(H;G; S) � f(x; y; z) 2 R3 : z > 0g. Since S
is inde�nite, there exists (x0; y0;�1) 2 K(H;G; S). Now the convexity of K(H;G; S)
guarantees that K(H;G; S) = R

3 which implies the inde�niteness of �H + �G + S
for every unit vector (�; �; ) 2 R3.

It is known that W (A) is closed and polygonal (the boundary of W (A) is a
convex polygon) if and only if A is unitarily similar to B � C, where B is a normal
operator whose spectrum is �nite and consists of the vertices of the polygon, and
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where W (C) � W (B) n �(B). In the in�nite dimensional case this result is obtained
by using the fact that the eigenvectors of A corresponding to a sharp point of the
boundary ofW (A) form a subspace which is invariant for A� as well (it was proved in
[D] that sharp points of the boundary of W (A) are indeed eigenvalues of A, see [LR]
and [S] for a Krein space generalization of this fact). Finite dimensional accounts
of the characterization of the polygonal property of W (A) are found in [GL, Section
III.10], [HJ]. Recently, [S] extended this result to the Krein space operators. Note
that one has to use information on both W+

S (A) and W+
(�S)(A) to get the desired

generalization.

3. Small Matrices. One important result in the classical numerical range is
the elliptical range theorem asserting that the numerical range of a 2 � 2 matrix A
with eigenvalues �1 and �2 is an elliptical disk with foci �1 and �2, and with the
length of minor axis equal to

p
tr(A�A)� j�1j2 � j�2j2. In this section, we give a

detailed description of Krein space numerical ranges of 2� 2 matrices. In particular,
it is shown that except for the degenerate cases when W+

S (A) is a subset of a line, the
whole complex plane or a half plane, it is always bounded by a branch of a hyperbola.
There has also been considerable interest (see [KRS] and its references) in studying
the shape of W (A) for A acting on higher dimensional space, but the description is
more complicated. We expect that the results on W+

S (A) are complicated as well. In
any event, using the algorithm and the program in the next two sections, one can get
a computer plot for W+

S (A) for any matrix A of reasonable size.
Assume in this section that S and A = S�1(H + iG) are 2� 2 matrices, and as

before S is inde�nite and invertible and S;H;G are Hermitian. Whenever convenient,
we apply a suitable transformation described in Proposition 1.2.

Using Proposition 1.2(i), by applying simultaneous congruence

(S;H;G) 7! (T �ST; T �HT; T �GT )

with a suitable invertible T , we can assume that one of the following three cases holds
(here the canonical form of two Hermitian matrices under simultaneous similarity is
used; see, e.g., [T]).
(�)

S =

�
0 1
1 0

�
; H =

�
0 �
� �1

�
;

where � is a real number.
(�)

S =

�
0 1
1 0

�
; H =

�
0 �+ i�

�� i� 0

�
;

where � and � are real and � 6= 0.
()

S =

�
1 0
0 �1

�
; H =

�
� 0
0 �

�
;
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where � and � are real.
Consider the case (�). Applying a suitable a�ne transformation (described in

Proposition 1.2(ii) and (iii)), we may assume that

S =

�
0 1
1 0

�
; H =

�
0 0
0 1

�
; G =

�
g i�
�i� 0

�
;

for some real numbers g and �. If g = 0, then Theorem 2.3(iii) holds, and W+
S (A) is

a half plane. So assume g 6= 0, and then by scaling G we set g = 1. Every v 2 C 2 can
be brought to the form

v =

�
a+ ib
c

�
(1)

for some real a; b; c, using a multiplication by a unimodular complex number. We
will therefore consider only vectors v in this form for constructing the set W+

S (A).
A calculation shows that hSv; vi = 1 if and only if 2ac = 1. Furthermore, assuming
hSv; vi = 1, we have

(hHv; vi; hGv; vi) = (c2; a2 + b2 + 2�bc) = (c2;
1

4c2
+ (b+ �c)2 � �2c2): (2)

It is clear from (2) that W+
S (A) is bounded by the branch of the hyperbola f(x; 1

4x �
�2x) : x > 0g (where we put x = c2). The equation of this hyperbola in the (x; y)-
coordinates is �2x2 + xy = 1

4 , and it has the asymptotes x = 0 and y = ��2x.
Consider now the case (�). Applying a suitable a�ne transformation, we assume

that � = 0 and that G is of the form G =

�
p 0
0 q

�
, where p; q are real. If pq < 0,

then W+
S (A) = C by Proposition 2.4. If pq = 0, then W+

S (A) is a half plane by
Theorem 2.4. So we assume in the sequel that pq > 0, and then by scaling G we let

p = 1 (and q > 0). Consider the vectors v of the form v =

�
c

a+ bi

�
, where a; b; c

are real. The condition hSv; vi = 1 amounts to 2ac = 1. A calculation gives

(hHv; vi; hGv; vi) = (�2�bc; c2 + q(a2 + b2)):

Fix x = �2�bc, and let y = c2 + q(a2 + b2). Then, by using the equality 2ac = 1, we
obtain:

y = c2 +
q

4c2
+

qx2

4�2c2
= c2 +

(�2 + x2)q

4�2c2
: (3)

When c varies over the set of nonzero real numbers, the right hand side of (3) is
bounded below by

p
(�2 + x2)q��2; this value is achieved for

c2 =

r
(�2 + x2)q

4�2
:
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Thus, W+
S (A) is bounded by the branch of the hyperbola

f(x; y) : y2 = q + ��2qx2; y > 0g:

Finally, consider case (). We assume that H, S, G are linearly independent
(otherwise Theorem 2.2 applies and W+

S (A) is contained in a line). Using the a�ne
transformation of Proposition 1.2(i), we further assume that

S =

�
1 0
0 �1

�
; H =

�
0 0
0 1

�
; G =

�
0 � + i�

�� i� 0

�
;

where �; � 2 R and �2 + �2 = 1. Consider vectors v of the form (1) such that
hSv; vi = 1, i.e., a2 + b2 � c2 = 1. For such vectors v,

(hHv; vi; hGv; vi) = (c2; 2c(�a+ �b)): (4)

Moreover, the expression (�a+�b)2 is bounded above by 1+ c2 if a and b are variable
real numbers subject to the condition a2 + b2 � c2 = 1. Thus, letting x = c2, formula
(4) shows that W+

S (A) is bounded by the branch of the hyperbola

f(x; y) 2 R2 : y2 = 4x(1 + x); x � 0g:

As mentioned before, for a 2� 2 matrix A, as long as W+
S (A) is not contained in

a line and is not the whole complex plane or a half plane, the set W+
S (A) is bounded

by a branch of a hyperbola and contains its boundary. Also, for a 2� 2 matrix A, if
W+

S (A) is a half plane, it cannot contain any points on its boundary. (This explains
why Krein spaces of dimensions bigger than two are needed in Examples (2)-(7).)
Indeed, in this case for W+

S (A) to have points on the boundary it is necessary that

L = Ker (aH + bG+ cS) 6= f0g

for some unit vector (a; b; c) 2 R such that aH + bG+ cS is positive semide�nite, and
that S is not negative semide�nite on L (cf. the discussion after the proof of Theorem
2.3). Assuming these necessary conditions, and assuming L 6= R

2 (otherwise W+
S (A)

is contained in a straight line by Theorem 2.2 contrary to the hypotheses), we see
that L is one-dimensional. Now with respect to an orthonormal basis in R2 formed
by vectors v1 2 L n f0g and v2, we have

aH + bG+ cS =

�
0 0
0 x

�
; S =

�
y z
z w

�
;

where x and y are positive. But then it is easy to see that aH + bG + (c + �)S is
positive de�nite for small positive values of �, a contradiction with Theorem 2.3(c).

Here we describe a more geometric approach to the problem of Krein space nu-
merical ranges for 2 � 2 matrices, without relying so much on the canonical forms.
Assume that H;G; S are not linearly dependent. Then, by Theorem 2.2, W+

S (A) is
not contained in a line. We focus on the case when 0 is in the exterior of W (H;G; S)
(otherwise, W+

S (A) is either a half plane or the whole plane). Then, there exist



ELA

40 Chi-Kwong Li and Leiba Rodman

a; b; c 2 Rwith a2+ b2 6= 0 such that ~H = aH + bG+ cS > 0. Apply a suitable a�ne
transform as described in Proposition 1.2 (ii) and (iii) and consider W+

S (A0) instead

of the original problem, where SA0 = ~H + i ~G. Now, applying a suitable simultaneous
congruence X 7! ~H�1=2X ~H�1=2 to the triple ( ~H; ~G;S), we get (I;G0; S0). One can
then compute the elliptical disk W (I;G0; S0) = f(1; y; z) : y + iz 2 W (G0 + iS0)g. It
is now easy to generate the set K(I;G0; S0) and intersect it with f(x; y; 1) : x; y 2 Rg
to obtain W+

S (A0). Once we get W+
S (A0), the set W+

S (A) can be easily obtained by
using Proposition 1.2.

4. Algorithm and Examples. Algorithms and computer programs for gen-
erating the classical numerical range and its generalizations have been extensively
studied in the literature; see, e.g., [J,MP,LN,LST,V]. In this section, we describe an
algorithm for generating the Krein space numerical range.

For the classical numerical range (or a certain convex generalized numerical
range), it is not di�cult to �nd equations of its supporting lines. As a result, one can
try to plot supporting lines in di�erent directions, and use the intersection of the half
spaces de�ned by these lines to approximate the (generalized) numerical range; see
[J, LST]. Although the Krein space numerical range W+

S (A) is convex, it is not easy
to determine its supporting lines. Thus, it is di�cult to use this approach.

Figure 1
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Another approach (see [MP]) is to generate certain subsets of the numerical range
and show that these subsets can �ll up the interior of the numerical range \e�ciently".
However, since W+

S (A) is very often unbounded, it is di�cult to �ll up the its interior
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e�ciently.

In our study, we connect the Krein space numerical range of A with the joint
numerical range of (H;G; S) with SA = H + iG. We take the same approach to
develop an algorithm for plotting the Krein space numerical range.

An algorithm for generating W (H;G; S) has been described in [LN]. The basic
idea was to compute the boundary point of the compact set W (H;G; S) in each di-
rection determined by a grid point on the unit sphere in R3. One then joints all
these boundary points to form a polyhedron inside W (H;G; S). After generating
W (H;G; S), one can collect the points (x=z; y=z), where (x; y; z) 2 W (H;G; S) with
z > 0. The collection of these points will be an approximation for W+

S (A). This ap-
proach allows us to get around the problem of computing supporting lines of W+

S (A).
However, since the process involve the computations x=z and y=z, where z may be
very small, the algorithm is not stable numerically. There is de�nitely room for im-
provement.

We describe the algorithm below. Matlab programs have been written to generate
the joint numerical range and the Krein space numerical range. The programs are
listed in the next section, and are also available at the following websites.

http:==www.math.wm.edu/~ckli/wjoint.html and

http:==www.math.wm.edu/~ckli/krein.html, respectively.

Figure 2
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We �rst present an algorithm developed in [LN] for generating the joint numerical
range of the hermitian matrix triple (H;G; S):
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Step 1. Construct a grid on the unit sphere in R3 using the spherical coordinates

(sin r cos t; sin r sin t; cos r);

with

r = �=m; 2�=m; 3�=m; : : : ; �; and t = �=m; 2�=m; 3�=m; : : : ; 2�;

for some positive integer m.
Step 2. For each choice of (�; �; ) = (sin r cos t; sin r sin t; cos r), compute the largest
eigenvalue d of of the matrix �H + �G+ S. Then for any (a; b; c) 2W (H;G; S), we
have �a+ �b + c � d, i.e.,

P = f(a; b; c) : �a+ �b+ c = dg

is a support plane for W (H;G; S).
Step 3. For each triple (�; �; ) in Step 2, compute a unit eigenvector v corresponding
to the eigenvalue d of the matrix �H+�G+S, and use (hHv; vi; hGv; vi; hSv; vi) as
a vertex. The convex hull of these vertices will be an inner polygonal region contained
in W (H;G; S).

Figure 3
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We generated the pictures of W (H;G; S) for

(1) (H;G; S) =

��
0 1
1 0

�
;

�
0 i
�i 0

�
;

�
1 0
0 �1

��
; see Figure 1, and
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Figure 4
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(2) (H;G; S) = (ReA; ImA;D) for some randomly generated 3 � 3 matrix A and
D = diag(1; 1;�1); see Figure 2.

We remark that if the largest or the smallest eiganvalue of any one of the three
hermitian matrices has multiplicity larger than one, then the boundary of their joint
numerical range has a at surface parallel to a coordinate plane. For example, the
top part of the picture of (2) is at because S has a repeated largest eigenvalue.

Now to compute an approximation of W+
S (A), set SA = H+ iG and modify Step

3 to the following.
Step 3'. For each (�; �; ) triple in Step 2, compute the unit eigenvector v corre-
sponding to the eigenvalue d of the matrix �H + �G+ S, and evaluate

(hHv; vi; hGv; vi)=hSv; vi;

if hSv; vi > 0.
Note that our algorithm and Matlab program actually work for singular S as well.

Also, in our Matlab program, for each grid point in Step 2, we compute

(hHv; vi; hGv; vi)=hSv; vi;

whenever hSv; vi > tol, for some positive number tol that depends on the machine
precision and how much of the unbounded region one wants to see. Our program is
very good in testing whether the W+

S (A) is part of a straight line. For example, we
use our program to generate W+

S (A) for
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(3) S = diag(1; 1;�1) and A = (2 + i)(I + iSH); where H is a randomly generated
3 � 3 hermitian matrix; see Figure 3. The output is a straight line as expected (cf.
Theorem 2.2).

If W+
S (A) is the whole complex plane, the picture W+

S (A) generated by our
program can be quite chaotic. In such case one should check the corresponding joint
numerical range W (H;G; S) to see whether its convex hull has interior containing the
origin. If this is teh case, then one can conclude that W+

S (A) = C (cf. Proposition
2.4).

We also generated W+
S (A) for

(4) S = diag(1;�1) and A = S �B with B =

�
2 + 3i 2
0 2 + 3i

�
; see Figure 4. It is an

unbounded region bounded by a branch of hyperbola (cf. Section 3). One may also
manually determine the ranges of the x and y axes to get more details of a certain
part of the picture; see Figure 5.

Figure 5
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5. Matlab Programs. We include the two Matlab programs for plotting the
joint numerical range and the Krein space numerical range in what follows.
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Matlab Program for plotting the joint numerical range of three Her-

mitian matrices.

%

% W(H,G,K,m), where H,G,K should be hermitian matrices of the same

% size, and the program will evaluate 4m^2 boundary points

% of the joint numerical range.

%

% This is used to plot the inside convex polytope of the joint

% numerical range of 3 hermitian matrices H, G, K.

%

function L = wjoint(H,G,K,m)

%

%

%

for r=1:(4*m+1)

T = cos( (r-1)*pi/(2*m) )*H + sin( (r-1)*pi/(2*m) )*G;

for s=1:(m+1)

[U,D] = eig(sin( (s-1)*pi/(2*m) )*T + cos( (s-1)*pi/(2*m) )*K);

[d1,t1] = max(real(diag(D)));

u = U(:,t1);

X(r,s)=real(u'*H*u);

Y(r,s)=real(u'*G*u);

Z(r,s)=real(u'*K*u);

[d2,t2] = max(real(diag(-D)));

v = U(:,t2);

X(r,m+1+s)=real(v'*H*v);

Y(r,m+1+s)=real(v'*G*v);

Z(r,m+1+s)=real(v'*K*v);

end

end

%

%

meshc(X,Y,Z);

title('The Joint Numerical Range of (H,G,K)');

xlabel('axis for H');

ylabel('axis for G');

zlabel('axis for K');

%
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Matlab Program for plotting the Krein space numerical range of a

complex matrix.

%

% krein(S,A,m,tol), where S is the hermitian matrix that defines

% the indefinite inner product, A is the Krein space operator,

% 4*m^2 is the number of boundary points (x,y,z) on W(H,G,S)

% that the program evaluates, and tol > 0 is the lower limit

% under which the program will compute a point (x/z, y/z) in the

% Krein space numerical range.

%

%

function L = krein(K,A,m,d)

%

R = (K*A)/2;

H = R'+R;

G = (R-R')/i;

%

[UU,DD] = eig(K);

[dd,tt] = max(real(diag(DD)));

uu = UU(:,tt);

xx = real(uu'*H*uu)/dd;

yy = real(uu'*G*uu)/dd;

%

% number of iterations and tolerance for the size of the z-coordinate

% are recorded as m and d, respectively

%

for r=1:(4*m+1)

T = (cos((r-1)*pi/(2*m)))*H + (sin((r-1)*pi/(2*m)))*G;

for s=1:(2*m)

[U,D] = eig(sin( ((s-1)*pi)/(2*m) )*T + cos( ((s-1)*pi)/(2*m) )*K);

[d1,t1] = max(real(diag(D)));

u = U(:,t1);

z1 = real(u'*K*u); Z(r,s) = z1;

if z1 > d,

X(r,s)=real(u'*H*u)/z1;

Y(r,s)=real(u'*G*u)/z1;

else

X(r,s) = xx;

Y(r,s) = yy;

end

end

end

%

%

plot(xx,yy,'o',X,Y);



ELA

Numerical Ranges of Krein Space Operators 47

title('The S-Numerical Range of A');

grid;

%
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