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NON-EXISTENCE OF 5 × 5 FULL RAY-NONSINGULAR MATRICES∗

CHI-KWONG LI† , THOMAS MILLIGAN† , AND BRYAN L. SHADER‡

Abstract. An n × n complex matrix is full ray-nonsingular if it has no zero entries and every
matrix obtained by changing the magnitudes of its entries is nonsingular. It is shown that a 5×5 full
ray-nonsingular matrix does not exist. This, combined with earlier results, shows that there exists
an n × n full ray-nonsingular matrix if and only if n ≤ 4.
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1. Introduction. A complex matrix is a ray-pattern matrix if each of its nonzero
entries has modulus 1. A ray-pattern matrix is full if each of its entries is nonzero. An
n×n complex matrix A is ray-nonsingular if A ◦X is nonsingular for all (entry-wise)
positive matrices X , where A ◦ X denotes the Schur (entry-wise) product. Ray-
nonsingular matrices with real entries are simply sign-nonsingular matrices; see [2]
and its references. In [2], the authors posed the following question: for which n does
there exist an n×n full ray-nonsingular matrix? It is not hard to construct examples
of n× n full ray-nonsingular matrices for n ≤ 4; see [1, 2]. In [1], the authors showed
that there are no full n × n ray-nonsingular matrices for n ≥ 6. The question of
whether there are 5 × 5 full ray-nonsingular matrices remains open. In this paper,
we show that there is no 5 × 5 full ray-nonsingular matrix. As a result, we have the
following complete answer for the question raised in [2]:

Main Theorem There is an n× n full ray-nonsingular matrix if and only if n ≤ 4.

The proof of the main theorem is quite detailed. In section 2, we recall some
known results and outline our strategy for the proof. The key to the proof is an
understanding of 3 × 3 full ray-patterns that are not ray-nonsingular. These are
studied in section 3. The proof of the main theorem is given in section 4.

2. Preliminary results and basic strategies of proof. We first recall some
terminology from [1]. A nonzero, diagonal ray-pattern matrix is a called a complex
signing. A complex signing is strict if each diagonal entry is nonzero. A (1,−1)-
signing is a diagonal matrix with diagonal entries in {1,−1}. A vector v is balanced
if zero is in the relative interior of the convex hull its entries (viewed as points of
the complex plane). Furthermore, it is strongly balanced if its entries take on at least
three distinct values. A ray-pattern vector v is generic if for all i < j, vi �= ±vj .

Let A denote the entry-wise conjugate of A. Consider the relation on the set of
ray-patterns defined by A ∼ B if and only if there exist matrices P and Q, each a
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product of permutation matrices and strict complex signings, such that B = PÂQ
where Â = A, At or A. Clearly, ∼ is an equivalence relation, and we have the following
observation.

Lemma 2.1. Suppose A and B are ray-pattern matrices with A ∼ B. Then A is
ray-nonsingular if and only if B is ray-nonsingular.

We say that the matrix A is strongly balanceable if A ∼ B for some B each of
whose columns is strongly balanced. The following three lemmas from [1] will be
useful in establishing the nonexistence of a 5 × 5 full ray-nonsingular matrix.

Lemma 2.2. [1, Lemma 3.7] Let A be an n × n full ray-pattern. If A has an
m×m strongly balanceable submatrix with m ≥ 3, then A is not ray-nonsingular.

In section 3, we establish sufficient conditions for a 3 × 3 full ray-pattern to be
strongly balanceable.

Lemma 2.3. [1, Theorem 4.3] Let A = (ajk) be a 5 × 5 full ray-pattern. If
ajk ∈ {1,−1, i,−i} for all j and k, then A is not ray-nonsingular.

Lemma 2.4. [1, Proposition 4.4] Let A be a 5 × 5 full ray-pattern with first
column consisting of all 1’s and each remaining column generic. Then A is not ray-
nonsingular.

Note that Lemma 2.4 implies that if A is a 5×5 full ray-nonsingular matrix, then
each row and column of A intersects a 2 × 2 submatrix of the form

[
x y
z ±yz/x

]
.

We now give a basic outline of our strategy for proving the main theorem. The
proof will be by contradiction. Thus, we will assume to the contrary that there is
a 5 by 5 full ray-nonsingular matrix A. We then use the results of section 3 (that
give sufficient conditions for a 3 × 3 full ray-pattern to be strongly balanceable) and
Lemmas 2.1–2.4 to show that, up to ∼-equivalence, the leading 3 × 3 submatrix of A
has one of the following forms:

(a)


 1 1 1

1 1 1
1 eiα eiβ


 , (b)


 1 1 1

1 −1 1
1 eiα eiβ


 , (c)


 1 1 1

1 −1 eiβ

1 eiα −1


 ,

(d)


 1 1 1

1 1 eiβ

1 eiα −1


 , or (e)


 1 1 1

1 1 eiβ

1 eiα 1


 .

Next, for each of these cases, we use Lemma 2.2 and the results of section 3 to conclude
that either

(i) all entries of A belong to {1,−1, i,−i}, or
(ii) all entries of A belong to {1, e2πi/3, e4πi/3} arranged in certain patterns.

Finally, we obtain a contradiction by showing that if A satisfies (i) or (ii), then A is
not ray-nonsingular.
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3. Sufficient conditions for 3 × 3 patterns to be strongly balanceable.
One of the keys to our proof of the main theorem is Lemma 2.2 which implies that
no 3 × 3 submatrix of a 5 × 5, full ray-nonsingular matrix is strongly balanceable. In
this section, we give sufficient conditions for a 3 × 3 full ray-pattern to be strongly
balanceable.

By Lemma 2.1, we may restrict our attention to ray-patterns of the form

B =


 1 1 1

1 eiα2 eiβ2

1 eiα3 eiβ3


 .(3.1)

As the function eix, x real, is 2π-periodic, we may assume that each of α2, α3, β2 and
β3 lies in the interval (−π, π]. For convenience we partition (−π, π] into the following
sets:

P = (0, π), N = (−π, 0), {0}, {π}.

We first determine the strict signings S for which the vector (1, 1, 1)S is strongly
balanced. Note that for each θ ∈ (−π, π], the vector (1, 1, 1)S is strongly balanced
if and only if the vector (1, 1, 1)(eiθS) is strongly balanced. Hence, it suffices to
determine the S whose leading diagonal entry is 1.

Lemma 3.1. Let S = diag(1, eix, eiy) be a strict signing with x, y ∈ (−π, π]. Then
(1, 1, 1)S is strongly balanced if and only if x ∈ P and −π < y < x−π, or x ∈ N and
π + x < y < π.

Proof. Note that (1, 1, 1)S is strongly balanced if and only if no two of 1, eix

and eiy are equal or opposite, and the convex hull, H , of {1, eix, eiy} contains the
origin. Thus, (1, 1, 1)S is not strongly balanced if x = 0, x = π, y = 0, y = π or
x = y ± π. If x ∈ P , then it is easy to verify that H contains the origin if and only if
−π < y < x− π. If x ∈ N , then it is easy to verify that H contains the origin if and
only if π + x < y < π. The lemma now follows.

The shaded regions without their boundaries given in Figure 1, represent the
region of the Cartesian plane determined by the inequalities in Lemma 3.1.

(−π,0)

(0,π)

(0,−π)

(π,0)

Figure 1

(−π,π−β)

(π−α,−π)

(−π,α−β)

(−α−β,π)

(−α,π−β)

Figure 2
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Next, we investigate a general vector z = (1, eiα, eiβ), and let R(α, β) be the region
of the Cartesian plane consisting of the points (x, y) such that z diag(1, eix, eiy) is
strongly balanced and x, y ∈ (−π, π]. Thus R(0, 0) is the region described in Lemma
3.1, and illustrated in Figure 1. Let D = diag(1, eiα, eiβ). Note that S is a strict
signing such that zS is strongly balanced if and only if DS is a strict signing such
that (1, 1, 1)DS is strongly balanced. It follows that R(α, β) can be obtained from
R(0, 0) by identifying opposite edges of the square [−π, π] × [−π, π] to form a torus,
and then translating the shaded region in Figure 1 by (−α,−β). For example, R(α, β)
(where α ∈ P and β < α) is presented in Figure 2.

Note that R(0, 0) ∩ R(α, β) represents the points (x, y) in the plane such that
−π ≤ x, y < π and both rows of

[
1 1 1
1 eiα eiβ

]
diag(1, eix, eiy)

are strongly balanced. It is a tedious, but straightforward, to determine the regions
R(0, 0) ∩ R(α, β). We do this as follows. First partition the vectors of the form
z =

[
1 eiα eiβ

]
according to the locations and relationships between α and β as given

by the 24 types described in Table 1. The sets R(0, 0) ∩R(α, β) for each of these 24
types are the shaded regions without the boundaries illustrated in the Appendix.

Table 1. Types for the vector [1 eia eiβ ].

Type α in β in Conditions
1 P P α > β
2 P P α < β
3 N N α > β
4 N N α < β
5 P N α− β < π
6 P N α− β > π
7 N P β − α < π
8 N P β − α > π
9 P P α = β
10 N N α = β
11 P N α− β = π
12 N P β − α = π

Class α in β in
C1 P {0}
C2 N {0}
C3 P {π}
C4 N {π}
C5 {0} P
C6 {0} N
C7 {π} P
C8 {π} N
C9 {0} {0}
C10 {0} {π}
C11 {π} {0}
C12 {π} {π}

We finally turn our attention to studying the strong balanceability of the matrix
B in (3.1). Note that B is strongly balanceable if and only if R(0, 0) ∩ R(α2, β2) ∩
R(α3, β3) �= ∅, or equivalently if and only if

(R(0, 0) ∩R(α2, β2)) ∩ (R(0, 0) ∩R(α3, b3)) �= ∅.
If the second (or third) row has form (C9), i.e. is [1, 1, 1], then trivially, this inter-
section corresponds to the solution set of the first and third (or second) row. Also, if
the second (or third) row has form (C10)-(C12), then the solution set is empty and
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so intersection is trivially empty. Thus, we need only consider those cases when the
second and third rows are of one of the first 20 types listed on Table 1 that is, for each
pair of these 20 types we need to study the intersection of the pair of corresponding
regions listed in the Appendix.

The results of this straight-forward but tedious study are summarized in Table
2 below. The rows and columns of Table 2 are indexed by the 20 classes other than
(C9)-(C12). An entry of ‘1’ indicates that the pair of specified regions always has
nonempty intersection. For example, the fact that there is a ‘1’ in the row indexed
by 9 and column indexed by 1, implies that every 3 × 3 matrix whose first row is
[1, 1, 1], whose second row is of type (9), and whose third row is type (2), is strongly
balanceable, and hence not ray-nonsingular.

For some pairs of types the regions intersect only under certain conditions on
α1, α2, β1, β2. For example, consider a matrix B whose rows are u1 = [1 1 1], u2 =
[1 eiα1 eiβ1 ] of type (C1) and u3 = [1 eiα2 eiβ2 ] of type (C5). From the figures in
the Appendix, we see that the corresponding solution sets have empty intersection if
and only if π − β2 ≤ α1. Table 3 lists other conditions, derived from an analysis of
the regions in Figure 1, for certain pairs to have empty intersection. We include only
those pairs relevant to our discussion.

Table 2. Types of pairs whose solution sets always have nonempty intersection

1 2 3 4 5 6 7 8 9 10 11 12 C1 C2 C3 C4 C5 C6 C7 C8

1 1
2 1
3 1 1
4 1 1
5 1
6 1 1 1 1
7 1 1
8 1 1 1 1
9 1 1 1 1 1
10 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1 1 1 1 1
C1 1 1 1 1 1 1 1
C2 1 1 1 1 1 1 1
C3 1 1 1 1 1 1 1 1
C4 1 1 1 1 1 1 1 1
C5 1 1 1 1 1 1 1 1 1
C6 1 1 1 1 1 1 1 1 1
C7 1 1 1 1 1 1 1 1 1 1
C8 1 1 1 1 1 1 1 1 1 1

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 11, pp. 212-240, October 2004



ELA

Non-existence of 5 × 5 Full Ray-Nonsingular Matrices 217

Table 3. Necessary and sufficient conditions for empty intersection
of the two solution sets.

Type of Type of Condition on
[1 eiα1 eiβ1 ] [1 eiα2 eiβ2 ] α1, α2, β1, β2

1 6 α2 ≤ α1

1 11 α2 ≤ α1

6 9 α1 ≤ α2

6 10 β2 ≤ β1

6 C1 α1 ≤ α2

6 C5 β1 − β2 + 2π ≤ α1

6 C6 β2 ≤ β1

9 11 α2 ≤ α1

9 C7 β2 ≤ α1 = β1

10 12 α1 ≤ α2

10 C1 β1 + π = α1 + π ≤ α2

10 C5 β1 + π = α1 + π ≤ β2

10 C8 β1 = α1 ≤ β2

11 C6 β2 ≤ β1 = α1 − π
12 C5 α1 + π = β1 ≤ β2

C1 C5 π ≤ α1 + β2

C3 C5 π ≤ α1 + β2

C5 C7 β2 ≤ β1

C5 C8 β2 + π ≤ β1

C6 C8 β1 ≤ β2

We conclude this section by illustrating how to use Tables 2 and 3 to determine
information about the columns of certain matrices. This will allow the reader to get
a feel for how these arguments work while also providing information needed later.

Example 3.2. Let B be a 3 × 3 matrix which is not strongly balanceable and
whose rows are

u1 = [ 1 1 1 ], u2 = [ 1 1 eiβ1 ], u3 = [ 1 −1 eiβ2 ],

where {eiβ1 , eiβ2} ∩ {±1} = ∅.
If we assume that β1 ∈ P , then u2 has type (C5) and u3 has type (C7) or (C8).

By Table 3, if u3 has type (C7) then β2 ≤ β1, if u3 has type (C8), then β2 +π ≤ β1. If
we are interested in the vector v = [ 1 eiβ1 eiβ2 ], then v has one of the following
types: (1), (6), (9) or (11).

If β1 ∈ N , then we may apply the above reasoning to B̄, and thereby conclude
that v has one of the following types: (4), (8), (10), (12).

Therefore, v has type (1), (4), (6), (8), (9), (10), (11) or (12).

A similar analysis gives the following.
Example 3.3. Let B be a 3 × 3 matrix which is not strongly balanceable and

whose rows are

u1 = [ 1 1 1 ], u2 = [ 1 −1 eiβ1 ], u3 = [ 1 1 eiβ2 ],
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where {eiβ1 , eiβ2} ∩ {±1} = ∅. Then [1 eiβ1 eiβ2 ] has one of the following types: (2),
(3), (6) or (8)–(12).

4. Proof of main theorem. Throughout the remainder of the paper we will
let A denote a 5 × 5 full ray nonsingular matrix. We say that A is in standard form
if each entry in row and column 1 is equal to 1. By Lemma 2.1, there is no loss of
generality in assuming that A is in standard form. We first show that A has a 3 × 3
submatrix that is ∼-equivalent to one of several special forms.

Proposition 4.1. If A is a 5×5 full ray-nonsingular matrix, then A has a 3×3
submatrix that is ∼ −equivalent to a matrix of one of the following forms:

(a)


 1 1 1

1 1 1
1 eiα eiβ


 , (b)


 1 1 1

1 −1 1
1 eiα eiβ


 , (c)


 1 1 1

1 −1 eiβ

1 eiα −1


 ,

(d)


 1 1 1

1 1 eiβ

1 eiα −1


 , or (e)


 1 1 1

1 1 eiβ

1 eiα 1


 .

Proof. Let A be a 5× 5 full ray-nonsingular matrix in standard form. By Lemma
2.4, each row and column of A intersects a 2 × 2 submatrix of the form

[
x y
z ± yz

x

]
.

By Lemma 2.1, we may assume that the 2 × 2 submatrix intersecting the first row
is A[{1, 2}, {1, 2}], and that ajk = 1 whenever j = 1 or k = 1. Then a22 = ±1. Let
ajk = eixjk and uj = [1, eixj2 , eixj3 ] for j, k = 1, 2, 3, 4, 5.

We claim that one of the following conditions holds:

eix23 = ±1 or eixj2 = ±1 for some j ∈ {3, 4, 5},
eixj3 = ±1 for some j ∈ {3, 4, 5},
eixj2 = ±eixj3 for some j ∈ {3, 4, 5}.

(4.1)

Suppose to the contrary that none of these conditions hold. Then u3, u4 and u5

do not have types (C1)–(C12) nor (9)–(12). Also, u2 can only have type (C5)–(C8).
In fact, since A ∼ A, we may assume without loss of generality that x23 ∈ P , and
therefore u2 has either type (C5) or (C7).

First consider the case that u2 has type (C5). Because the matrix with rows u1,
u2 and uj is not strongly balanceable, Table 2 implies that each uj (j = 3, 4, 5) has
type

(1), (4), (6) or (8).

Note that if two vectors, say uj and uk, have the same type, then the matrix with rows
u1, uj and uk is strongly balanceable by Table 2. Also, from Table 2, any collection
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of three distinct rows of types (1), (4), (6) or (8) contains two rows whose solutions
sets intersect, and we have the contradiction that A contains a strongly balanceable
3 × 3 submatrix. Thus, u2 does not have type (C5).

Next consider the remaining case that u2 has type (C7). Because the matrix
with rows u1, u2 and uj is not strongly balanceable, Table 2 implies that each uj

(j = 3, 4, 5) has type

(2), (5) or (6).

As no type can be repeated, we can assume that u3 has type (2), u4 has type (5) and
u5 has type (6). But then the matrix with rows u1, u3 and u5 is strongly balanceable
by Table 2. Thus, u2 does not have type (C7) and we have a contradiction.

Therefore we have shown that at least one of the three conditions in (4.1) holds.
If eix23 = ±1 or eixj2 = ±1 for some j ∈ {3, 4, 5}, then A has a 3 × 3 submatrix
equivalent to a matrix of form (a) or (b). If for some j ∈ {3, 4, 5} we have eixj3 = ±1,
then A has a 3× 3 submatrix equivalent to a matrix of form (c), (d) or (e). Suppose,
for some j ∈ {3, 4, 5}, that eixj2 = ±eixj3 . Then

 1 1 1
1 ±1 eix23

1 eixj2 ±eixj2


 ∼


 1 1 1

±1 1 ±eix23

e−ixj2 1 ±1


 ∼


 1 1 1

1 ±1 ±eix23

1 e−ixj2 ±1


 .

In other words, A has a 3 × 3 submatrix equivalent to a matrix of form (c), (d) or
(e).

In the following subsections we show the presence of each type of 3×3 submatrix
in Proposition 4.1 leads to a contradiction.

4.1. Form (a). In this section, we show that a full 5 by 5 full ray-nonsingular
matrix does not have a 3 × 3 submatrix with form (a).

Proposition 4.2. Let A be a 5× 5 full ray pattern whose leading submatrix has
form (a). Then A is not ray-nonsingular.

Proof. Assume to the contrary that A is ray-nonsingular. Without loss of gener-
ality we may assume that A is in standard form.

Let u1, u2, u3, u4, u5 be the rows of A[{1, 2, 3, 4, 5}, {1, 2, 3}]. Thus, u1 = u2 =
[ 1 1 1 ]. Let

u3 = [ 1 eiα3 eiβ3 ], u4 = [ 1 eiα4 eiβ4 ], u5 = [ 1 eiα5 eiβ5 ].

Note that since u1 = u2 =
[

1 1 1
]
, ui (i ∈ {3, 4, 5}) is not of the type (1)–

(12) nor (C1)–(C9); otherwise the matrix with rows u1, u2, ui is strongly balanceable.
So ui (i ∈ {3, 4, 5}) has type (C10), (C11) or (C12). If u3 = u4 = u5, then the matrix
with rows u3, u4, u5 is strongly balanceable. Thus, u3, u4, u5 are not all equal. Thus,
by ∼-equivalence, we may assume that A is one of the following two matrices.

B1 =




1 1 1 1 1
1 1 1 a24 a25

1 1 −1 a34 a35

1 1 −1 a44 a45

1 −1 1 a54 a55


 , B2 =




1 1 1 1 1
1 1 1 a24 a25

1 1 −1 a34 a35

1 −1 −1 a44 a45

1 −1 1 a54 a55


 .
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In both cases, A has the 3 × 3 submatrices

 1 1 1

1 1 a2j

1 1 a3j


 and


 1 1 1

1 1 a2j

1 1 a5j




for j = 4, 5. Since the transpose of neither of these matrices is strongly balanceable,
aij = ±1 for i = 2, 3, 5 and j = 4, 5. If A = B1, then A has the 3 × 3 submatrices


 1 1 1

1 1 a2j

1 1 a4j


 ,

and so a4j = ±1 for j = 4, 5. If A = B2, then A has the 3 × 3 submatrices

 1 1 1

1 1 a2j

−1 −1 a4j


 ∼


 1 1 1

1 1 a2j

1 1 −a4j


 .

Thus, a4j = ±1 for j = 4, 5. And therefore, akj = ±1 for all k, j, and by Lemma 2.3,
A is not ray-nonsingular–a contradiction.

Therefore, no 3 × 3 submatrix of A is equivalent to (a).

4.2. Form (b). In this section, we show that the existence of a submatrix of A
with form (b) implies that all entries of A are in {±1}, and thereby contradict Lemma
2.3.

Proposition 4.3. Let A be a 5× 5 full ray pattern whose leading 3× 3 principle
submatrix has form (b). Then A is not ray-nonsingular.

Proof. Suppose to the contrary that A is ray-nonsingular. Without loss of gener-
ality we may assume that A is in standard form.

Let u1, . . . , u5 be the rows of A[{1, 2, 3, 4, 5}, {1, 2, 3}]. Thus u1 = [1 1 1] and
u2 = [1 −1 1]. Let

u3 = [ 1 eix3 eiy3 ], u4 = [ 1 eix4 eiy4 ], u5 = [ 1 eix5 eiy5 ].

By Proposition 4.2, no eiyj (j = 3, 4, 5) is equal to 1, and not all eiyj (j = 3, 4, 5)
equal −1. Thus, there exists a j ∈ {3, 4, 5}, such that eiyj �= ±1 and, since A ∼ A,
we may assume without loss of generality that y3 ∈ P .

Since for each j ∈ {3, 4, 5} the matrix with rows u1, u2, uj is not strongly balance-
able and since no submatrix of A is ∼-equivalent to a matrix of form (a), Example
3.3 implies that each uj (j = 3, 4, 5) has one of the following types:

(2), (3), (6), (8)–(12), (C3)–(C8), (C10) or (C12).

In particular, we see that u3 has one of the following types:

(2), (8), (9), (12), (C5) or (C7).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 11, pp. 212-240, October 2004



ELA

Non-existence of 5 × 5 Full Ray-Nonsingular Matrices 221

Next, let v1, . . . , v5 be the rows of the matrix obtained from

A[{1, 2, . . . , 5}, {1, 2, 3}]

by multiplying its second column by −1. Then

v1 = [1 −1 1], v2 = [1 1 1], v3 = [1 −eix3 eiy3 ], v4 = [1 −eix4 eiy4 ], v5 = [1 −eix5 eiy5 ].

Note that u3 has type (2), (9), (C5) if and only if v3 has type (8), (12), (C7), respec-
tively. Thus, we may assume without loss of generality that u3 has type

(2), (9) or (C5).
Now, we consider several subcases.

Case A: Either u4 or u5 has type (C10) or (C12).
We may assume that u5 has type (C10) or (C12); otherwise we permute the fourth
and fifth rows of A.

Subcase A.i: u5 has type (C10); i.e. u5 =
[

1 1 −1
]
.

Recall that u3 has type (2), (9) or (C5) while u4 has one of the types: (2), (3), (6),
(8), (9)–(12), (C3)–(C8), (C10) or (C12).

Consider the matrix 
 u1

u5

u3


 =


 1 1 1

1 1 −1
1 eix3 eiy3




Proposition 4.2 implies that u3 does not have type (C5). It follows from Example 3.2
that u3 does not have type (2). Hence u3 has type (9).

Since the matrix 
 u1

u3

u4




is not strongly balanceable, Table 2 implies that u4 is not of type (2), (3), (9), (C4),
(C5), or (C8). Since this matrix is not equivalent to a matrix of form (a), u4 is not
of type (10) or (C12).

Since 
 u1

u4

u5




is not ∼-equivalent to a matrix of form (a), u4 does not have type (C6) or (C10).
Note that 

 u2

u5

u4


 ∼


 1 1 1

−1 1 eix4

1 −1 eiy4


 ∼


 1 1 1

1 −1 −eix4

1 −1 eiy4


 .
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From Table 2, we see that if eixj , eiyj �= ±1, then the sign of the imaginary parts of
−eixj and eiyj do not agree. In other words, xj ∈ P implies yj ∈ P and xj ∈ N
implies yj ∈ N . Thus, u4 does not have type (6), (8), (11) or (12).

If u4 has type (C3), then v3 has type (12) and v4 has type (C4), and so (by Table
2) the matrix with rows v2, v3, v4 is strongly balanceable. Thus, u4 does not have
type (C3).

If u4 has type (C7), then by Table 2 the matrix with rows u5, u3, u4 is strongly
balanceable because it is equivalent to

 1 1 −1
1 eix3 eix3

1 −1 eiy4


 ∼


 1 1 1

1 eix3 −eix3

1 −1 −eiy4




which has rows of type (11) and (C8).
Hence, for each possible type of u4 we obtain a contradiction. Therefore, subcase

A.i, does not occur.

Subcase A.ii: u5 has type (C12); i.e. u5 =
[

1 −1 −1
]
.

Recall that u3 has type (2), (9) or (C5) while u4 has one of the following types: (2),
(3), (6), (8)–(12), (C3)–(C8), (C10) or (C12). If u3 has type (2) or (9), then


 u1

u3

u5


 =


 1 1 1

1 eix3 eiy3

1 −1 −1


 ∼


 1 1 1

1 eix3 −1
1 eiy3 −1




is strongly balanceable (by Table 2) because the last two rows both have type (C3).
Hence u3 has type (C5).

Note that if u4 has type (C10) then we are back to Case A.i., and if it has type
(C12) then we have a 3× 3 submatrix of form (a) and we contradict Proposition 4.2.
Table 2 applied to the matrix with rows u1, u3, u4 implies that u4 does not have type
(2), (3), (9), (11), (C4) or (C5).

The type of u4 is not (6) or (8); otherwise
[

1 −eix4 −eiy4
]

has either type
(5) or (7),


 u5

u2

u4


 =


 1 −1 −1

1 −1 1
1 eix4 eiy4


 ∼


 1 1 1

1 1 −1
1 −eix4 −eiy4


 ∼


 1 1 1

1 1 −eix4

1 −1 −eiy4


 ,

and Example 3.2 leads to the contradiction that the last matrix is strongly balanceable
by Table 2.

The type of u4 is not (10); otherwise

 u1

u4

u5


 =


 1 1 1

1 eix4 eix4

1 −1 −1


 ∼


 1 1 1

1 eix4 −1
1 eiy4 −1


 ,

which has second and third row of type (C4), and the matrix is strongly balanceable
by Table 2.
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The type of u4 is not (12); otherwise

 u5

u3

u4


 =


 1 −1 −1

1 1 eiy3

1 −eiy4 eiy4


 ∼


 1 1 1

1 −1 −eiy3

1 eiy4 −eiy4


 ,

where y3, y4 ∈ P . This matrix has second row of type (C8) and third row of type
(11), and hence is strongly balanceable by Table 2.

The type of u4 is not (C3); otherwise

 u2

u3

u4


 =


 1 −1 1

1 1 eiy3

1 eix4 −1


 ∼


 1 1 1

1 −1 eiy3

1 −eix4 −1


 ,

where y3, x4 ∈ P . But then the second row has type (C7) and the third row has type
(C4), and the matrix is strongly balanceable by Table 2.

If u4 has type (C6), then the matrix with rows u1, u3, u4 is equivalent to

 1 1 1

1 1 eiy3

1 1 eiy4




and we contradict Proposition 4.2. Likewise, if u4 has type (C7) or (C8), then

 u2

u4

u5


 =


 1 −1 1

1 −1 eiy4

1 −1 −1


 ∼


 1 1 1

1 1 eiy4

1 1 −1




and we contradict Proposition 4.2.
Therefore, we conclude that Subcase A.ii does not occur. Moreover, Case A does

not occur.

Case B: u4 and u5 have neither type (C10) nor (C12).
Recall from the beginning of the proof that u3 has type (2), (9) or (C5). Also, for
j = 4, 5, uj has type (2), (3), (6), (8) – (12), (C3), (C4), (C6), (C7) or (C8).

Subcase B.i: {eix3 , eix4 , eix5} ∩ {±1} = ∅.
Since {eix3 , eix4 , eix5}∩{±1} = ∅, u3 does not have type (C5), and uj (j = 4, 5), does
not have type (C6), (C7), or (C8).

First suppose u3 has the type (2). Table 2 applied to the matrices with rows
u1, u3, u4, and rows u1, u3, u5 implies that uj (j = 4, 5) has type (8) or (12). Since
the matrix with rows u1, u4, u5 is not strongly balanceable, by Table 2, u4 and u5 do
not have the same type. We may assume that u4 has type (8) and u5 has type (12),
but then, by Table 2, the matrix with rows u1, u4, u5 is strongly balanceable. Hence
u3 does not have type (2).

Next suppose u3 has type (9). By Table 2, applied to the matrix with rows
u1, u3, uj , the vector uj (j = 4, 5) has type (6), (8), (10), (11), (12) or (C3). Note
that v3 has type (12), and Table 2 applied to the matrix with rows v1, v3, vj (j = 4, 5))
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implies that vj has type (2), (4), (6), (9), (10), (11), (C2), (C3), (C5), (C8); that is,
uj has type (8), (5), (3), (12), (11), (10), (C1), (C4), (C7) or (C6). Upon comparison
of the two list of possibilities for the type of uj, we conclude that uj (j = 4, 5) has
type (8), (10), (11) or (12).

If uj has type (8), then vj has type (2) and we are back to case handled in the
second paragraph of this subcase. Hence uj does not have type (8).

If uj has type (10), then the matrix with rows u1, u3, uj is ∼-equivalent to a
matrix of type (a), contrary to Proposition 4.2. Hence uj does not have type (10).

Now uj must have the type (11) or (12). By Table 2, u4 and u5 do not have the
same type. We may assume that u4 has type (11) and u5 has type (12). But then


 u2

u4

u5


 =


 1 −1 1

1 −eix4 eix4

1 −eix5 eix5


 ∼


 1 e−ix4 e−ix5

1 1 1
1 1 1


 ,

and we contradict Proposition 4.2.
Thus, we conclude that Subcase B.i does not occur.

Subcase B.ii. {eix3 , eix4 , eix5} ∩ {±1} �= ∅.
We know that u3 has type (2), (9) or (C5). We claim that without loss of generality
we may assume that u3 has type (C5).

To see this, suppose u3 has type (2) or (9). Since {eix3, eix4 , eix5}∩{±1} �= ∅ and
since neither u4 nor u5 have type (C10) nor (C12), there exists j ∈ {4, 5} such that
eixj = ±1 while eiyj �= ±1. Now, interchange rows 3 and j and if eixj = −1, multiply
the second column by −1 and interchange the first two rows. We may assume y3 ∈ P
since A ∼ A. Note that this new third row has type (C5). Therefore, we may assume
that u3 has type (C5).

Recall that uj (j = 4, 5) has type (2), (3), (6), (8)–(12), (C3), (C4), (C6), (C7)
or (C8). By Table 2 applied to the matrix with rows u1, u3 and uj , the vector uj

does not have type (2), (3), (9), (11), or (C4). By considering the matrix with rows
u1, u3, uj , we see that by Proposition 4.2, eixj �= 1 for j = 4, 5; thus, uj does not have
type (C6). Hence uj can only have one of the following types: (6), (8), (10), (12),
(C3), (C7) or (C8).

But v3 has type (C7) and Table 2 applied to the matrix with rows v2, v3 and vj ,
implies that has one of the types (8), (4), (3), (12), (10), (C2), (C4), (C7), (C8), or
(C6). By comparing the two lists of possibilities for the type of uj, we conclude that
uj (j = 4, 5) has type (8), (10), (12), (C7) or (C8).

Let {j, k} = {4, 5}. Suppose uj has type (8). Then uk does not have type (8),
(12) or (C7) else, by Table 2, the matrix with rows u1, uj, uk is strongly balanceable.
Note that vj has type (2). If uk has type (10) or (C8), then vk has type (11) or (C6)
and so the matrix with rows v1, vj and vk is strongly balanceable. Therefore, uj does
not have type (8).

Next suppose uj has type (C7). But then the matrix with rows u1, uj and uk is
strongly balanceable for uk of any type but (C8). However, if uk has type (C8), then
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the matrix formed by rows u2, uj , uk is equivalent to

 u2

uj

uk


 =


 1 −1 1

1 −1 eiyj

1 −1 eiyk


 ∼


 1 1 1

1 1 1
1 eiyj eiyk


 ,

which contradicts Proposition 4.2. Thus, uj (j = 4, 5) does not have type (C7).
Therefore, uj and uk will have one of the following types: (10), (12) or (C8).

They will not both have the same type, else the matrix with rows u1, uj and uk is
strongly balanceable. We now examine the restrictions on the entries in each of the
possible combinations of types by considering the following subcases.

Subcase B.ii.a: u4 and u5 have types (C8) and (10) respectively.
In other words, there exist α, β, γ ∈ P such that

u3 = [ 1 1 eiα ], u4 = [ 1 −1 ei(β−π) ], u5 = [ 1 ei(γ−π) ei(γ−π) ].

By Table 3, we find conditions on these angles such that there are no 3×3 submatrices
that are strongly balanceable. Because the matrix with rows u1, u4, u5 is not strongly
balanceable,

γ ≤ β.(4.2)

Because the matrix with rows v2, v4, v5 is not strongly balanceable,

γ ≥ β.(4.3)

Equations (4.2) and (4.3) imply γ = β. Also, because the matrix with rows u1, u3, u4

is not strongly balanceable,

γ = β ≤ α.

Suppose γ = β < α. For j = 3, 4, 5, let ûj be such that

 u3

u4

u5


 =


 1 1 eiα

1 −1 ei(β−π)

1 ei(β−π) ei(β−π)


 ∼


 1 1 1

1 −1 ei(β−α−π)

1 ei(β−π) ei(β−α−π)


 =


 û3

û4

û5


 .

Since 0 < β < β + (π−α) < α+ (π−α) = π and ei(β+π−α) = ei(β−α−π), û4 has type
(C7) and û5 has type (8), and hence, by Table 2, the matrix with rows û3, û4, û5 is
strongly balanceable. Therefore

γ = β = α.

Subcase B.ii.b. u4 and u5 have types (C8) and (12) respectively.
In other words, there exist α, β, γ ∈ P such that

u3 = [ 1 1 eiα ], u4 = [ 1 −1 ei(β−π) ], u5 = [ 1 −eiγ eiγ ].
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The matrix formed by rows u1, . . . , u5 is equivalent, by complex conjugation, (1,−1)-
signings and row permutation, to



1 1 1
1 −1 1
1 1 eiα

1 −1 ei(β−π)

1 −eiγ eiγ


 ∼




1 −1 1
1 1 1
1 −1 e−iα

1 1 e−i(β−π)

1 e−iγ e−iγ


 ∼




1 1 1
1 −1 1
1 1 ei(π−β)

1 −1 e−iα

1 e−iγ e−iγ


 .

Note that the third, fourth and fifth rows of this matrix have types (C5), (C8) and
(10) respectively. Thus, by Case B.ii.a., α = β = γ.

Subcase B.ii.c. u4 and u5 have types (10) and (12) respectively.
Therefore, there exists α, β, γ ∈ P such that

u3 = [ 1 1 eiα ], u4 = [ 1 ei(β−π) eiβ ], u5 = [ 1 ei(γ−π) ei(γ−π) ].

Once again, we use Table 3 to find necessary conditions on these angles for there to
be no 3× 3 submatrices that are strongly balanceable. Because the matrix with rows
u1, u3, u4 is not strongly balanceable,

β ≤ α.

Because the matrix with rows v1, v3, v4 is not strongly balanceable,

β ≥ α.

Therefore, β = α. Also, because the matrix with rows u1, u4, u5 is not strongly
balanceable,

γ ≤ β = α.

Suppose γ < β = α. For j = 3, 4, 5, let ûj be such that
 u3

u4

u5


 =


 1 1 eiα

1 ei(α−π) eiα

1 ei(γ−π) ei(γ−π)


 ∼


 1 ei(π−γ) ei(α+π−γ)

1 ei(α−γ) ei(α+π−γ)

1 1 1


 ∼


 û3

û4

û5


 .

Because γ < α, thus 0 < (α − γ) < π − γ < π. Also, ei(α−γ+π) = ei(α−γ−π). So û4

has type (11) and û3 has type (6), and therefore the matrix with rows û5, û3, û4 is
strongly balanceable. Hence

γ = β = α.

We now summarize the implications of the analysis in subcases B.ii.a, B.ii.b, and
B.ii.c. Let α = y3. Then α ∈ P and A[{1, 2, 3}, {1, 2, 3}] has the form

A1 =


 u1

u2

u3


 =


 1 1 1

1 −1 1
1 1 eiα


 .
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Let

b1 =
[

1 −1 −eiα
]
,

b2 =
[

1 −eiα −eiα
]
, b3 =

[
1 −eiα eiα

]
.

Because At
1 = A1, the constraints found in Subcases B.ii.a–B.ii.c imply that A has

the form

A =


 A1 vt

4 vt
5

u4 eiz44 eiz45

u5 eiz54 eiz55


 ,

where u4, u5, v4, v5 ∈ {b1, b2, b3}, u4 �= u5 and v4 �= v5.
We will use this to show that each entry of A is in {1,−1, i,−i}. We do this by

analyzing the 4 × 4 submatrices [
A1 vt

j

uk eizkj

]
,

and show that eizkj ∈ {±1,±eiα} and that eiα = i.
First suppose vj = b1. Note that




1 1 1 1
1 −1 1 −1
1 1 eiα −eiα

1 r s t


 ∼




1 1 1 1
−1 1 −1 1
1 1 eiα −eiα

r 1 rs rt




∼




1 1 1 1
1 −1 1 −1
1 1 −eiα eiα

1 r rt rs


 ∼




1 1 1 1
1 −1 1 −1
1 1 −e−iα e−iα

1 r rt rs


 .

Therefore, r, rt ∈ {±1,±e−iα}. Let uk = [1, r, s] and eizkj = t. Note that if uk ∈
{b2, b3}, then r = −eiα. But this implies −eiα = e−iα, i.e. eiα = i. And thus
t ∈ {±1,±i}. If uk = b1, then r = −1 and t ∈ {±1,±eiα}.

Next suppose vj = b2. Note that



1 1 1 1
1 −1 1 −eiα

1 1 eiα −eiα

1 r s t


 ∼




1 1 e−iα −e−iα

1 −1 e−iα 1
1 1 1 1
1 r se−iα −te−iα




∼




1 1 1 1
1 −1 1 e−iα

1 1 −e−iα e−iα

1 r −te−iα se−iα


 .
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Therefore, r,−te−iα ∈ {±1,±e−iα}. Let uk = [1, r, s] and eizkj = t. Note that
if uk ∈ {b2, b3}, then r = −eiα. But then −eiα = e−iα, i.e. eiα = i. And thus
t ∈ {±1,±i}. If uk = b1, then r = −1 and t ∈ {±1,±eiα}.

Finally suppose vj = b3. Note that



1 1 1 1
1 −1 1 −eiα

1 1 eiα eiα

1 r s t


 ∼




1 1 1 1
−1 1 −1 eiα

1 1 eiα eiα

r 1 sr tr


 ∼




1 1 e−iα e−iα1
−1 1 −e−iα 1
1 1 1 1
r 1 sre−iα tre−iα




∼




1 1 1 1
1 −1 1 −e−iα

1 1 e−iα e−iα

1 r tre−iα sre−iα


 ∼




1 1 1 1
1 −1 1 −eiα

1 1 eiα eiα

1 r rteiα rseiα


 .

So r, rteiα ∈ {±1,±eiα}, i.e. t ∈ {±r,±reiα}. Let uk = [1, r, s]. If uk = b1 then
r = −1 and so eizkj = t ∈ {±1,±eiα}. If uk ∈ {b2, b3}, or in other words, r = −eiα,
then t ∈ {±eiα,±ei2α}.

Note that there are 3 choices for the two vectors vj , therefore, at least one, say
v4 is in {b1, b2}. Similarly, there are two vectors uk, thus at least one of them, say
u4 is in {b2, b3}. Therefore, eiα = i, and so ei2α = −1 and eizkj ∈ {±1,±i} for all
j, k = 4, 5. By Lemma 2.3, A is not ray-nonsingular.

4.3. Form (c). In this section we show that A does not have a submatrix of
form (c).

Proposition 4.4. Let A be a 5× 5 full ray pattern whose leading 3× 3 principal
submatrix has form (c). Then A is not ray-nonsingular.

Proof. Suppose to the contrary that A is ray-nonsingular. Without loss of gener-
ality we may assume that A is in standard form. By Lemma 2.2, no 3 × 3 submatrix
of A is strongly balanceable.

Let



u1

u2

u3

u4

u5


 =




1 1 1
1 −1 eiα

1 eiβ −1
1 eix4 eiy4

1 eix5 eiy5


 .

Propositions 4.2 and 4.3 imply that eiα, eiβ , eixj , eiyj /∈ {±1} for j = 4, 5. Further-
more, since A ∼ A, we may assume that α ∈ P . Therefore, u2 has type (C7). Since
the matrix with rows u1, u2 and u3 is not strongly balanceable, by Table 2, u3 has
type (C3), i.e. β ∈ P . Table 2 applied to the matrix with rows u1, u3 and uj , and the
matrix with rows u1, u2, uj implies that for j = 4, 5, uj has type (9). But this means
that rows u4 and u5 both have type (9) and therefore the matrix with rows u1, u4

and u5 is strongly balanceable, which is the desired contradiction.
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4.4. Form (d). In this section we show that A does not have a submatrix of
form (d).

Proposition 4.5. Let A be a 5× 5 full ray pattern whose leading 3× 3 principal
submatrix has form (d). Then A is not ray-nonsingular.

Proof. Suppose to the contrary that A is ray-nonsingular. Without loss of gener-
ality we may assume that A is in standard form. By Lemma 2.2, no 3 × 3 submatrix
of A is strongly balanceable.

Let



u1

u2

u3

u4

u5


 =




1 1 1
1 1 eiα

1 eiβ −1
1 eix4 eiy4

1 eix5 eiy5


 .

By Propositions 4.2 and 4.3, eiα, eiβ , eixj , eiyj /∈ {±1} for j = 4, 5. Furthermore, we
may assume that α ∈ P as A ∼ A. Therefore, u2 has type (C5). By Table 2, applied
to the matrix with rows u1, u2 and u3, u3 has type (C3), i.e. β ∈ P . As in the proof
of Proposition 4.4, u3 has type (C3), and so for j = 4, 5, uj has type (1), (8), or (12).
Since the matrix with rows u1, u2 and uj is also not strongly balanceable, uj can
only have type (1), (8) or (12). By Table 2, we see that the pairwise intersections of
the solution sets are non-empty; thus, the matrix with rows u1, u4 and u5 is strongly
balanceable–a contradiction.

4.5. Form (e). In this section we show that A does not have any 3×3 submatrix
that is ∼-equivalent to a matrix of form (e).

Proposition 4.6. Let A be a 5 × 5 full ray-pattern whose leading principle
submatrix has the form (e). Then A is not ray-nonsingular.

Proof. Suppose to the contrary that A is ray-nonsingular. Without loss of gener-
ality we may assume that A is in standard form. By Lemma 2.2, no 3 × 3 submatrix
of A is strongly balanceble, and by Propositions 4.2-4.5, no 3 × 3 submatrix of A is
equivalent to a matrix of form (a), (b), (c), or (d). We will show that this implies
that each entry of A lies in {1, e±i2π/3} and that A has a 4 × 4 strongly balanceable
submatrix (which contradicts Lemma 2.2).

Suppose u1, . . . , u5 are the five rows of [aij ]1≤i≤5,1≤j≤3. Then


 u1

u2

u3


 =


 1 1 1

1 1 eiβ

1 eiα 1


 .

Let

u4 = [ 1 eix4 eiy4 ], u5 = [ 1 eix5 eiy5 ].

Note that eiα, eiβ , eixj , eiyj �= ±1, for j = 4, 5; otherwise we contradict Proposition
4.2 or 4.3. Furthermore, we may assume that α ∈ P , otherwise replace A with A.
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Therefore, u3 has type (C1). Because the matrix with rows u1, u2, u3 is not strongly
balanceable, by Table 2, u2 has type (C5), i.e. β ∈ P . We also know that

π ≤ α + β(4.4)

by Table 3. Because the matrix with rows u1, u2, uj , for j = 4, 5, is not strongly
balanceable, uj has types (1), (4), (6), (8), (10) or (12). Because the matrix with
rows u1, u3, uj is also not strongly balanceable, uj has one of the following types:

(6), (8) or (10).

We now consider the three cases where uj has type (6), (8) and (10) and examine
the matrices with rows ul, uk, uj where l, k ∈ {1, 2, 3}, to find bounds on xj and
yj dependent on α and β. These bounds are found by using Table 3 for the given
matrices.

Case A: uj has type (6), i.e., xj ∈ P, yj ∈ N and xj − yj > π.
Table 3 applied to u1, u2, uj gives

0 < yj − β + 2π ≤ xj .(4.5)

Table 3 applied to u1, u3, uj gives

xj ≤ α.(4.6)

Note that 
 u2

u3

uj


 =


 1 1 eiβ

1 eiα 1
1 eixj eiyj


 ∼


 1 1 1

1 eiα e−iβ

1 eixj ei(yj−β)


 .

The second row of the second matrix has type (6) or (11) because α+β ≥ π by (4.4).
Because ei(yj−β) = ei(yj−β+2π) and (4.5) holds, the third row has either type (1) or
(9). By Table 3,

α ≤ xj .(4.7)

Equations (4.6) and (4.7) imply

α = xj .(4.8)

Also, equation (4.5) implies

α + β ≥ yj + 2π > π.(4.9)

Case B: uj has type (8), i.e., xj ∈ N , yj ∈ P and yj − xj > π.
Note that the following matrices are equivalent.


u1

u2

u3

u4


 =




1 1 1
1 1 eiβ

1 eiα 1
1 eixj eiyj


 ∼




1 1 1
1 1 eiα

1 eiβ 1
1 eiyj eixj


 .
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Using the same argument in Case A, we have

yj = β and(4.10)

α + β ≥ xj + 2π > π.(4.11)

Case C: uj has type (10), i.e. xj = yj ∈ N .
Because the matrix with rows u1, u2, uj is not strongly balanceable,

β ≥ xj + π.(4.12)

Also, because the matrix with rows u1, u3, uj is not strongly balanceable,

α ≥ xj + π.(4.13)

We now use the above information to further determine the structure of u1, . . . , u5.
We have the following three cases.

Case A′. Assume u4 and u5 have types (6) and (8) respectively.
Then (4.8)–(4.11) imply that x4 = α, y5 = β and α+β ≥ γ+2π > π for γ ∈ {y4, x5}.

Suppose that α + β > y4 + 2π. Then the following matrices are equivalent.

 u2

u4

u5


 =


 1 1 eiβ

1 eiα eiy4

1 eix5 eiβ


 ∼


 1 1 1

1 eiα ei(y4−β)

1 eix5 1


 .

But the second row has type (1) and the third row has type (C2) and, by Table 2,
the matrix is strongly balanceable. Therefore,

α + β = y4 + 2π.(4.14)

Similarly, using the matrix with rows u3, u4, u5, we can show that

α + β = x5 + 2π.(4.15)

Therefore,



u1

u2

u3

u4

u5


 =




1 1 1
1 1 eiβ

1 eiα 1
1 eiα ei(α+β)

1 ei(α+β) eiβ


 .

Case B′. Assume u4 and u5 have types (6) and (10) respectively.
Then by (4.8), (4.9), (4.12) and (4.13) we have

x4 = α, α + β ≥ y4 + 2π > π,
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x5 = y5 ∈ N and x5 + π ≤ α, β.

Table 3 applied to u1, u4, u5 implies

y4 ≥ x5.(4.16)

Note that 
 u2

u4

u5


 =


 1 1 eiβ

1 eiα eiy4

1 eix5 eix5


 ∼


 1 1 1

1 eiα ei(y4−β)

1 eix5 ei(x5−β)


 .

Label the second row û4 and the third row û5. By equation (4.9), û4 has type (1)
when y4 + 2π < α + β, and has type (9) when y4 + 2π = α + β. Also, by (4.12)
and x5 − α > x5 − π, we see that û5 has type (8) when β > x5 + π, and has type
(C4) when β = x5 + π. Referring to Table 2, we see that û4 must have type (9), i.e.
y4 + 2π = α + β, and û5 must have type (8), i.e. β > x5 + π because this matrix is
not strongly balanceable.

Similarly, we note that the matrix
 u3

u4

u5


 =


 1 eiα 1

1 eiα eiy4

1 eix5 eix5


 ∼


 1 1 1

1 1 eiy4

1 ei(x5−α) eix5


 .

Again, label the second row û4 and the third row û5. Note that û4 has type (C6) and
û5 has type (6) or (C8) because x5 − α > x5 − π and (4.13). But this matrix is not
strongly balanceable and so by Table 3,

x5 ≥ y4.(4.17)

Equations (4.16), (4.17) and the fact that y4 + 2π = α + β imply

x5 = y4 = α + β − 2π.(4.18)

So 


u1

u2

u3

u4

u5


 =




1 1 1
1 1 eiβ

1 eiα 1
1 eiα ei(α+β)

1 ei(α+β) ei(α+β)


 .

Case C′. Assume u4 and u5 have types (8) and (10) respectively.
Then 



u1

u2

u3

u4

u5


 =




1 1 1
1 1 eiβ

1 eiα 1
1 eix4 eiβ

1 eix5 eix5


 ∼




1 1 1
1 1 eiα

1 eiβ 1
1 eiβ eix4

1 eix5 eix5


 .
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Using the argument in Case B′, we see that

x5 = x4 = α + β − 2π

and 


u1

u2

u3

u4

u5


 =




1 1 1
1 1 eiβ

1 eiα 1
1 ei(α+β) eiβ

1 ei(α+β) ei(α+β)


 .

We now describe the implications of the analysis in Cases A–C, and A’–C’. Let

c1 =
[

1 eiα ei(α+β)
]
, c2 =

[
1 ei(α+β) eiβ

]
, c3 =

[
1 ei(α+β) ei(α+β)

]
,

c4 =
[

1 eiβ ei(α+β)
]
, c5 =

[
1 ei(α+β) eiα

]
.

Using both A by At, we see that if A1 is the 3 × 3 leading principal submatrix of A,
i.e., with rows u1, u2, u3, then

A =


 A1 vt

4 vt
5

u4 eiz44 eiz45

u5 eiz54 eiz55




where u4, u5 ∈ {c1, c2, c3} and v4, v5 ∈ {c3, c4, c5}. We consider the possible 4 × 4
submatrices for the different values of uj and vk and determine the possible values of
eizkj .

First suppose uj = c3. Let vk = [1, eiγ , eiδ] and zkj = λ. We consider the
following submatrix of At:




1 1 1 1
1 1 eiα ei(α+β)

1 eiβ 1 ei(α+β)

1 eiγ eiδ eiλ


 ∼




1 1 e−iα e−i(α+β)

1 1 1 1
1 eiβ e−iα 1
1 eiγ ei(δ−α) ei(λ−α−β)




∼




1 1 1 1
1 1 e−i(α+β) e−iα

1 eiβ 1 e−iα

1 eiγ ei(λ−α−β) ei(δ−α)


 .

Applying the arguments in Cases A, B, C, A′, B′, C′ to the right most matrix with
(α, β) replaced by (β,−(α + β)), we conclude that


 1

eiγ

ei(λ−α−β)


 ∈





 1

eiβ

e−iα


 ,


 1

e−iα

e−i(α+β)


 ,


 1

e−iα

e−iα




 .
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Thus, eiλ ∈ {1, eiβ} and eiγ ∈ {eiβ , ei(−α)}. Because −α, (α + β) ∈ N and β ∈ P , if
vk = c3 or c5, then eiγ = ei(α+β) = e−iα, i.e. ei(2α+β) = 1.

Next suppose uj = c2. Let vk = [1, eiγ , eiδ] and zkj = λ. We consider the
following submatrix of At:




1 1 1 1
1 1 eiα ei(α+β)

1 eiβ 1 eiβ

1 eiγ eiδ eiλ


 ∼




1 1 1 1
e−iα e−iα 1 eiβ

1 eiβ 1 eiβ

e−iδ ei(γ−δ) 1 ei(λ−δ)




∼




1 e−iβ 1 e−iβ

e−iα e−i(β+α) 1 1
1 1 1 1

e−iδ ei(γ−δ−β) 1 ei(λ−δ−β)


 ∼




1 1 1 1
1 1 e−iβ e−iβ

1 e−iα 1 e−i(α+β)

1 e−iδ ei(λ−δ−β) ei(γ−δ−β)


 .

Applying the arguments in Cases A, B, C, A′, B′, C′ to the right most matrix with
(α, β) replaced by (−α,−β), we conclude that


 1

e−iδ

ei(λ−δ−β)


 ∈





 1

e−iα

e−i(α+β)


 ,


 1

e−i(α+β)

e−iβ


 ,


 1

e−i(α+β)

e−i(α+β)




 .

Thus, eiλ ∈ {eiδ, ei(δ−α)}. Also,



1 1 1 1
1 1 eiα ei(α+β)

1 eiβ 1 eiβ

1 eiγ eiδ eiλ


 ∼




1 1 1 1
1 1 eiα ei(α+β)

e−iβ 1 e−iβ 1
e−iγ 1 ei(δ−γ) ei(λ−γ)




∼




1 1 1 1
1 1 ei(α+β) eiα

1 e−iβ 1 e−iβ

1 e−iγ ei(λ−γ) ei(δ−γ)


 .

Applying the arguments in A, B, C, A′, B′, C′ to the right most matrix with (α, β)
replaced by (−β, α + β), we conclude that


 1

e−iγ

ei(λ−γ)


 ∈





 1

e−iβ

eiα


 ,


 1

eiα

ei(α+β)


 ,


 1

eiα

eiα




 .

Thus, eiλ ∈ {ei(α+β+γ), ei(α+γ)} and eiγ ∈ {ei(−α), eiβ}. Since −α ∈ N and β ∈ P ,
if vk = c3 or c5, then eiγ = ei(α+β) = e−iα. In other words, ei(2α+β) = 1. Fur-
thermore, if vk = c3, then eiδ = ei(α+β) and therefore, eiλ ∈ {ei(α+β), eiβ}⋂{eiβ , 1}.
So eiλ = eiβ . If vk = c5, then eiδ = eiα; therefore, eiλ ∈ {eiα, 1}⋂{eiβ, 1}. So
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either eiλ = 1 or eiλ = eiα = eiβ . If vk = c4, then eiδ = ei(α+β) and eiγ = eiβ .
Hence, eiλ ∈ {ei(α+β), eiβ}⋂{ei(2β+α), ei(α+β)}. Recall that α, β ∈ P = (0, π). Thus,
eiλ = ei(α+β).

Finally suppose uj = c1. Let vk = [1, eiγ , eiδ] and zkj = λ. We consider the
following submatrix of At:




1 1 1 1
1 1 eiα eiα

1 eiβ 1 ei(α+β)

1 eiγ eiδ eiλ


 ∼




1 1 1 1
1 1 eiβ ei(α+β)

1 eiα 1 eiα

1 eiδ eiγ eiλ


 .

Interchanging the roles of (α, γ) and (β, δ), we see that this is similar to the case when
uj = c2. In other words,

eiλ ∈ {eiγ , ei(γ−β)}
⋂

{ei(α+β+δ), ei(β+γ)} and eiδ ∈ {ei(−β), eiα}.

If vk = c3 or c4, then eiδ = ei(α+β) and so ei(α+β) = e−iβ , i.e. ei(2β+α) = 1.
Furthermore, if vk = c3, then eiλ = eiα. If vk = c4, then either eiλ = 1 or eiλ = eiα =
eiβ . If vk = c5, then eiλ = ei(α+β).

We now turn our attention to the possible forms of vj . First suppose that
vj = c5. Let uk = [1, eiγ , eiδ] and zjk = λ. Interchanging α and β, and using
the transpose of A, we see that this is similar to the case when uj = c2. Thus,
eiλ ∈ {eiδ, ei(δ−β)}⋂{ei(α+β+γ), ei(β+γ)} and eiγ ∈ {eiα, e−iβ}. Therefore, if uk = c2
or c3, then eiγ = ei(α+β) = e−iβ , i.e. ei(α+2β) = 1. Furthermore, if uk = c3, then
eiλ = eiα. If uk = c2, then either eiλ = 1 or eiλ = eiβ = eiα. And if uk = c1, then
eiλ = ei(α+β).

Next suppose that vj = c4. Let uk = [1, eiγ , eiδ] and zjk = λ. Interchanging α and
β, and using the transpose of A, we see that this is similar to the case when uj = c1.
Hence, eiλ ∈ {eiγ , ei(γ−α)}⋂{ei(α+β+δ), ei(α+δ)} and eiδ ∈ {eiβ , e−iα}. Therefore, if
uk = c1 or c3, then eiδ = ei(α+β) = e−iα, i.e. ei(2α+β) = 1. Furthermore, if uk = c3,
then eiλ = eiβ. And if uk = c1, then either eiλ = 1 or eiλ = eiβ = eiα. If uk = c2,
then eiλ = ei(α+β).

Finally suppose vj = c3. Let uk = [1, eiγ , eiδ] and zjk = λ. Interchanging α
and β, and using the transpose of A, we see that this is similar to the case when
uj = c3. Thus, eiλ ∈ {1, eiα} and eiγ ∈ {eiα, e−iβ}. So, if uk = c2 or c3, then
eiγ = ei(α+β) = e−iβ . In other words, ei(α+2β) = 1.

Note that {u4, u5}
⋂{c2, c3} �= ∅ and also {v4, v5}

⋂{c3, c5} �= ∅. Therefore,
e−iβ = ei(α+β) = e−iα and so α = β and ei(3α) = 1. Let ω = eiα so that w2 = ei(α+β).

We can always assume that if c3 ∈ {u4, u5, v4, v5}, then u5 = c3 (since A ∼ At

and A ∼ PAQ where P,Q are permutation matrices). Also, if uj = c1, then inter-
change the second and third row and column to get uj = c2. Thus, we may assume
that the pair of pairs ((u4, u5), (v4, v5)) is one of the following: ((c2, c3), (c5, c3)),
((c2, c3), (c4, c3)), ((c2, c3), (c5, c4)), ((c2, c1), (c5, c4)). Hence, A is one of the follow-
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ing matrices:

B1 =




1 1 1 1 1
1 1 ω ω2 ω2

1 ω 1 ω ω2

1 ω2 ω x1 ω
1 ω2 ω2 ω y1


 , B2 =




1 1 1 1 1
1 1 ω ω ω2

1 ω 1 ω2 ω2

1 ω2 ω ω2 ω
1 ω2 ω2 ω x2


 ,

B3 =




1 1 1 1 1
1 1 ω ω2 ω
1 ω 1 ω ω2

1 ω2 ω x3 ω2

1 ω2 ω2 ω ω


 , B4 =




1 1 1 1 1
1 1 ω ω2 ω
1 ω 1 ω ω2

1 ω2 ω x4 ω2

1 ω ω2 ω2 y4


 ,

with xi, yi ∈ {1, ω} for i = 1, . . . , 4. However, if x1, y1, x2, x3 or y4 = ω, then we
contradict Proposition 4.2 because A has the submatrix


 1 1 1

1 ω2 ω
1 ω2 ω


 ∼


 1 ω ω2

1 1 1
1 1 1


 .

Also, if x4 = ω, then we contradict Proposition 4.2 because A has the submatrix

 1 1 1

1 ω ω2

1 ω ω2


 ∼


 1 ω2 ω

1 1 1
1 1 1


 .

Thus, xi, yi = 1 for all i. But, for each of the four matrices B1, B2, B3, B4, there exists
a 4 × 4 strongly balanceable submatrix (since each row contains each of the entries
1, ω, ω2). To find these submatrices, in each case remove the first row. For B1 and
B4, remove the first column. For B2 and B3, remove the third and second columns,
respectively. Thus A is not ray-nonsingular.

Propositions 4.1-4.6 imply our main result:
Theorem 4.7. There does not exist a 5 × 5 full ray-nonsingular matrix.

Combined with the results of [1, 2], we have the the main theorem:

Main Theorem There is an n × n full ray-nonsingular matrix if and only if
n ≤ 4.
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Appendix

Graphical representations of R(0, 0) ∩R(α, β).

(−π,π−β)

(π−α,−π)

(−π,α−β)

(−α−β,π)

(−α,π−β)

Form (1)

(π,α−β)

(π−α,−π)(β−α,−π)

(−π,π−β)

(π−α,−β)

Form (2)

(−π,α−β) (−π−α,−β)

(−π−α,π)

(π,−π−β)

(β−α,π)

Form (3)

(−α,−π−β)

(π,−π−β)

(π,α−β)

(β−α,−π)

(−π−α,π)

Form (4)

(π−α,−π)

(π,−π−β)

(−π,α−β)

(−α+β,π)

(π−α,−π−β)

Form (5)

(π−α,−π)

(π,−π−β)

(2π−α+β,−π)

(π,α−β−2π)

Form (6)
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(β−α,−π)

(−π−α,π)

(−π,π−β)

(π,α−β)

(−π−α,π−β)

Form (7)

(−π,
 2π+α−β)

(−π,π−β)

(−π−α,π)(−2π−α+β,π)

Form (8)

(−π,π−α)

(π−α,−π)

Form (9)

(−π−α,π)

(π,−π−α)

Form (10)

(π,−α)

(π−α,−π)

Form (11)

(−π,−α)

(−π−α,π)

Form (12)
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(−π,α)

(π−α,−π)

(−α,π)

Form (C1)

(π,α)

(−α,−π)

(−π−α,π)

Form (C2)

(π,α−π)

(π−α,−π)

(π−α,−α)

Form (C3)

(−π−α,π)

(−π,π+α)

(−π−α,−α)

Form (C4)

(−π,π−β)

(π,−β)

(β,−π)

Form (C5)

(−π,−β)

(β,π)

(π,−π−β)

Form (C6)
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(β−π,π)

(−π,π−β)

(−β,π−β)

Form (C7)

(β+π,−π)

(π,−π−β)

(−β,−π−β)

Form (C8)

(−π,0)

(0,π)

(0,−π)

(π,0)

Form (C9)

(−π,0)

(0,π)

(0,−π)

(π,0)

Forms (C10-12)
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