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MATRIX INVERSION AND DIGRAPHS: THE ONE FACTOR CASE∗

T. BRITZ† , D. D. OLESKY‡ , AND P. VAN DEN DRIESSCHE†

Abstract. The novel concept of a cyclic sequence of a digraph that has precisely one factor
is defined, and is used to characterize the entries of the inverse of a matrix with such a digraph.
This leads to a characterization of a strongly sign-nonsingular matrix in terms of cyclic sequences.
Nonsingular nearly reducible matrices are a well-known class of matrices having precisely one nonzero
diagonal, and a simple expression for the entries of the inverse of such a matrix in terms of cyclic
sequences is derived. A consequence is that a nonsingular nearly reducible matrix is strongly sign-
nonsingular. Several conditions that are equivalent to the inverse of a nonsingular nearly reducible
matrix being nearly reducible are obtained.

Key words. Inverse matrix, Digraph, Sign pattern, Strongly sign-nonsingular matrix, Nearly
reducible matrix, Minimally strongly connected digraph.
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1. Introduction. For several decades, matrix inversion has been described in
terms of digraph properties; see for example [4, 6, 12, 13] and references therein. This
paper focuses on a special class of matrices, namely m×m (m ≥ 2) matrices with pre-
cisely one nonzero diagonal. In terms of digraphs, this is equivalent to the digraph of a
matrix having precisely one factor. For such matrices, matrix inversion may be char-
acterized in a relatively simple manner by means of digraph properties, as described
in the main result of Section 2, namely Theorem 2.4, by employing the novel concept
of a cyclic sequence. In Section 3, Theorem 3.3 provides a necessary and sufficient
condition for the matrices associated with a given digraph with precisely one factor
to all have inverses with a common digraph. This result is extended in Section 4 by
Theorem 4.3, which also characterizes strongly sign-nonsingular matrices. Although
similar characterizations may be found elsewhere (see [4, Chapter 7] for an overview),
the present characterization offers new necessary and sufficient conditions. Further-
more, this characterization does not depend on the usual normalization condition [4]
that the main diagonal of the matrix in question has only negative entries.

An m × m matrix is nearly reducible if it is irreducible and becomes reducible
whenever any nonzero entry is replaced by zero. Such matrices have been shown to
have interesting properties, many of which are described by Brualdi and Ryser [3,
Section 3.3]. Section 5 is devoted to the study of the digraphs of such matrices (min-
imally strongly connected digraphs) and the structure of the digraphs of the inverses
of these matrices. Hedrick and Sinkhorn [7] proved that nonsingular nearly reducible
matrices have precisely one nonzero diagonal. Thus the inversion characterization in
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Theorem 2.4 may be applied to these matrices, and Theorem 5.8 presents a partic-
ularly simple description of the inverse of a nonsingular nearly reducible matrix in
terms of cyclic sequences. From this description, it follows directly that each nonsin-
gular nearly reducible matrix is strongly sign-nonsingular. Furthermore, the inversion
of a nonsingular nearly reducible matrix has an interesting digraph analogue. In par-
ticular, Theorem 5.15 describes how the digraphs of a nonsingular nearly reducible
matrix and its inverse determine each other by digraph operations. Proposition 5.16
shows that this dual correspondence is valid not only for the digraphs of the two ma-
trices, but also for their sign patterns. This is true despite the fact that the inverse
of a nonsingular nearly reducible matrix is neither necessarily nearly reducible nor
strongly sign-nonsingular. Interestingly, it is seen in Theorem 5.18 that the inverse is
nearly reducible if and only if it is strongly sign-nonsingular.

2. Matrices with precisely one nonzero diagonal. We begin with some
digraph terminology and introduce the concept of a cyclic sequence, which plays an
important role throughout this paper. The family D1 consists of all (finite) digraphsD
with precisely one factor CD = {C1, . . . , Cs}; that is, CD is a set of vertex-disjoint
cycles that cover all vertices V (D). It is assumed that |V (D)| ≥ 2. The arcs E(D)
of a digraph D ∈ D1 may be partitioned into two non-empty classes, namely the arcs
that are contained in one of the cycles of CD, and those that are not. Denote the
former by E(CD) = E(C1)∪ · · · ∪E(Cs). If v is a vertex of V (D), then v is contained
in precisely one cycle of CD. This is the cycle CD(v) given by

v → σ(v) → σ(σ(v)) → · · · → σ−1(v) → v ,

where σ is the permutation of V (D) determined by the factor CD, i.e., σ(u) = v if
and only if (u, v) ∈ E(CD).

To avoid any confusion between σ and σ−1 in the following, we use the notation
n := σ and f := σ−1 (for the “next” and “former” permutations in D). It follows
that v = n(f(v)) = f(n(v)) for each vertex v ∈ V (D), and that if (u, v) is contained
in E(CD), then (u, v) = (f(v), n(u)). The permutations n and f are illustrated in
Figure 2.1, in which CD consists of three 3-cycles.
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Fig. 2.1. The “next” and “former” permutations

A cyclic sequence in D ∈ D1 of length s ≥ 1 from vertex v1 to vertex f(vs) is a
sequence of s distinct vertices (v1, . . . , vs) of D such that if s ≥ 2, then (f(vr), vr+1) ∈
E(D) − E(CD) for each r = 1, . . . , s − 1; every vertex v1 ∈ V (D) forms the cyclic
sequence (v1) from v1 to f(v1), which is the case s = 1. If a cyclic sequence (v1, . . . , vs)
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exists, then

v1 → n(v1) → · · · → f(v1) → v2 → n(v2) →
· · · → f(v2) → · · · → vs → n(vs) → · · · → f(vs)

is the associated walk from v1 to f(vs). Note that the arcs between the consecutive
vertices vr, n(vr), . . . , f(vr) are in CD(vr) for r = 1, . . . , s. The digraph in Figure 2.1
contains the cyclic sequence (v1, v2, v3) from v1 to f(v3). The associated walk from v1
to f(v3) is

v1 → n(v1) → f(v1) → v2 → n(v2) → f(v2) → v3 → n(v3) → f(v3).

Let A = [aij ] be an m ×m matrix (over some field) with precisely one nonzero
diagonal {aiσ(i)}, where σ is some permutation of {1, . . . ,m} and all aiσ(i) 
= 0. All
such A are necessarily nonsingular, and the digraph D(A) with vertices 1, . . . ,m
and arcs {(i, j) | aij 
= 0} belongs to the family D1. Thus, σ is the permutation
determined by CD(A). Let P = [pij ] be the permutation matrix whose nonzero entries
are in the same positions as the entries of the diagonal of A, and let P−1 = [πij ], i.e.,
with n := σ,

pij =

{
1 , if j = n(i);
0 , otherwise

and πij =

{
1 , if i = n(j);
0 , otherwise.

Throughout this section, we define A′ = P−1A = [a′ij ], and let A−1 = [αij ] and
(A′)−1 = [α′

ij ].
Lemma 2.1. Let n := σ and f := σ−1. Then

aij = a′n(i)j , αij = α′
in(j), a′ij = af(i)j , and α′

ij = αif(j).

Proof. It follows from A = PA′ that aij =
∑

k pika
′
kj = pin(i)a

′
n(i)j = a′n(i)j .

Since A−1 = (A′)−1P−1, αij =
∑

k α
′
ikπkj = α′

in(j)πn(j)j = α′
in(j). The third and

fourth identities restate the first two statements.
Lemma 2.1 implies that a′ii = af(i)i 
= 0. The matrix A′ therefore has only nonzero
entries along its main diagonal. Since A has only one nonzero diagonal, so does A′,
and CD(A′) consists of m loops. Let f ′ be the “former” permutation in D(A′).

Lemma 2.2. Let A be a matrix with precisely one nonzero diagonal, and let P
be a permutation matrix such that A′ = P−1A has nonzero main diagonal. Then the
following three statements are equivalent:

1. v1 → · · · → vs is a path in D(A′) from v1 to vs;
2. (v1, . . . , vs) is a cyclic sequence in D(A′) from v1 to f ′(vs)=vs;
3. (v1, . . . , vs) is a cyclic sequence in D(A) from v1 to f(vs).
Proof. If s = 1, then each statement is trivially true; so suppose for the remain-

der of the proof that s ≥ 2. Since the factor CD(A′) contains only loops, it follows

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 11, pp. 115-131, June 2004



ELA

118 T. Britz, D. D. Olesky, and P. van den Driessche

that f ′(v) = v for all v ∈ V (D(A′)). Thus, if v1 → . . . → vs is a path in D(A′)
from v1 to vs, then (f ′(vr), vr+1) = (vr, vr+1) is an arc in E(D(A′)) − E(CD(A′))
for each r = 1, . . . , s − 1. Hence, (v1, . . . , vs) is a cyclic sequence in D(A′) from v1
to vs. Conversely, if statement 2 is true, then the vertices v1, . . . , vs are distinct, and
(vr, vr+1) = (f ′(vr), vr+1) is an arc of D(A′) for all r = 1, . . . , s− 1, so statement 1 is
also true. Hence, statements 1 and 2 are equivalent.

Suppose that (v1, . . . , vs) is a cyclic sequence in D(A′). Then v1, . . . , vs are dis-
tinct, and (vr , vr+1) ∈ E(D(A′)) − E(CD(A′)) for all r = 1, . . . , s − 1. Lemma 2.1
implies that af(vr)vr+1 = a′vrvr+1

. Since in the latter equation, the right side is a
nonzero entry of A′ that is not on the unique nonzero diagonal of A′, the left side
must also be a nonzero entry of A that is not on the unique nonzero diagonal of A.
In other words, (f(vr), vr+1) ∈ E(D(A)) − E(CD(A)) for all r = 1, . . . , s − 1, which
proves that statement 2 implies statement 3 . The proof of the converse implication
is similar and straightforward.

Lemma 2.3. If i = n(j) (i.e., j = f(i)), then αij = 1
af(i)i

= 1
aji

.

Proof. By the identity A−1 = adj A
detA and Lemma 2.1, αij = αif(i) = α′

ii =
detA′

ii

detA′ ,
where A′

ii is the matrix obtained by deleting the ith row and the ith column of
the matrix A′. Hence, αij = 1

a′
ii
, since detA′

ii = (a′11 · · · a′mm)/a
′
ii and detA′ =

a′11 · · · a′mm. By Lemma 2.1, αij = 1
af(i)i

.
Suppose that i 
= n(j). It follows from [12, Corollary 9.1] that

α′
in(j) =

1
detA′

∑
pk

(−1)lk detA′[V (D(A′))− V (pk)]
∏

(u,v)∈E(pk)

a′uv

where the sum is taken over all paths pk in D(A′) from i to n(j), where lk is the
length of path pk, where V (pk) (resp. E(pk)) is the set of vertices (resp. arcs) of
path pk, and A′[V (D(A′))−V (pk)] is the submatrix ofA′ containing rows and columns
corresponding to the vertices not in V (pk). Thus,

α′
in(j) =

∑
pk

(−1)lk

∏
(u,v)∈E(pk)

a′uv

∏
q∈V (pk)

a′qq

,

since detA′ = a′11 · · · a′mm. By Lemma 2.2,

α′
in(j) =

∑
v

(−1)s−1

s−1∏
r=1

a′vrvr+1

s∏
q=1

a′vqvq

,

where the sum is taken over all cyclic sequences v = (v1, . . . , vs) in D(A′) from v1 = i
to f ′(vs) = vs = n(j), and s = |v| is the length of sequence v. Lemma 2.1 implies
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that

αij = α′
in(j) =

∑
v

(−1)s−1 af(v1)v2 · · ·af(vs−1)vs

af(v1)v1af(v2)v2 · · · af(vs)vs

,

where the sum is taken over all cyclic sequences v = (v1, . . . , vs) in D(A) from v1 = i
to f(vs) = j, and s = |v|.

If i = n(j), then (i) is the only cyclic sequence from i to j = f(i) in D(A). Thus,
Lemma 2.3 and the calculations above together imply the following theorem.

Theorem 2.4. Let A be a square matrix with precisely one nonzero diagonal,
and let A−1 = [αij ]. Then, for all i, j,

αij =
∑
v

(−1)s−1 af(v1)v2 · · · af(vs−1)vs

af(v1)v1af(v2)v2 · · ·af(vs)vs

,

where the sum is taken over all cyclic sequences v = (v1, . . . , vs) in D(A) from i = v1
to j = f(vs), and s = |v| is the length of sequence v. If no such sequence exists, then
αij = 0.

Example 2.5. To illustrate Theorem 2.4, a matrix A with precisely one nonzero
diagonal, the digraph D = D(A), and the inverse matrix A−1 are displayed in Fig-
ure 2.2. Since CD consists of the loop (1, 1) and the 2-cycle 2 → 3 → 2, the permu-
tation f in D satisfies f(1) = 1, f(2) = 3, and f(3) = 2. To compute the entry α33

of A−1, for instance, first find all cyclic sequences in D(A) from i = 3 to j = 3 = f(2).
These are the sequences (3, 2) of length 2 and (3, 1, 2) of length 3, with associated
walks 3 → 2 → 2 → 3 and 3 → 2 → 1 → 1 → 2 → 3, respectively. Theorem 2.4 then
implies that the entry α33 equals

(−1)2−1 af(3)2

af(3)3af(2)2
+ (−1)3−1 af(3)1af(1)2

af(3)3af(1)1af(2)2
= − a22

a23a32
+

a21a12
a23a11a32

.
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a32−a21
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a23
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a23a11a32

− a22
a23a32




A D(A) A−1

Fig. 2.2. Matrices and digraph for Example 2.5

3. Digraphs and matrix inversion. If D(A) ∈ D1, then there exist permu-
tation matrices P,Q such that PAQ is triangular; thus D(A−1) ∈ D1. However, the
actual form of D(A−1) is not necessarily determined by D. In other words, if D is
the digraph of matrices A1 and A2, then D(A−1

1 ) and D(A−1
2 ) are not necessarily
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identical. To illustrate this, consider real matrices with digraphs as in Figure 2.2. If,
for instance,

A1 =


 −1 1 0

1 1 −1
0 −1 0


 , then A−1

1 =


 −1 0 −1

0 0 −1
−1 −1 −2


 ,

and the digraph D(A−1
1 ) contains the loop (3, 3). If, on the other hand,

A2 =


 −1 −1 0

1 1 −1
0 −1 0


 , then A−1

2 =


 −1 0 1

0 0 −1
−1 −1 0


 ,

and D(A−1
2 ) has no (3, 3) loop.

The following two examples show that for any digraph D ∈ D1 with at least
two cyclic sequences between some pair of vertices, there exist matrices A1, A2 with
D(A1) = D(A2) = D such that D(A−1

1 ) is not equal to D(A−1
2 ).

Example 3.1. Let D ∈ D1 and let A1 = [a(1)uv ] be the real matrix with digraph
D(A1) = D and entries

a(1)uv =




−1 , if (u, v) ∈ E(CD);
1 , if (u, v) ∈ E(D) −E(CD);
0 , if (u, v) /∈ E(D).

For fixed vertices i and j, suppose that there are x ≥ 1 cyclic sequences from i to j.
Let A−1

1 = [α(1)
uv ]. By Theorem 2.4, the contribution to the entry α(1)

ij from each

cyclic sequence (v1, . . . , vs) from v1 = i to f(vs) = j is (−1)s−1 1s−1

(−1)s = −1. Hence,

α
(1)
ij = −x 
= 0, and D(A−1

1 ) contains the arc (i, j).
Example 3.2. Let D ∈ D1. For fixed vertices i and j, suppose that there

are y ≥ 2 cyclic sequences from i to j of the form (v1, . . . , vs). Note that there
must exist an arc (p, q) ∈ E(D) − E(CD) that is not contained in every set of arcs
{(f(vr), vr+1) | r = 1, . . . , s−1} associated with these cyclic sequences. Suppose that
(p, q) is contained in z (1 ≤ z ≤ y − 1) such sets of arcs. Let A2 = [a(2)uv ] be equal
to the matrix A1 in Example 3.1, except that a(2)pq = z−y

z , and let A−1
2 = [α(2)

uv ]. By
Theorem 2.4, y− z cyclic sequences from i to j each contribute −1 to the entry α(2)

ij ,
whereas the remaining z cyclic sequences from i to j each contribute − (

z−y
z

)
. Hence,

α
(2)
ij = −(y − z) + z (

y−z
z

)
= 0, and (i, j) /∈ D(A−1

2 ).
In contrast with the above examples, we now give a necessary and sufficient

condition for which D(A−1) is uniquely determined by D(A).
Theorem 3.3. Let D ∈ D1. Then the digraph D(A−1) is the same for all

matrices A that have digraph D = D(A) if and only if there is at most one cyclic
sequence between each pair of vertices.

Proof. If no cyclic sequence exists between vertices i and j, then Theorem 2.4
states that αij = 0, so (i, j) is not an arc of D(A−1). If there is precisely one
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cyclic sequence between i and j, then Theorem 2.4 implies that αij 
= 0, so D(A−1)
contains the arc (i, j). Thus, if there is at most one cyclic sequence between each pair
of vertices i and j, then the digraph D(A−1) is the same for all matrices A that have
digraph D = D(A).

Conversely, for fixed vertices i and j, suppose that there are x ≥ 2 cyclic sequences
from i to j. Let A1 and A2 be the matrices with digraphsD(A1) = D(A2) = D defined
in Examples 3.1 and 3.2, respectively. Then D(A−1

1 ) contains the arc (i, j), whereas
D(A−1

2 ) does not. Therefore, D(A−1
1 ) 
= D(A−1

2 ).
A digraph D is unipathic [11] if there is at most one path in D between any pair

of distinct vertices. The following result is an immediate consequence of Lemmas 2.2
and 2.3, and Theorem 3.3.

Corollary 3.4. Let D ∈ D1 be a digraph such that CD = {(v, v) | v ∈ V (D)}.
Then D(A−1) is independent of the particular matrix A with D(A) = D if and only
if D is unipathic.

4. Sign patterns and matrix inversion. This section is restricted to matrices
over the real field. For any real m ×m matrix A = [aij ], let the sign pattern Q(A)
denote the family of real m × m matrices B = [bij ] where each entry bij has the
same sign {−, 0,+} as aij . A real matrix A is sign-nonsingular [4, Section 1.2] if each
B ∈ Q(A) is nonsingular; thus if D(A) ∈ D1, then A is sign-nonsingular. A matrix A
is strongly sign-nonsingular [4, Chapter 7] if it is sign-nonsingular and B−1 ∈ Q(A−1)
for each matrix B ∈ Q(A).

Example 3.1 demonstrates that for each digraph D ∈ D1 there exists at least one
strongly sign-nonsingular matrix A1 such that D(A1) = D. Conversely, if D ∈ D1

with vertices i and j between which there are at least two cyclic sequences, then there
is at least one matrix A2 with D(A2) = D that is not strongly sign-nonsingular, as
illustrated by Example 3.2.

The following result gives necessary and sufficient conditions for strong sign-
nonsingularity.

Proposition 4.1. [4, Corollary 3.2.3] Let A = [aij ] be a real square matrix with
a negative main diagonal. Then A is strongly sign-nonsingular if and only if

1. for each cycle i1 → i2 → · · · → ik → i1 in D(A), ai1i2 · · ·aiki1 < 0, and
2. for all i 
= j, the sign of the product av1v2 · · · avs−1vs is the same for all paths
v1 → · · · → vs in D(A) from i to j.

The next lemma expresses Proposition 4.1 in terms of cyclic sequences for di-
graphs in D1. This can be proved by using Lemma 2.2 and the fact that strong
sign-nonsingularity is invariant with respect to row permutations.

Lemma 4.2. Let A be a real matrix with D = D(A) ∈ D1. If each entry aij

with (i, j) ∈ E(CD) has negative sign, then A is strongly sign-nonsingular if and only
if for all i, j, the sign of the product af(v1)v2 · · ·af(vs−1)vs

is the same for all cyclic
sequences v = (v1, . . . , vs) in D(A) from v1 = i to f(vs) = j.

Theorem 4.3 below extends Theorem 3.3 and Corollary 3.4.
Theorem 4.3. If D is a digraph on m vertices, then the following statements

are equivalent:
1. For each real matrix A with D(A) = D, A is strongly sign-nonsingular;
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2. For each matrix A with D(A) = D, A is nonsingular and D(A−1) is uniquely
determined;

3. D ∈ D1 and there is at most one cyclic sequence in D between any pair of
vertices;

4. For each matrix A with D(A) = D, A contains precisely one nonzero diag-
onal, and each order m − 1 square submatrix of A has at most one nonzero
diagonal.

Furthermore, if D has a loop at each vertex, then the statements above are equivalent
to the following statement:

5. D ∈ D1 and D is unipathic.
Proof. Each of the conditions in statements 1–4 is invariant under row permuta-

tions and implies that D has at least one factor, so without loss of generality assume
that D has a loop at each vertex.

We first prove that statements 1, 2, 3, and 5 are equivalent. If statement 5 is
false, then D contains either a cycle of length greater than or equal to two or a pair
of distinct vertices between which there are at least two distinct paths. Then it is
possible to choose a matrix A with D(A) = D such that at least one of the conditions
in Proposition 4.1 is not satisfied, so A is not strongly sign-nonsingular. Thus by
taking the contrapositive, statement 1 implies statement 5 .

If statement 5 is true, then D ∈ D1 and there is at most one path in D between
any pair of distinct vertices. Thus by Lemma 2.2, since D has a loop at each vertex,
there is at most one cyclic sequence in D between any pair of distinct vertices. Hence,
statement 5 implies statement 3 .

Assume that statement 3 is true and that A is a matrix with D(A) = D. By
Theorem 2.4, (i, j) ∈ E(D(A−1)) if and only if there exists a cyclic sequence in D
from i to j. This uniquely determines D(A−1), so statement 3 implies statement 2 .

If there exists a matrix A with D(A) = D that is singular, then statements 1
and 2 are both false. Therefore, assume that for each matrix A with D(A) = D,
A is nonsingular, and assume also that statement 1 is false. Then there exists a
real matrix A with D(A) = D that is not strongly sign-nonsingular. Thus, there
exists a matrix B with the same sign pattern as A such that A−1 and B−1 do not
have the same sign pattern. If D(A−1) 
= D(B−1), then statement 2 is false. If
D(A−1) = D(B−1), then let i, j be indices such that the entries (A−1)ij and (B−1)ij
are opposite in sign, say (A−1)ij < 0 and (B−1)ij > 0. The set Q(A) is connected and
each matrixX ∈ Q(A) is nonsingular by assumption, sinceD(X) = D. Thus, the map
g : A �→ R given by g(X) = (X−1)ij is well-defined. Since g is continuous, the image
g(Q(A)) must be connected, i.e., g(Q(A)) is a real interval. Thus, since g(A) < 0 and
g(B) > 0, there exists a matrix X ∈ Q(A) with g(X) = 0. Then D(X−1) 
= D(A−1),
so statement 2 is false. By taking the contrapositive, statement 2 implies statement 1 .
Hence, statements 1, 2, 3, and 5 are equivalent.

To prove that statements 4 and 5 are equivalent, suppose that D ∈ D1, and
let A be a matrix with D(A) = D. Thus, each order m − 1 principal submatrix
of A contains precisely one nonzero diagonal, namely the main diagonal. For all
i 
= j, consider the submatrix Aji of A with row j and column i deleted. Then
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i→ i1 → i2 → . . .→ ik → j is a path in D if and only if

{akk | k 
= i, i1, i2, . . . , ik, j} ∪ {ai i1 , ai1i2 , . . . , aikj}

is a nonzero diagonal of Aji. Hence, statements 4 and 5 are equivalent.

5. Nonsingular nearly reducible matrices. A digraph D is said to be min-
imally strongly connected if it is strongly connected and the removal of any arc of D
causes the digraph to no longer be strongly connected. In terms of matrices (over some
field), minimally strongly connected digraphs correspond to nearly reducible matri-
ces, i.e., irreducible matrices that become reducible whenever any nonzero entry is
replaced by zero. More precisely, a square matrix A is nearly reducible [3, Section 3.3]
if and only if its digraph D(A) is minimally strongly connected.

Minimally strongly connected digraphs may be characterized in several ways. One
such way is presented in the following lemma. For other characterizations, see [2, 5,
8, 10]. A digraph D is arc unique [9] if for each arc (u, v) of D, u → v is the only
path in D between u and v. Note that a strongly connected arc unique digraph with
at least two vertices cannot contain loops, and that all unipathic digraphs without
loops are arc unique.

Lemma 5.1. [9] A digraph on at least two vertices is minimally strongly connected
if and only if it is a strongly connected arc unique digraph.

Proof. Let D be a strongly connected digraph on at least two vertices. Suppose
that D is minimally strongly connected and let (u, v) be an arc of D. By the mini-
mality of D, u 
= v and u→ v is the only path in D from u to v, so D is arc unique.
Conversely, suppose that D is arc unique and let (u, v) be an arc of D. Since u 
= v
and u → v is the only path in D from u to v, the digraph D − (u, v) is not strongly
connected. Thus, D is minimally strongly connected.

Hedrick and Sinkhorn [7] proved that the permanent of a nearly reducible matrix
contains at most one term. Restated in terms of digraphs, this result may be expressed
as follows.

Theorem 5.2. [7] A minimally strongly connected digraph D contains at most
one factor.

We now focus on the class of minimally strongly connected digraphs D with one
factor (i.e., D ∈ D1), and in particular on properties of their cyclic sequences. We
then use results of Section 2 to determine in Theorem 5.8 the entries of the inverse of
a nonsingular nearly reducible matrix. The result of the following lemma can also be
found in [3, p. 63].

Lemma 5.3. Let C be a closed walk in a minimally strongly connected digraph D,
and let u and v be distinct vertices of C. If (u, v) is an arc of D, then (u, v) is an arc
of C. In other words, C has no chords.

Proof. If (u, v) is an arc of D not contained in C, then C and therefore D contains
a walk (and thus a path) from u to v that does not contain the arc (u, v). But this
contradicts the arc uniqueness of D.

Lemma 5.4. If D ∈ D1 is a minimally strongly connected digraph, then all the
cycles CD(v1), . . . , CD(vs) associated with a cyclic sequence (v1, . . . , vs) are distinct.
In particular, the walk associated with any cyclic sequence in D is a path.
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Proof. Suppose q < r are indices of {1, . . . , s} such that CD(vq) and CD(vr) are
identical and r is minimal with respect to this property. By definition, v1, . . . , vs are
distinct and (f(vq), vq+1) ∈ E(D)−E(CD). If CD(vq+1) = CD(vq), then (f(vq), vq+1)
is a chord of CD(vq), which contradicts Lemma 5.3. Thus, CD(vq+1) 
= CD(vq). If
r ≥ q + 2, then the minimality of r implies that

f(vq) → vq+1 → n(vq+1) → · · · → f(vq+1) → · · · → vr → n(vr) → · · · → f(vq)

is a closed walk with the chord (f(vq+1), vq+1), which contradicts Lemma 5.3. The
cycles CD(v1), . . . , CD(vs) are therefore distinct.

Corollary 5.5. Let D ∈ D1 be a minimally strongly connected digraph. If i
and j 
= f(i) are vertices contained in the same cycle C of CD, then there is no cyclic
sequence from i to j. In particular, there is no cyclic sequence from a vertex to itself.

Proof. If j 
= f(i), then (i) is not a cyclic sequence from i to j. Therefore, if
(v1, . . . , vs) is a cyclic sequence from v1 = i to f(vs) = j, then it must have length
s ≥ 2, and i /∈ CD(vs) = CD(f(vs)) = CD(j), by Lemma 5.4. The second statement
follows from the fact that a minimally strongly connected digraph has no loops, giving
that i 
= f(i) for all vertices i.

Lemma 5.6. If D ∈ D1 is a minimally strongly connected digraph, then there is
at most one cyclic sequence between any two vertices of D.

Proof. Suppose that (v1, . . . , vs) and (w1, . . . , wt) are distinct cyclic sequences
from i to j. Since v1 = w1(= i), there is a maximal index q < min{s, t} such that
vq = wq and vq+1 
= wq+1. Now, f(vs) = f(wt)(= j), so vs = wt. Hence, there are
minimal indices r, r′ > q such that CD(vr) = CD(wr′). Assume that r = q + 1. Then

f(wq) → wq+1 → n(wq+1) → · · · → f(wq+1)
→ wq+2 → · · · → wr′ → n(wr′) → · · · → vr

is a path from f(vq) = f(wq) to vr = vq+1. Since (f(vq), vq+1) is an arc of D, this
contradicts the arc uniqueness of D. Hence, r > q + 1. Similarly, r′ > q + 1.

Thus, assume that r, r′ ≥ q + 2. Since D is strongly connected, there is a
path in D from n(vr) to vq+1. Lemma 5.3 implies that this path must contain the
arc (f(vq+1), vq+1); otherwise, this arc would be a chord of the closed walk

vq+1 → n(vq+1) → · · · → f(vq+1) → · · · → vr → · · · → vq+1 .

However, this implies the existence of a walk

f(vq) = f(wq) → wq+1 → . . .→ wr′ → n(wr′) → · · · → vr → · · · → f(vq+1) → vq+1

that does not contain the arc (f(vq), vq+1). This contradicts the arc uniqueness of D,
since D contains the arc (f(vq), vq+1).

The next result follows immediately from Theorem 5.2 and Lemmas 2.2 and 5.6.
Corollary 5.7. Let A be a nonsingular nearly reducible matrix, and let P be the

permutation matrix such that the main diagonal of A′ = P−1A contains only nonzero
entries. Then D(A′) ∈ D1 is unipathic and arc unique (but not strongly connected).
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An explicit description of the inverse of a nonsingular nearly reducible matrix A,
in terms of the digraphD(A), now follows from Theorems 2.4 and 5.2, and Lemma 5.6.

Theorem 5.8. Let A = [aij ] be a nonsingular nearly reducible matrix, and let
A−1 = [αij ]. If there is a cyclic sequence (v1, . . . , vs) in D(A) from vertex i = v1 to
vertex j = f(vs), then

αij = (−1)s−1 af(v1)v2 · · · af(vs−1)vs

af(v1)v1af(v2)v2 · · ·af(vs)vs

;

otherwise αij = 0.
Corollary 5.9. If A is a nonsingular nearly reducible real matrix, then A is

strongly sign-nonsingular.
This corollary also follows from a more general result for the Moore-Penrose

inverse of a nearly reducible matrix in [1]. The strongly sign-nonsingular matrix
A =

[
1
1

1
0

]
shows that the converse of Corollary 5.9 does not hold since A is not nearly

reducible. Entries of the inverse corresponding to the particular cyclic sequences of
length one or two in D(A) in Theorem 5.8 have the following simple forms.

Corollary 5.10. Let A = [aij ] be a nonsingular nearly reducible matrix with
art 
= 0 and let A−1 = [αij ]. If art lies on the unique nonzero diagonal of A (i.e.,
t = n(r)), then αtr = 1

art
; otherwise, αn(r)f(t) = −art

arn(r)af(t)t
. These cases correspond

to the cyclic sequences (n(r)) and (n(r), t) in D(A), respectively.
Corollary 5.10 describes in detail key aspects of the inversion A �→ A−1 of a non-

singular nearly reducible matrix A. In terms of the digraphs D(A) and D(A−1), the
map D(A) �→ D(A−1) replaces each arc (r, t) ∈ E(D(A)) by the arc (n(r), f(t)). If
(r, t) ∈ E(CD(A)), then this replacement merely reverses the direction of (r, t). Thus,
the factor CD(A−1) may be obtained by reversing the direction of the cycles in CD(A).
For any cycles C1, C2 ∈ CD(A), if (r, t) ∈ E(D(A)) is an arc connecting C1 to C2

(i.e., r ∈ V (C1), t ∈ V (C2)), then (n(r), f(t)) ∈ E(D(A−1)) is an arc connecting
the corresponding reversed cycles in D(A−1). Hence, since D(A) is strongly con-
nected, D(A−1) is strongly connected. In addition to the arcs resulting from the arc
replacements described above, D(A−1) may also contain arcs that result from cyclic
sequences of length greater than two.

Corollary 5.11. If A is a nonsingular nearly reducible m × m matrix, then
each order m − 1 square submatrix of A has at most one nonzero diagonal, and no
order m−1 principal submatrix of A has a nonzero diagonal. In particular, the order
m− 1 principal submatrices of A are all singular.

Proof. If A is a nonsingular nearly reducible m×m matrix, then this is equally
true for each matrix B with D(B) = D(A). By Corollary 5.9, each such matrix B is
strongly sign-nonsingular, thus by Theorem 4.3, each order m − 1 square submatrix
of A has at most one nonzero diagonal. Corollary 5.5 and Theorem 5.8 together
imply that the entries along the main diagonal of A−1 are all zero. Thus, the identity
A−1 = adj A

detA implies that the orderm−1 principal minors of A must all be zero. The
order m− 1 principal submatrices of A can therefore not have precisely one nonzero
diagonal; thus they must contain none.

Note that by this corollary, none of the digraphs D(A) − v, v ∈ V (D(A)), has a
factor.
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Example 5.12. To illustrate some of the results above, a nearly reducible ma-
trix A = [aij ], its inverse A−1 = [αij ], and the associated digraphs D(A) and D(A−1)
are displayed in Figure 5.1. The factor CD(A) consists of the 2-cycle 1 → 2 → 1 and
the 3-cycle 3 → 4 → 5 → 3, and the permutations n and f in D(A) satisfy n(1) = 2,
n(2) = 1, n(3) = 4, n(4) = 5, n(5) = 3, and f = n−1. Note that (1, 2) ∈ E(CD(A))
whereas (2, 3) ∈ E(D(A)) − E(CD(A)). Thus by Corollary 5.10, the entry a12 of A is
replaced in A−1 by the entry α21 = 1

a12
, and the entry a23 in A is replaced in A−1

by the entry α15 = −a23
a21a53

. In terms of digraphs, the arcs E(CD(A−1)) are obtained
by reversing the direction of each arc in E(CD(A)), and the arcs (2, 3) and (3, 2) are
replaced in D(A−1) by the arcs (1, 5) = (n(2), f(3)) and (4, 1) = (n(3), f(2)), respec-
tively. Note that if A is real, then A is strongly sign-nonsingular.
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Fig. 5.1. Matrices and digraphs for Example 5.12

Results in the remainder of this section focus on digraph aspects of the inverses of
nonsingular nearly reducible matrices. For any digraph D, let D denote the transitive
closure of D, i.e., the digraph obtained by adding to D an arc (i, j) whenever D
contains a path from i to j (i 
= j) that is not the path i→ j itself. For any digraph
D with no cycles of length greater than or equal to two, let D◦ denote the “transitive
opening” of D, defined to be the digraph obtained by deleting from D an arc (i, j)
whenever D contains a path from i to j (i 
= j) that is not the path i → j itself.
Note that if D has no cycles of length greater than or equal to two, then D = D◦ and
D◦ =

(
D

)◦
.

Lemma 5.13. If A is a nonsingular nearly reducible matrix, and P is a permuta-
tion matrix such that the matrix A′ = P−1A has only nonzero entries along the main
diagonal, then D((A′)−1) = D(A′) and D(A′) = D((A′)−1)◦.

Proof. By Lemma 2.2 and Theorem 5.8, D((A′)−1) = D(A′). By Corollary 5.7,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 11, pp. 115-131, June 2004



ELA

Matrix Inversion and Digraphs: the One Factor Case 127

D(A′) is arc unique. Hence, D(A′) = D(A′)◦ =
(
D(A′)

)◦ = D((A′)−1)◦.
Let D ∈ D1 be a digraph with “next” and “former” permutations n and f ,

respectively. For any digraph D′ with vertex set V (D′) = V (D), let NDD
′ and D′FD

denote the digraphs with vertex set V (D) and respective arc sets

E(NDD
′) = {(n(i), j) | (i, j) ∈ E(D′)} and

E(D′FD) = {(i, f(j)) | (i, j) ∈ E(D′)}.

The following lemma describes how these digraphs are related to digraphs of row (or
column) permutations of an associated matrix.

Lemma 5.14. Let M = [mij ] be an m×m matrix and let P = [pij ] be an m×m
permutation matrix. Then

D(PM) = ND(P−1)D(M) and D(MP ) = D(M)FD(P−1).

Proof. Let n and f be the “next” and “former” permutations in D(P−1). In
other words, n (resp. f) is the permutation such that pn(j)j = 1 (resp. pif(i) = 1)
for all i. Entry (PM)ij is nonzero if and only if both pik and mkj are both nonzero,
i.e., if the entry mf(i)j is nonzero. Thus for all i, j, (i, j) ∈ E(D(PM)) if and only if
(f(i), j) ∈ E(D(M)). The latter is true if and only if (i, j) = (n(f(i)), j) is an arc of
ND(P−1)D(M). Hence, D(PM) = ND(P−1)D(M). The proof of the second identity
is similar.

Theorem 5.15. If A is a nonsingular nearly reducible matrix, then the digraphs
D(A) and D(A−1) determine each other uniquely, as follows:

D(A−1) = ND(A)D(A)FD(A) and D(A) = ND(A−1)(D(A−1)FD(A−1))◦.

Proof. Let P be a permutation matrix such that P−1A has only nonzero entries
along its main diagonal. The nonzero diagonal in A has the same coordinate positions
as the nonzero diagonal in P , i.e., CD(A) = CD(P ). Thus by Lemmas 5.13 and 5.14,

D(A−1) = D((P−1A)−1P−1)
= D((P−1A)−1)FD(P )

= D((P−1A)−1)FD(A)

= D(P−1A)FD(A)

= ND(P )D(A)FD(A)

= ND(A)D(A)FD(A).

The second identity follows similarly.
Let A be a nonsingular nearly reducible real matrix. By Corollary 5.9, A is

strongly sign-nonsingular, so the sign pattern of A determines the sign pattern of A−1.
The following result shows that the converse is also true, even though A−1 need not
be strongly sign-nonsingular.
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Fig. 5.2. Digraphs for Example 5.17

Proposition 5.16. If B = [bij ] is a nonsingular real matrix with a nearly
reducible inverse, then without calculating B−1 it is possible to determine the sign
pattern of B−1 directly from the sign pattern of B.

Proof. Let A = [aij ] = B−1. By Theorem 5.15, D(A) = ND(B)(D(B)FD(B))◦, so
the digraph D(A) is determined by the digraph D(B), which in turn is determined by
the sign pattern of B. Thus, let art be a nonzero entry of A, and let n and f be the
“next” and “former” permutations in D(B). By Corollary 5.10, if (t, r) ∈ E(CD(B)),
then art = 1

btr
; otherwise, bf(r)n(t) = −art

arf(r)an(t)t
, giving art = −bf(r)n(t)arf(r)an(t)t =

−bf(r)n(t)

bf(r)rbtn(t)
. In either case, the sign of art is determined by the signs of entries of B.

Example 5.17. If A is a nearly reducible matrix, then without calculating A−1

it is possible to determine the digraph D(A−1) directly from the digraph D(A). The
identity D(A−1) = ND(A)D(A)FD(A) in Theorem 5.15 states explicitly how this may
be done. To illustrate this procedure, Figure 5.2(a) displays the minimally strongly
connected digraph D from Figure 2.1. Suppose that A is a (nearly reducible) ma-
trix with D(A) = D. To determine D(A−1), first form the digraph NDD (see Fig-
ure 5.2(b)). Next, determine the transitive closure NDD (see Figure 5.2(c)). Finally,
determine the digraph NDDFD, which equals D(A−1) (see Figure 5.2(d)). If B is a
matrix with D(B) as in Figure 5.2(d) and if B−1 is nearly reducible, then by Propo-
sition 5.16, D(B−1) is as in Figure 5.2(a), and the sign pattern of B−1 is determined
by that of B.

If A is a nonsingular nearly reducible matrix, then it follows from Theorem 5.15
that A−1 has at least as many nonzero entries as A. Example 5.17 shows that A−1
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can in fact have more nonzero entries than A. A complete characterization of when
the number of nonzero entries of A and A−1 are equal is given in Theorem 5.18 with
a special case elaborated in Proposition 5.19.

Theorem 5.18. If A is a nonsingular nearly reducible matrix, then the following
statements are equivalent:

1. A−1 is nearly reducible;
2. A−1 is strongly sign-nonsingular;
3. A and A−1 contain the same number of nonzero entries;
4. no cyclic sequence of D(A) has length three;
5. no path in ND(A)D(A) has length two;
6. ND(A)D(A) = ND(A)D(A).
Proof. The equivalence of statements 4 and 5 follows from Lemma 2.2 since

ND(A)D(A) = D(A′), where A′ is the matrix obtained by permuting the rows of A
such that the main diagonal of A′ has only nonzero entries.

Statement 5 trivially implies statement 6 . By Corollary 5.7, D(A′) is arc unique
so statement 6 implies statement 5 .

Since D(A) has the same number of arcs as ND(A)D(A)FD(A), which is a subdi-
graph of ND(A)D(A)FD(A) = D(A−1) by Theorem 5.15, ND(A)D(A) = ND(A)D(A)
if and only if D(A) and D(A−1) have the same number of arcs. Hence, statements 3
and 6 are equivalent.

To prove that statement 1 implies statement 4 , suppose that D(A) contains a
cyclic sequence (v1, . . . , vs) of length s ≥ 3. Then (v1, v2), (v2, v3), and (v1, v2, v3)
are also cyclic sequences in D(A), from v1 to f(v2), from v2 to f(v3), and from v1
to f(v3), respectively. Thus by Theorem 5.8, (v1, f(v2)), (v2, f(v3)), and (v1, f(v3))
are arcs of D(A−1). Hence,

v1 → f(v2) → f(f(v2)) → · · · → v2 → f(v3)

is a path in D(A−1) from v1 to f(v3). Since (v1, f(v3)) ∈ E(D(A−1)), D(A−1) is
not arc unique, so A−1 is not nearly reducible by Corollary 5.7. Thus by taking
the contrapositive, statement 1 implies statement 4 . To prove that statement 4
implies statement 1 , note that by the remarks after Corollary 5.10,D(A−1) is strongly
connected. Assume that A−1 is not nearly reducible. Then by Lemma 5.1, D(A−1)
is not arc unique, so there exists an arc (u, v) ∈ E(D(A−1)) and a path u1 → u2 →
· · · → ut with u = u1, v = ut and t ≥ 3. By Theorem 5.8 since (u1, u2), (u2, u3) ∈
E(D(A−1)), there exists a cyclic sequence (u1, . . . , n(u2)) in D(A) from u1 to u2, and
a cyclic sequence (u2, . . . , n(u3)) in D(A) from u2 to u3. Thus by Lemma 2.2, D(A′)
contains a path

u1 → · · · → u2 → · · · → u3.

Hence, D(A′) contains a path of length three, so by Lemma 2.2, D(A) contains
a cyclic sequence of length three. Thus by taking the contrapositive, statement 4
implies statement 1 .

By Corollary 5.9, statement 1 immediately implies statement 2 . To prove that
statement 2 implies statement 1 , suppose that A−1 is strongly sign-nonsingular. Since
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strong sign-nonsingularity is invariant with respect to row permutations, it may be
assumed without loss of generality that the main diagonals of A and A−1 have only
nonzero entries. By Theorem 5.15, D(A−1) = ND(A)D(A)FD(A) = ND(A)D(A).
Since by Theorem 4.3, D(A−1) is unipathic and thus arc unique, ND(A)D(A) =
ND(A)D(A). Hence statement 6 is true, which by the above implications implies that
statement 1 is also true.

To illustrate the above theorem, consider the nearly reducible matrix A in Fig-
ure 5.1. By Theorem 5.18, A−1 is nearly reducible since A and A−1 each contain
seven nonzero entries. In contrast, consider any nearly reducible matrix A with
digraph D(A) = D as in Figure 5.2. By Theorem 5.18, A−1 is neither strongly
sign-nonsingular nor nearly reducible since NDD 
= NDD.

Proposition 5.19. If A is a nonsingular nearly reducible matrix, then

D(A−1) = D(AT ) if and only if D(A) is a cycle.

Proof. If D(A) is a cycle, then clearly D(A−1) = D(AT ). To show that the
converse implication is true, suppose that D(A−1) = D(AT ). Then A and A−1

have the same number of nonzero entries, so by Theorem 5.18, the cyclic sequences
in D(A) have length either one or two. Assume that (i, j) ∈ E(D(A)) − E(CD(A)).
Then (j, i) ∈ E(D(AT )) = E(D(A−1)), so by Theorem 5.8, there is a cyclic sequence
from j to i. Since (i, j) /∈ E(CD(A)), the cyclic sequence from j to i cannot have
length one; thus it has length two. Hence, there exists an arc (r, t) ∈ E(D(A)) such
that (j, i) = (n(r), f(t)), where n and f are the “next” and “former” permutations
defined by CD(A). Then

r → t→ n(t) → · · · → f(t) = i→ j → n(j) → · · · → f(j) = r

is a cycle in D(A) that has (r, j) as chord. This contradicts Lemma 5.3, so all arcs
of D(A) are contained in E(CD(A)). In other words, D(A) is a vertex-disjoint union
of cycles. Since D(A) is strongly connected, it must consist of a single cycle.
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