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ULTRAMETRIC SETS IN EUCLIDEAN POINT SPACES
�
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Dedicated to Hans Schneider on the occasion of his seventieth birthday.

Abstract. Finite sets S of points in a Euclidean space the mutual distances of which satisfy
the ultrametric inequality �(A;B) � maxf�(A;C); �(C;B)g for all points in S are investigated and
geometrically characterized. Inspired by results on ultrametric matrices and previous results on
simplices, connections with so-called centered metric trees as well as with strongly isosceles right
simplices are found.
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1. Introduction. In the theory of metric spaces (cf. [1]), a metric � is called
ultrametric if

�(A;B) � max(�(A;C); �(C;B))(1)

holds for all points A;B;C, of the space.
Let us observe already at this point that if A;B and C are mutually distinct

points, then they are vertices of an isosceles triangle in which the length of the base
does not exceed the lengths of the legs. This is the reason why ultrametric spaces are
also called isosceles spaces.

It is well known [5, Theorem 1] that every �nite ultrametric space consisting
of n + 1 (distinct) points can be isometrically embedded into a point Euclidean n-
dimensional space but not into such an (n � 1)-dimensional space. We reprove this
theorem and, in addition, �nd a complete geometric characterization of such sets.

Suppose thus that we are given a �nite set S of points in a point Euclidean n-
dimensional space. We say that this set is ultrametric if the mutual distances satisfy
(1) for all triples of points in S.

In the sequel, we use a result on strictly ultrametric matrices [6], [8]; these are
real symmetric and (entrywise) nonnegative matrices (aik) satisfying

aik � min(aij; ajk) for all i; j; k;

aii > max
k 6=i

aik for all i:

Theorem 1.1. [6], [8]. Every strictly ultrametric matrix A is nonsingular and
its inverse B = (bik) is a diagonally dominant symmetric M -matrix, i.e. bik � 0 for
all i; k, i 6= k, and bii >

P
k 6=i jbikj for all i.

Let us recall now some known facts from the Euclidean distance geometry and
qualitative simplex geometry.

Fact 1. Let A1; : : : ; Am be points in a Euclidean space E . Then these points are
linearly independent if and only if

det

�
0 eT

e M

�
6= 0(2)
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where e is a column vector of m ones, eT its transpose and M is the m-by-m Menger
matrix the i; k-th entry of which is the square of the distance �(Ai; Ak).

Let, for n � 2, A1; : : : ; An+1, be linearly independent points in a point Euclidean
n-space En, thus forming the set of vertices of an n-simplex �. By Fact 1, the (n+2)-

by-(n+ 2) matrix fM in the left-hand side of (2) is nonsingular. Consider the matrixeQ = (qrs), r; s = 0; 1; : : : ; n+ 1 such that

eQ = �2fM�1:(3)

This matrix has the following geometric meaning [4].
Fact 2. a) q00 = 4r2, r being the radius of the circumscribed sphere to �;

b) the numbers �1
2q0k are the barycentric coordinates of the circumcenter of �;

c) the matrix Q = (qik), i; k = 1; : : : ; n+ 1 is the Gram matrix (the matrix of mutual
inner products) of the n+ 1 outward normals to the (n � 1)-dimensional faces of �,
normalized so that their sum is the zero vector. Thus, Q is positive semide�nite with
rank n and the vector (1; : : : ; 1)T is -up to a nonzero factor- the only nonzero vector
x for which Qx = 0.

A certain converse also holds (as before, e is the column vector of ones).
Fact 3. To every (n + 1)-by-(n + 1) real symmetric positive semide�nite matrix

Q with rank n satisfying Qe = 0 there exists in En, up to congruence in En, a unique
n-simplex � for which the construction above yields this matrix Q.

The crucial property of the matrix Q is that it determines the dihedral interior
angles of the simplex �. Indeed, the dihedral interior angle �ik between the (n� 1)-
dimensional faces opposite to Ai and Ak (i 6= k) adds with the angle of the outward
normals to these faces to � so that

cos �ik = � qikp
qii
p
qkk

:(4)

For sake of completeness, we recall and provide a complete answer to the question
of characterizing all possible distributions of acute, right and obtuse angles in an n-
simplex [2]. To make the result more transparent, we transfer these distributions to
the edges of �: we call the edge AiAk (i 6= k) positive if the opposite dihedral angle
�ik is acute, the edge will be called negative if the opposite angle is obtuse, and the
edge will be neutral if the opposite angle is right. We then refer to signs of the edges
(the neutral edges will have sign zero).

Theorem 1.2. [2] In every n-simplex, the positive edges form a connected set
on the set of all vertices. This condition is also su�cient in the sense that whenever
we assign signs to edges of an n-simplex in such a way that the positive edges form a
connected set on all vertices, then there exists a position of the vertices that realizes
these signs.

Proof. Denote N = f1; : : : ; n + 1g. Suppose that the set of positive edges does
not connect the set of vertices fAig, i 2 N . This means that there exists a subset M
of N , ; 6= M 6= N , such that in the previous notation, none of the angles �ik, i 2M ,
k 2 NnM , is acute. By (4), qik � 0 whenever i 2 M , k 2 NnM . Since Qe = 0, we
have

P
k qik = 0 for all i. Thus

P
i2M

P
k qik = 0 which can be written asX

i;k2M

qik +
X
i2M

X
k2NnM

qik = 0:

This is impossible since the second sum is nonnegative whereas the �rst is positive:
it is the value of the quadratic form

P
i;k qikxixk for the vector z = (zi), zi = 1 for
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i 2M , zk = 0 otherwise, and z is non-zero and not a multiple of e.
To prove the converse, denote by E+, E� respectively, the (symmetric) subsets of
N � N corresponding to positive, resp. negative edges. Suppose that E+ connects
the set of vertices. The quadratic formX

i;k;i<k;(i;k)2E+

(xi � xk)
2

is clearly positive semide�nite and -because of connectedness- equal to zero only if the
vector (xi) is a multiple of e. The matrix Q+ of this form is thus positive semide�nite
with rank n and Q+e = 0. Let similarly Q� be de�ned for the analogous quadratic
form corresponding to summing for (i; k) 2 E�.
By basic properties of positive semide�nite matrices, all principal minors of order at
most n of Q+ are positive. It follows that for some su�ciently small positive " the
same will be true for the matrix Q = Q++"Q�. Since Qe = 0, this matrix Q satis�es
the assumptions of Fact 3. The corresponding simplex will have edges of prescribed
signs which completes the proof.

Remark 1.3. Observe that we assigned to an n-simplex (with n + 1 vertices) a
signed (undirected) graph Gs = (N;E+; E�) whose set of vertices is N and sets of
positive, resp. negative edges are E+, E�, respectively. (Here, and in the sequel, we
omit the neutral edges.) By Theorem 1.2, the positive subgraph G+

s = (N;E+) is
connected. By elementary graph theory, the number of edges in E+ is at least n and
in the case that it is n, the graph G+

s is a tree.
Corollary 1.4. [3], [4]. Every n-simplex has at least n acute interior dihedral

angles. There exist n-simplices which have exactly n interior dihedral angles acute
and all the remaining (i.e.,

�
n

2

�
) right.

Simplices mentioned in the second part of Corollary 1.4 were called right simplices
in [3]. The edges opposite to acute dihedral angles (i.e., positive edges) were called
legs. Thus the legs form a tree, geometrically a set of segments not containing any
closed polygon and connecting the set of vertices of the simplex. Analogously to the
two-dimensional case, the face determined by all end- vertices of the set of legs will be
called the hypotenuse of the right simplex. In [3], we proved the following theorem.

Theorem 1.5. [3] Any two legs of a right n-simplex are perpendicular. In
other words, the set of legs can be completed to the set of edges of a rectangular
n-dimensional parallelepiped. Conversely, any connected subset of edges of a rectan-
gular n-dimensional parallelepiped no two of which are parallel forms the set of legs
of a right n-simplex.

Remark 1.6. It follows from the Pythagorean theorem that the Menger matrix
M de�ned above is identical with the distance matrix of the graph Gs (which is a
tree) if we assign to each edge the square of the length of the corresponding leg.

Corollary 1.7. Let a simplex H with n � 3 vertices be the hypotenuse of a
right simplex the corresponding graph of which contains vertices of degree two. Then
H is also the hypotenuse of a right simplex � the corresponding graph of which has
no vertices of degree two. The number of vertices in � does not exceed 2n� 2.

Proof. The possibility of restriction follows from Remark 1.6. Let now m be the
number of vertices of the tree which does not contain vertices of degree two. The
number e of edges of this tree satis�es e = m � 1 as well as 2e � n+ 3(m � n). This
implies m � 2n� 2.

Remark 1.8. Observe that the center of the parallelepiped is at the same time
the circumcenter of the right simplex.



ELA
26 Miroslav Fiedler

An easy consequence of this fact is the following result.
Theorem 1.9. [3] The barycentric coordinates of the circumcenter of a right

n-simplex are ci, where for i = 1; : : : ; n + 1, ci = 1 � 1
2di, di denoting the number

of legs incident with the vertex Ai. The square of the diameter of the circumscribed
hypersphere is equal to the sum of squares of the lengths of all legs.

Confronting the formula (3) with the results in Theorem 1.5, Fact 2 and the
expression for the Menger matrix from Remark 1.6 one sees easily the following fact.

Fact 4. In the case of a right n-simplex, the matrix Q = (qik) has the form

qik = (�(Ai; Ak))
�2 if AiAk is a leg;

qik = 0 if i 6= k and AiAk is not a leg;

qii = �
X
k 6=i

qik for all i:

We conclude this section with an important fact about simplices without obtuse
interior dihedral angles. In this case, the set of negative edges E� is void and the
graph Gs has positive edges only. Such simplices were called in [7] hyperacute angled;
we call them hyperacute.

Theorem 1.10. [3] Let � be a hyperacute n-simplex with the set of vertices
fAig, i 2 N . Let M be a subset of N . Then the face of � determined by the vertices
fAig; i 2 M , is again a hyperacute simplex. Its graph G1 is uniquely determined by
the graph G of � as follows. The set of its vertices is M ; two distinct vertices p and q
are connected if and only if there exists in G a path from p to q such that all vertices
of this path, except p and q, belong to the set NnM .

2. Results. We �rst introduce a special kind of metric trees, i.e. trees every
edge of which has a positive length. In such a tree, the distance of two vertices is
simply the sum of lengths of edges in the unique path between these vertices. We
call a metric tree centered if it has a vertex C which has the same distance from all
end-vertices of the tree.

It is evident that in a centered metric tree T the vertex C is unique; we call it
the center of T and its distance from end-vertices is the radius of T . In addition, the
diameter of T , i.e., the maximum distance between two vertices, is twice the radius
of T . For our purpose, we agree to consider as such centered metric tree also a graph
with a single vertex which is at the same time an end-vertex and the center, the radius
being zero.

The following lemma is easily proved.
Lemma 2.1. Let V be a vertex of a centered tree T , let TV be the induced subgraph

of T on the set of those vertices W of T for which the path from C to W contains V .
Then TV is again a centered metric tree and its center is V .

We can now formulate a theorem the essence of which was proved in [8].
Theorem 2.2. (Basic theorem on ultrametrics.) Let D = (�ik) be a real sym-

metric n-by-n matrix. Then the following are equivalent.
(a) The numbers �ik are mutual distances of some ultrametric set of n distinct points.
(b) There exists a centered metric tree with at most 2n � 1 vertices and exactly n

end-vertices, such that �ik are mutual distances between these end-vertices.
(c) There exists a centered metric tree with at most 2n � 1 vertices and exactly n

end-vertices, with center C and radius r such that for any pair i; k of end-vertices,
r � 1

2�ik is the distance of C to the path between i and k (for i = k, the path reduces
to the point i).
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Proof. (a) ) (b). We use induction in n. For n = 1 and n = 2, the implication is
true. Suppose that n > 2 and that the implication is true for smaller positive integers.
Let A1; :::; An, be points of the ultrametric set U0. Let �0 = maxi;k �(Ai; Ak). De�ne
a relation R0 in the set N0 = f1; : : : ; ng by

iR0k () �(Ai; Ak) < �0:

The relation R0 is re
exive, symmetric and, by (1), transitive. Let M1[M2[ : : :[Ms

be the decomposition of N0 into classes of equivalence with respect to R0. The sets
Uk = fAj; j 2Mkg, k = 1; : : : ; s, are again ultrametric and since s > 1, each of them
contains less than n points. By the induction hypothesis, there exist metric trees Tk,
k = 1; : : : ; s, with centers Ck and radii rk such that the mutual distances between
their jMkj end-vertices are the corresponding �pq 's and rk =

1
2 maxp;q2Mk

�(Ap; Aq);
observe that all the rk's are smaller than 1

2�0. We now construct a centered tree T0
from the trees Tk by joining each vertex Ck with a new vertex C0 by an edge of length
r0 � rk. The tree T0 is indeed centered with center C0 since the distance of an end-
vertex in, say, Mi, from Ci is ri, from Ci to C0 is

1
2
�0 � ri, so that its distance from

C0 is r0 = 1
2 maxp;q2N0

�(Ap; Aq). It is also immediate that the distance between
two end-vertices in di�erent Mk's is �0. Finally, the number of vertices in T0 is
2
P

k jMkj � s + 1 which does not exceed 2n� 1.
(b) ) (c). Take the same tree T0 in (c) as we have in (b). We again use induction.
Let i, j be end-vertices. If i = j, the assertion in (c) is correct. Let thus i 6= j. If the
path from i to j in T0 contains C0, then �ik = 2r0 and the assertion is again correct.
Let now the path from i to j not contain C0. Then both i and j belong to some Mk

in the previous notation. By the induction hypothesis, the distance of Ck to the path
is rk� 1

2�ij. Since the distance between C0 and Ck is r0�rk, the result is as asserted.
(c) ) (a). Let a centered metric tree be given. It su�ces to show that for any triple
p, q, r, of distinct end-vertices, at least two of the distances dpq, dpr, dqr, of the paths

from the center C are equal and the third is at least that long. Let eC be the last
vertex in common to all three paths from C to the end-vertices; of the �rst vertices
Cp, Cq, Cr, of these paths to p, q, r, next to eC at least one, say Cp, is di�erent from

each of the other two. Then both dpq, dpr , are equal to the distance from C to eC and
dqr is not smaller.

We proceed now to the case of Euclidean spaces.
Theorem 2.3. Every ultrametric set of distinct points in a Euclidean space is

formed by linearly independent points.
Proof. Let M be the Menger matrix of the given points forming an ultrametric

set, and let fM be the matrix �
0 eT

e M

�
:

By Fact 1, we have to prove that det fM 6= 0. To this end, it su�ces to show an
equivalent statement that

det

�
0 eT

e �eeT �M

�
6= 0 for some �:

Choose � greater than the square of the maximumdistance between the given points.
The matrix �eeT �M will then be strictly ultrametric. Its inverse B = (bik) is by
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Fact 2 a diagonally dominant M -matrix and thus satis�esX
k

bik > 0 for all i:

We have then, I being the identity matrix,

det

�
0 eT

e �eeT �M

�
= det

�
0 eT

e B�1

�

= detB�1 det

�
0 eT

Be I

�
= � detB�1(eTBe)

= � detB�1
X
i;k

bik:

Since this sum is positive, the proof is complete.
In the sequel, we thus consider ultrametric simplices only, i.e., simplices the ver-

tices of which form an ultrametric set. Having in mind the relationship between trees
and right simplices mentioned in Theorem 1.5 and Remark 1.6, we introduce a notion
which corresponds to that of the centered metric tree.

A right simplex � is called right strongly isosceles if one of its vertices C, called
quasicenter, has the same distance from all vertices of the hypotenuse H of �.

Remark 2.4. It is easily seen that an equivalent property of such a right simplex
is that for some vertex, the quasicenter, the line connecting it with the circumcenter
of the hypotenuse is perpendicular to the hypotenuse. Observe that, due to Remark
1.8, the center of the parallelepiped generated by the simplex is also a point of this
line.

We can now formulate our main result.
Theorem 2.5. The vertices of the hypotenuse of any strongly isosceles right

simplex form an ultrametric set of (at least two) points. Conversely, every ultrametric
set of n � 2 distinct points in a Euclidean space forms the set of vertices of the
hypotenuse of a strongly isosceles right simplex of dimension at most 2n� 2.

Proof. Let � be a strongly isosceles right simplex the hypotenuse H of which
has n vertices. Clearly, n � 2. The set of legs of � forms a tree T . If we assign to
each leg as a new (graphic) length the square of its geometric length, then T can be
considered as a metric tree. By the Pythagorean theorem, the square of the geometric
distance between any two vertices of the hypotenuse is equal to the graphic distance
in T . Since � is isosceles, T is centered. By Theorem 2.2, the distances between
the end-vertices of T satisfy (1). The same is thus true for the geometric distances
between the n vertices of the hypotenuse. By Corollary 1.7,H is even the hypotenuse
of some right simplex with at most 2n � 1 vertices, since the quasicenter might be
incident with only two legs. This simplex is easily seen to be again strongly isosceles.
The converse follows also from Theorem 2.2.

Theorem 2.6. Every ultrametric simplex is hyperacute.
Proof. It follows from Theorems 2.5 and 1.10.
We conclude this section by an apparently new characterization of the distance

matrix of a general ultrametric set formed by n distinct points.
Theorem 2.7. Let D = (dik) be an n � n matrix. Then the following are

equivalent.
1. D is the distance matrix of an ultrametric set of n distinct points.
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2. There exist n�1 positive numbers a1; : : : ; an�1, and a permutation P of the indices
1; : : : ; n, so that dkk = 0 for k = 1; : : : ; n; and

for 1 � i < k � n; dPi;Pk = dPk;Pi = maxfaj ; i � j < kg:(5)

Proof. It is immediate that 2. implies 1. To prove the converse, we use induction
in n. The implication 1:) 2: holds for n = 1 and n = 2. Suppose that D = (dik) is
an ultrametric distance matrix corresponding to n > 2 distinct points and that the
implication holds for all such matrices of smaller order. D is nonnegative symmetric
and has zero entries only in the diagonal. Let dpq be a maximum entry in D; we can
assume that p < q. De�ne in the set of indices N = f1; : : : ; ng a relation R by

iRk , dik < dpq:

This relation is re
exive, symmetric and, by ultrametricity of D, also transitive. Let
N = N1 [ N2 [ : : :[ Nr be the decomposition of N into classes of equivalence with
respect to R, the �rst, say, s of them having more than one element, the remaining
only one. Reorder N so that we start with entries in N1 and continue till Nr. If s = 0,
all o�-diagonal entries of D are equal to dpq and we can take a1 = : : : = an�1 = dpq.

Let thus s � 1, let m = jN1j. In the reordered matrix ~D the upper-left-corner m�m

submatrix is again ultrametric corresponding to distinct points. By the induction
hypothesis, there exist positive numbers a1; : : : ; am�1, and an ordering of indices in
N1 so that (5) holds. The same holds also for N2 [ : : : [ Nr with some numbers
â1; : : : ; ân�m�1. Set now am = dpq, am+k = âk, k = 1; : : : ; n � m � 1. For the
appropriate ordering, (5) will hold for the whole matrix D.

Remark 2.8. The ordering of points in this \interval representation" is not
unique. For instance, the two points determining the interval with (one of) the small-
est ai can be switched. On the other hand, if we have an interval representation of
an ultrametric set S and if S1 is a subset of S, then an interval representation of S1
can be obtained by preserving only the points corresponding to S1, and setting the
value of the interval I between the two consecutive points in S1 as the maximum of
the values of the original intervals whose union is I.

3. Realization of Ultrametric Sets. We end the paper by showing how to
realize ultrametric sets in Cartesian coordinates of the Euclidean space.

Let D = (dik) be the matrix of mutual distances of n � 3 points satisfying the
ultrametric inequalities. Using the partitioning algorithm from the proof of Theorem
2.2, we construct a centered metric tree T without vertices of degree two (except pos-
sibly the center) which has exactly n end-vertices and such that the mutual distances
are the squares d2ik. (This is possible since the squares again satisfy the ultrametric
inequality.) The total number m of its vertices thus satis�es n < m � 2n � 1 by
Corollary 1.7.

Let V1; : : : ; Vm be the vertices of T , E1; : : : ; Em�1 its edges. We can assume that
V1; : : : ; Vn are the end-vertices and Vm the center of T . To each vertex Vs we assign
its radius rs and to each edge Ek = (Vp; Vq) its length �k = jrp � rqj.

We now construct a set of m points W1; : : : ;Wm in the Euclidean (m � 1)-
dimensional space with the usual orthonormal basis and corresponding Cartesian
coordinates as follows.

The pointWm has all coordinates zero. For s > 1, let (Vm; Ek1 ; Vj1; : : : ; Ekt; Vjt),
jt = s, be the path from Vm to Vs in T . The coordinates (a1s; : : : ; am�1;s) of Ws are
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given by

ajs =

r
1

2
�kp if j = kp for some p; 1 � p � t;

ajs = 0 otherwise:

Let us show that the pointsWk form the set of vertices of a right and even strongly
isosceles (m � 1)-simplex whose set of vertices of the hypotenuse solves our problem.

Observe that if (Vi; Vk) is an edge in T , then the coordinate vectors of Wi and
Wk di�er in exactly one coordinate. The set of edges of T thus corresponds to the set
of legs of a right (m � 1)-simplex with vertices W1; : : : ;Wm. In addition, the square
of the length of each leg is equal to the length of the corresponding edge of T . The
property of T to be centered implies that this simplex is strongly isosceles with the
quasicenter Wm.

Let us show that the mutual distances of the vertices of its hypotenuse form in
the appropriate ordering the matrix D.

Let thus Wi, Wj be distinct vertices of its hypotenuse, thus corresponding to
end-vertices Vi, Vj of T . Let Vk be the closest vertex of the path between Vi and
Vj to Vm. We have then by the de�nition of Wk and Theorem 2.2 that the square
of the distance between Wm and Wk is r � 1

2d
2
ij. Since the squares of the distances

between Wm and each Wi, Wj are equal to r, we obtain by Pythagorean theorem that
jWiWkj2 = jWjWkj2 = 1

2d
2
ij and thus jWiWj j = dij as asserted.
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