# TWO CHARACTERIZATIONS OF INVERSE-POSITIVE MATRICES: THE HAWKINS-SIMON CONDITION AND THE LE CHATELIER-BRAUN PRINCIPLE* 

TAKAO FUJIMOTO ${ }^{\dagger}$ AND RAVINDRA R. RANADE ${ }^{\dagger}$

Dedicated to the late Professors David Hawkins and Hukukane Nikaido


#### Abstract

It is shown that (a weak version of) the Hawkins-Simon condition is satisfied by any real square matrix which is inverse-positive after a suitable permutation of columns or rows. One more characterization of inverse-positive matrices is given concerning the Le Chatelier-Braun principle. The proofs are all simple and elementary.


Key words. Hawkins-Simon condition, Inverse-positivity, Le Chatelier-Braun principle.
AMS subject classifications. 15A15, 15A48.

1. Introduction. In economics as well as other sciences, the inverse-positivity of real square matrices has been an important topic. The Hawkins-Simon condition [9], so called in economics, requires that every principal minor be positive, and they showed the condition to be necessary and sufficient for a $Z$-matrix (a matrix with nonpositive off-diagonal elements) to be inverse-positive. One decade earlier, this was used by Ostrowski [12] to define an $M$-matrix (an inverse-positive $Z$-matrix), and was shown to be equivalent to some of other conditions; see Berman and Plemmons [1, Ch.6] for many equivalent conditions. Georgescu-Roegen [8] argued that for a $Z$ matrix it is sufficient to have only leading (upper left corner) principal minors positive, which was also proved in Fiedler and Ptak [5]. Nikaido's two books, [10] and [11], contain a proof based on mathematical induction. Dasgupta [3] gave another proof using an economic interpretation of indirect input.

In this paper, the Hawkins-Simon condition is defined to be the one which requires that all the leading principal minors should be positive, and we shall refer to it as the weak Hawkins-Simon condition (WHS for short). We prove that the WHS condition is necessary for a real square matrix to be inverse-positive after a suitable permutation of columns (or rows). The proof is easy and simple and uses the Gaussian elimination method. One more characterization of inverse-positive matrices is given: Each element of the inverse of the leading $(n-1) \times(n-1)$ principal submatrix is less than or equal to the corresponding element in the inverse of the original matrix. This property is related to the Le Chatelier-Braun principle in thermodynamics.

Section 2 explains our notation, then in section 3 we present our theorems and their proofs, finally giving some numerical examples and remarks in section 4.
2. Notation. The symbol $\mathbb{R}^{n}$ means the real Euclidean space of dimension $n$ $(n \geq 2)$, and $\mathbb{R}_{+}^{n}$ the non-negative orthant of $\mathbb{R}^{n}$. A given real $n \times n$ matrix $A$ is a

[^0]map from $\mathbb{R}^{n}$ into itself. The $(i, j)$ entry of $A$ is denoted by $a_{i j}, x \in \mathbb{R}^{n}$ stands for a column vector, and $x_{i}$ denotes the $i$-th element of $x$. The symbol $(A)_{*, j}$ means the $j$-th column of $A$, and $(A)_{i, *}$ means the $i$-th row. We also use the symbol $x_{(i)}$, which represents the column vector in $\mathbb{R}^{n-1}$ formed by deleting the $i$-th element from $x$. Similarly, the symbol $A_{(i, j)}$ means the $(n-1) \times(n-1)$ matrix obtained by deleting the $i$-th row and the $j$-th column from $A$. Likewise, $A_{(, j)}$ shows the $n \times(n-1)$ matrix obtained by deleting the $j$-th column from $A$. The symbol $(A)_{i, *(n)}$ shall denote the row vector formed by deleting the $n$-th element from $(A)_{i, *}$, and $(A)_{*(n), j}$ is the column vector in $\mathbb{R}^{n-1}$ formed by deleting the $n$-th element from $(A)_{*, j}$. The symbol $e_{i} \in \mathbb{R}_{+}^{n}$ denotes a column vector whose $i$-th element is unity with all the remaining entries being zero. $|A|$ denotes the determinant of $A$.

The inequality signs for vector comparison are as follows:

$$
\begin{aligned}
& x \geq y \text { iff } x-y \in \mathbb{R}_{+}^{n} ; \\
& x>y \text { iff } x-y \in \mathbb{R}_{+}^{n}-\{0\} ; \\
& x \gg y \text { iff } x-y \in \operatorname{int}\left(\mathbb{R}_{+}^{n}\right),
\end{aligned}
$$

where $\operatorname{int}\left(\mathbb{R}_{+}^{n}\right)$ means the interior of $\mathbb{R}_{+}^{n}$. These inequality signs are applied to matrices in a similar way.
3. Propositions. Let us first note that the condition " $A$ is inverse-positive" is equivalent to the following property:

Property 1. For any $b \in \operatorname{int}\left(\mathbb{R}_{+}^{n}\right)$, the equation $A x=b$ has a solution $x \in \operatorname{int}\left(\mathbb{R}_{+}^{n}\right)$.
This property was used in Dasgupta and Sinha [4] to establish the nonsubstitution theorem, and in Bidard [2].

Now we can prove the following theorem.
Theorem 3.1. Let $A$ be inverse-positive. Then the WHS condition is satisfied when a suitable permutation of columns (or rows) is made.

Proof. The outline of our proof is as follows. We eliminate, step by step, a variable whose coefficient is positive. The existence of such a variable is guaranteed at each step by Property 1 above. By performing a suitable permutation of columns if necessary, this coefficient can be shown to be positively proportional to a leading principal minor of $A$.

Because of Property 1 above, there should be at least one positive entry in the first row of $A$. So, such a column and the first column can be exchanged. We assume the two columns have been permuted so that

$$
a_{11}>0
$$

Next at the second step, we divide the first equation of the system $A x=b$ by $a_{11}$ and subtract this equation side by side from the $i$ - $\operatorname{th}(i \geq 2)$ equation after multiplying this by $a_{i 1}$, to obtain

$$
\left[\begin{array}{cccc}
1 & a_{12} / a_{11} & \cdots & a_{1 n} / a_{11} \\
0 & a_{22}-a_{12} a_{21} / a_{11} & \cdots & a_{2 n}-a_{1 n} a_{21} / a_{11} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n 2}-a_{12} a_{n 1} / a_{11} & \cdots & a_{n n}-a_{1 n} a_{n 1} / a_{11}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} / a_{11} \\
b_{2}-b_{1} a_{21} / a_{11} \\
\vdots \\
b_{n}-b_{1} a_{n 1} / a_{11}
\end{array}\right]
$$

Notice that the (2,2)-entry of the coefficient matrix above is

and the corresponding entry on the RHS is

$$
\frac{\left|\begin{array}{ll}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right|}{a_{11}}
$$

We continue this type of elimination up to the $k$-th step, having at the $(k, k)$ position

$$
\frac{\left|\begin{array}{cccc}
a_{11} & \cdots & \cdots & a_{1, k} \\
\vdots & \ddots & & \vdots \\
a_{k, 1} & \cdots & \cdots & a_{k, k}
\end{array}\right|}{\left|\begin{array}{ccc}
a_{11} & \cdots & a_{1, k-1} \\
\vdots & \ddots & \vdots \\
a_{k-1,1} & \cdots & a_{k-1, k-1}
\end{array}\right|}
$$

and the RHS of the $k$-th equation is given as

$$
\frac{\left|\begin{array}{cccc}
a_{11} & \cdots & a_{1, k-1} & b_{1} \\
\vdots & \ddots & & \vdots \\
a_{k, 1} & \cdots & a_{k, k-1} & b_{k}
\end{array}\right|}{\left|\begin{array}{ccc}
a_{11} & \cdots & a_{1, k-1} \\
\vdots & \ddots & \vdots \\
a_{k-1,1} & \cdots & a_{k-1, k-1}
\end{array}\right|}
$$

The denominator of these equations is known to be positive at the $(k-1)$-th step, and when $b_{k}$ is large enough, the RHS of the $k$-th equation becomes positive. Thus, by Property 1 , there is at least one positive coefficient in the $k$-th equation. Again, we assume a suitable permutation has been made so that the $(k, k)$-position is positive, giving

$$
\left|\begin{array}{cccc}
a_{11} & \cdots & \cdots & a_{1, k} \\
\vdots & \ddots & & \vdots \\
a_{k, 1} & \cdots & \cdots & a_{k, k}
\end{array}\right|>0 \quad \text { for } \quad k=2,3, \ldots, n .
$$

Therefore, our theorem is proved for a permutation of columns. A similar result can be obtained by a suitable permutation of rows - just transpose the given matrix and apply the same proof. $\square$

Corollary 3.2. When $A$ is a Z-matrix, the WHS condition is necessary and sufficient for $A$ to be inverse-positive.

Proof. First we show the necessity. Let us consider the elimination method used in the proof of Theorem 3.1. When $A$ is a $Z$-matrix it is easy to notice that as elimination proceeds, a positive entry is always given at the upper left corner with the other entries (or coefficients) on the top equation being all non-positive, while the RHS of each equation always remains positive. This implies that the WHS condition holds (without any permutation).

Next we show the sufficiency. We assume that $b \gg 0$. When $A$ is a $Z$-matrix, as elimination proceeds, a positive coefficient can appear only at the upper left corner with the remaining coefficients being all non-positive, while the RHS of each equation is always positive. So, finally we reach the equation of a single variable $x_{n}$ with the two coefficients on both sides being positive. Thus, $x_{n}>0$. Now moving backward, we find $x \gg 0$. Since $b \gg 0$ is arbitrary, this proves that $A$ is inverse-positive.

This corollary is well known and the reader is referred to Nikaido [10, p.90, Theorem 6.1], Nikaido [11, p.14, Theorem 3.1], or Berman and Plemmons [1, p.134]. (In the diagram of Berman and Plemmons [1, p.134], the N conditions (inverse-positivity) are not connected with the E conditions (WHS) for general matrices.)

Next, we present a theorem which is related to the Le Chatelier-Braun principle; see Fujimoto [6]. This theorem is valid for a class of matrices which is more general than that of inverse-positive matrices.

Theorem 3.3. Suppose that the inverse of $A$ has its last column and the bottom row non-negative, and that $\left|A_{(n, n)}\right|>0$. Then each element of the inverse of $A_{(n, n)}$ is less than or equal to the corresponding element of the inverse of $A$.

Proof. It is clear that $|A|>0$. The first column of the inverse of $A$ can be obtained as a solution vector $x \in \mathbb{R}^{n}$ to the system of equations $A x=e_{1}$, while the first column of the inverse of $A_{(n, n)}$ is a solution vector $y \in \mathbb{R}^{n-1}$ to the system $A_{(n, n)} y=e_{1(n)}$. Adding these two systems with some manipulations, we get the following system:

$$
A\left[\begin{array}{c}
x_{1}+y_{1}  \tag{3.1}\\
\vdots \\
x_{n-1}+y_{n-1} \\
x_{n}
\end{array}\right]=d \equiv\left[\begin{array}{c}
2 \\
0 \\
0 \\
(A)_{n, *(n)} \cdot y
\end{array}\right]
$$

By Cramer's rule, it follows that

$$
x_{n}=\frac{\left|A_{(, n)} d\right|}{|A|}=2 x_{n}+\frac{\left|A_{(n, n)}\right|}{|A|} \cdot(A)_{n, *(n)} \cdot y .
$$

Thus, if $x_{n}=\left(A^{-1}\right)_{n 1}>0$, then $(A)_{n, *(n)} \cdot y<0$, and if $x_{n}=0$, then $(A)_{n, *(n)} \cdot y=0$, because $\frac{\left|A_{(n, n)}\right|}{|A|}>0$.

For the $i$-th $(i<n)$ equation of (3.1), Cramer's rule gives us

$$
x_{i}+y_{i}=2 x_{i}+\frac{\left|A_{(n, i)}\right|}{|A|} \cdot(A)_{n, *(n)} \cdot y .
$$

From this, we have

$$
y_{i}=x_{i}+\left(A^{-1}\right)_{i n} \cdot(A)_{n, *(n)} \cdot y .
$$

Therefore we can assert

$$
\begin{cases}y_{i}<x_{i} & \text { when }\left(A^{-1}\right)_{n 1}>0 \text { and }\left(A^{-1}\right)_{i n}>0 \\ y_{i}=x_{i} & \text { when }\left(A^{-1}\right)_{n 1}=0 \text { or }\left(A^{-1}\right)_{i n}=0\end{cases}
$$

For the other columns, we can proceed in a similar way by replacing $e_{1}$ with the appropriate $e_{i}$.

As a special case, we have
Corollary 3.4. Suppose that $A$ is inverse-positive, and the WHS condition is satisfied. Then each element of the inverse of $A_{(n, n)}$ is less than or equal to the corresponding element of the inverse of $A$.
4. Numerical Examples and Remarks. The first example is given by

$$
A=\left[\begin{array}{cc}
-2 & 1 \\
7 & -3
\end{array}\right] \quad \text { and } A^{-1}=\left[\begin{array}{ll}
3 & 1 \\
7 & 2
\end{array}\right]
$$

By exchanging two columns, we have the $M$-matrix

$$
\left[\begin{array}{cc}
1 & -2 \\
-3 & 7
\end{array}\right], \text { whose inverse is }\left[\begin{array}{ll}
7 & 2 \\
3 & 1
\end{array}\right] .
$$

This satisfies the normal Hawkins-Simon condition. The inverse of (1) is (1), and the entry 1 is smaller than 7 , thus verifying Corollary 3.4.

The second example is not an $M$-matrix:

$$
A=\left[\begin{array}{ccc}
1 & -9 & 8 \\
0 & 12 & -12 \\
-1 & 6 & -4
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & \frac{1}{3} & 1 \\
1 & \frac{1}{4} & 1
\end{array}\right]
$$

It should be noted that there does not exist a permutation matrix $P$ such that $P A$ or $A P$ satisfies the normal Hawkins-Simon condition. However, the WHS condition is satisfied by $A$. The inverse of $A_{(3,3)}$ is calculated as

$$
\left[\begin{array}{cc}
1 & -9 \\
0 & 12
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & \frac{3}{4} \\
0 & \frac{1}{12}
\end{array}\right]
$$

This verifies Corollary 3.4.
The next example is again not an $M$-matrix:

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]
$$

The inverse of $A_{(3,3)}$ is calculated as

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

The elements $\left(A^{-1}\right)_{11},\left(A^{-1}\right)_{12}$, and $\left(A^{-1}\right)_{22}$ are all equal to $\left(A_{(3,3)}^{-1}\right)_{11},\left(A_{(3,3)}^{-1}\right)_{12}$, and $\left(A_{(3,3)}^{-1}\right)_{22}$ because $\left(A^{-1}\right)_{32}=0$ and $\left(A^{-1}\right)_{13}=0$. The entry $\left(A_{(3,3)}^{-1}\right)_{21}$ is, however, $-\frac{1}{2}$ and is smaller than the corresponding entry $\left(A^{-1}\right)_{21}=0$, confirming the statements in the proof of Theorem 3.3.

The final example illustrates Theorem 3.3:

$$
A=\left[\begin{array}{ccc}
-\frac{17}{24} & \frac{2}{3} & -\frac{5}{24} \\
\frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\
\frac{23}{24} & -\frac{2}{3} & \frac{11}{24}
\end{array}\right] \text { and } A^{-1}=\left[\begin{array}{ccc}
-1 & -4 & 1 \\
2 & -3 & 2 \\
5 & 4 & 3
\end{array}\right]
$$

Since

$$
\left[\begin{array}{cc}
-\frac{17}{24} & \frac{2}{3} \\
\frac{1}{6} & -\frac{1}{3}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
-\frac{8}{3} & -\frac{16}{3} \\
-\frac{4}{3} & -\frac{17}{3}
\end{array}\right]
$$

these results conform to Theorem 3.3.
Remark 4.1. The Le Chatelier-Braun principle in thermodynamics states that when an equilibrium in a closed system is perturbed, directly or indirectly, the equilibrium shifts in the direction which can attenuate the perturbation. As is explained in Fujimoto [6], the system of equations $A x=b$ can be solved as an optimization problem when $A$ is an $M$-matrix. Thus, a solution $x$ to the system can be viewed as a sort of equilibrium. A similar argument can be made when $A$ is inverse-positive. That is, the solution vector $x$ of the equations $A x=b$ can be obtained by solving the minimization problem: min $e \cdot x$ subject to $A x \geq b, x \geq 0$, where $e$ is the row $n$-vector whose elements are all positive, or more simply unity. Thus, the solution vector $x$ can be regarded as a sort of physical equilibrium. In terms of economics, the above minimization problem is to minimize the use of labor input while producing the final output vector $b$. (Each column of $A$ represents a production process with a positive entry being output and a negative one input, while the vector $e$ is the labor input coefficient vector.) Then, in our case, a perturbation is a new constraint that the $n$-th variable $x_{n}$ should be kept constant even after the vector $b$ shifts, destroying the $n$-th equation. The changes in other variables may become smaller when the increase of those variables requires $x_{n}$ to be greater. This is obvious in the case of an $M$-matrix. What we have shown is that it is also the case with an inverse-positive matrix or even with a matrix with positively bordered inverse as can be seen from Theorem 3.3.

Remark 4.2. Much more can be said about the sensitivity analysis in the case of $M$-matrices. We can also deal with the effects of changes in the elements of $A$ on the solution vector $x$; see Fujimoto, Herrero, and Villar [7].

Acknowledgment. Thanks are due to the anonymous referee, who provided the authors with very useful comments and many stylistic suggestions to improve this paper.

## REFERENCES

[1] Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York, 1979.
[2] Christian Bidard. Fixed capital and vertical integration. Mimeo, MODEM, University of Paris X - Nanterre, 1996.
[3] Dipankar Dasgupta. Using the correct economic interpretation to prove the Hawkins-SimonNikaido theorem: one more note. Journal of Macroeconomics, 14:755-761, 1992.
[4] Dipankar Dasgupta and Tapen N. Sinha. Nonsubstitution theorem with joint production. International Journal of Economics and Business, 39:701-708, 1992.
[5] Miroslav Fiedler and Vlastimil Ptak. On Matrices with nonpositive off-diagonal elements and positive principal minors. Czechoslovak Mathematical Journal, 12:382-400, 1962.
[6] Takao Fujimoto. Global strong Le Chatelier-Samuelson principle. Econometrica, 48:1667-1674, 1980.
[7] Takao Fujimoto, Carmen Herrero and Antonio Villar. A sensitivity analysis for linear systems involving M-matrices and its application to the Leontief model. Linear Algebra and its Applications, 64:85-91, 1985.
[8] Nicholas Georgescu-Roegen. Some properties of a generalized Leontief model. In Tjalling Koopmans (ed.), Activity Analysis of Allocation and Production. John Wiley \& Sons, New York, 165-173, 1951.
[9] David Hawkins and Herbert A. Simon. Note: Some Conditions of Macroeconomic Stability. Econometrica, 17:245-248, 1949.
[10] Hukukane Nikaido. Convex Structures and Economic Theory. Academic Press, New York, 1963.
[11] Hukukane Nikaido. Introduction to Sets and Mappings in Modern Economics. Academic Press, New York, 1970. (The original Japanese edition is in 1960.)
[12] Alexander Ostrowski. Über die Determinanten mit überwiegender Hauptdiagonale. Commentarii Mathematici Helvetici, 10:69-96, 1937.


[^0]:    *Received by the editors on 26 August 2003. Accepted for publication on 31 March 2004. Handling Editor: Michael Neumann.
    ${ }^{\dagger}$ Department of Economics, University of Kagawa, Takamatsu, Kagawa 760-8523, Japan (takao@ec.kagawa-u.ac.jp, ranade@ec.kagawa-u.ac.jp).

