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TWO CHARACTERIZATIONS OF INVERSE-POSITIVE MATRICES:
THE HAWKINS-SIMON CONDITION AND THE
LE CHATELIER-BRAUN PRINCIPLE*

TAKAO FUJIMOTO! AND RAVINDRA R. RANADEf

Dedicated to the late Professors David Hawkins and Hukukane Nikaido

Abstract. It is shown that (a weak version of) the Hawkins-Simon condition is satisfied by
any real square matrix which is inverse-positive after a suitable permutation of columns or rows.
One more characterization of inverse-positive matrices is given concerning the Le Chatelier-Braun
principle. The proofs are all simple and elementary.
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1. Introduction. In economics as well as other sciences, the inverse-positivity
of real square matrices has been an important topic. The Hawkins-Simon condition
[9], so called in economics, requires that every principal minor be positive, and they
showed the condition to be necessary and sufficient for a Z-matrix (a matrix with
nonpositive off-diagonal elements) to be inverse-positive. One decade earlier, this was
used by Ostrowski [12] to define an M-matrix (an inverse-positive Z-matrix), and
was shown to be equivalent to some of other conditions; see Berman and Plemmons
[1, Ch.6] for many equivalent conditions. Georgescu-Roegen [8] argued that for a Z-
matrix it is sufficient to have only leading (upper left corner) principal minors positive,
which was also proved in Fiedler and Ptak [5]. Nikaido’s two books, [10] and [11],
contain a proof based on mathematical induction. Dasgupta [3] gave another proof
using an economic interpretation of indirect input.

In this paper, the Hawkins-Simon condition is defined to be the one which requires
that all the leading principal minors should be positive, and we shall refer to it as the
weak Hawkins-Simon condition (WHS for short). We prove that the WHS condition
is necessary for a real square matrix to be inverse-positive after a suitable permutation
of columns (or rows). The proof is easy and simple and uses the Gaussian elimination
method. One more characterization of inverse-positive matrices is given: Each element
of the inverse of the leading (n —1)x (n — 1) principal submatrix is less than or equal
to the corresponding element in the inverse of the original matrix. This property is
related to the Le Chatelier-Braun principle in thermodynamics.

Section 2 explains our notation, then in section 3 we present our theorems and
their proofs, finally giving some numerical examples and remarks in section 4.

2. Notation. The symbol R™ means the real Euclidean space of dimension n
(n > 2), and R’} the non-negative orthant of R”. A given real n x n matrix A is a
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map from R™ into itself. The (¢, j) entry of A is denoted by a;;, € R™ stands for a
column vector, and x; denotes the i-th element of x. The symbol (A4)., ; means the
J-th column of A, and (A); . means the i-th row. We also use the symbol x(;), which
represents the column vector in R"~! formed by deleting the i-th element from x.
Similarly, the symbol A(; ;) means the (n — 1) x (n — 1) matrix obtained by deleting
the i-th row and the j-th column from A. Likewise, A, ;) shows the n x (n—1) matrix
obtained by deleting the j-th column from A. The symbol (A); .(,) shall denote the
row vector formed by deleting the n-th element from (A);., and (A)),; is the
column vector in R"~! formed by deleting the n-th element from (A). ;. The symbol
e; € R denotes a column vector whose i-th element is unity with all the remaining
entries being zero. |A| denotes the determinant of A.
The inequality signs for vector comparison are as follows:

x>y iff -y eRY;

r>y iff v—yeR} —{0};

z >y iff z—yeint(R}),
where int(R”} ) means the interior of R’} . These inequality signs are applied to matrices
in a similar way.

3. Propositions. Let us first note that the condition “A is inverse-positive” is
equivalent to the following property:

Property 1. For any b cint(R’} ), the equation Az = b has a solution = €int(R" ).

This property was used in Dasgupta and Sinha [4] to establish the nonsubstitution
theorem, and in Bidard [2].

Now we can prove the following theorem.

THEOREM 3.1. Let A be inverse-positive. Then the WHS condition is satisfied
when a suitable permutation of columns (or rows) is made.

Proof. The outline of our proof is as follows. We eliminate, step by step, a
variable whose coefficient is positive. The existence of such a variable is guaranteed
at each step by Property 1 above. By performing a suitable permutation of columns
if necessary, this coefficient can be shown to be positively proportional to a leading
principal minor of A.

Because of Property 1 above, there should be at least one positive entry in the
first row of A. So, such a column and the first column can be exchanged. We assume
the two columns have been permuted so that

aip > 0.
Next at the second step, we divide the first equation of the system Az = b by a1
and subtract this equation side by side from the i-th(i > 2) equation after multiplying
this by a;1, to obtain

1 a12/a11 aln/an Z1 bl/an
0 ag — a12a21/a11 ccr G2n — alnazl/an €2 by — bla21/a11

0 ap2— alzanl/an ot Onp — alnanl/an Tn, by, — blanl/an
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Notice that the (2,2)-entry of the coefficient matrix above is

ail a2
a21 Aa22
)
a11

and the corresponding entry on the RHS is

air by
az1 by
ail

We continue this type of elimination up to the k-th step, having at the (k, k)-

position
a].l P PRI a].,k
ak?,]. P PRI ak?,k?
)
ail ai k—1
k-1, - Qkg—1k-1

and the RHS of the k-th equation is given as

air o G1k—1 b
ar1 o Akk—1 bk
alr A1 k—1
Ak—11 “*°  Ok—1k—1

The denominator of these equations is known to be positive at the (k—1)-th step, and
when by, is large enough, the RHS of the k-th equation becomes positive. Thus, by
Property 1, there is at least one positive coefficient in the k-th equation. Again, we
assume a suitable permutation has been made so that the (k, k)-position is positive,
giving
all PRI PRI a]_,k
: : >0 for k=2,3,...,n.
ak:’]_ PRI PRI ak:’k:
Therefore, our theorem is proved for a permutation of columns. A similar result

can be obtained by a suitable permutation of rows - just transpose the given matrix
and apply the same proof. O
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COROLLARY 3.2. When A is a Z-matriz, the WHS condition is necessary and
sufficient for A to be inverse-positive.

Proof. First we show the necessity. Let us consider the elimination method used
in the proof of Theorem 3.1. When A is a Z-matrix it is easy to notice that as
elimination proceeds, a positive entry is always given at the upper left corner with
the other entries (or coefficients) on the top equation being all non-positive, while the
RHS of each equation always remains positive. This implies that the WHS condition
holds (without any permutation).

Next we show the sufficiency. We assume that b > 0. When A is a Z-matrix, as
elimination proceeds, a positive coefficient can appear only at the upper left corner
with the remaining coefficients being all non-positive, while the RHS of each equation
is always positive. So, finally we reach the equation of a single variable z,, with the
two coefficients on both sides being positive. Thus, z,, > 0. Now moving backward,
we find x > 0. Since b > 0 is arbitrary, this proves that A is inverse-positive. 0

This corollary is well known and the reader is referred to Nikaido [10, p.90, The-
orem 6.1], Nikaido [11, p.14, Theorem 3.1], or Berman and Plemmons [1, p.134]. (In
the diagram of Berman and Plemmons [1, p.134], the N conditions (inverse-positivity)
are not connected with the E conditions (WHS) for general matrices.)

Next, we present a theorem which is related to the Le Chatelier-Braun principle;
see Fujimoto [6]. This theorem is valid for a class of matrices which is more general
than that of inverse-positive matrices.

THEOREM 3.3. Suppose that the inverse of A has its last column and the bottom
row non-negative, and that |A(n7n)| > 0. Then each element of the inverse of Ay, )
is less than or equal to the corresponding element of the inverse of A.

Proof. 1t is clear that |A| > 0. The first column of the inverse of A can be obtained
as a solution vector x € R™ to the system of equations Ax = e, while the first column
of the inverse of A, ) is a solution vector y € R™! to the system At Y = €1(n)-
Adding these two systems with some manipulations, we get the following system:

1+ 2
(3.1) A 3 —d= 8
Tp—1+ Yn—1

By Cramer’s rule, it follows that

[ A d| [ A,
Ty = ’ =2z, + — - (A)ps(n) - Y-
4] 4] w
Thus, if ,, = (A71),1 > 0, then (A)n(ny -y <0, and if z,, = 0, then (A), v(n)-y =0,

A
because % > 0.

For the i-th (i < n) equation of (3.1), Cramer’s rule gives us

Ani
Ti +Yi = 2w + | |(/1])’ “(A)n () - Y-
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From this, we have

Yi =2+ (A Vi (A)psn) - Y-
Therefore we can assert

yi <x; when (A71),; >0and(471);, >0,
yi = x; when (A71),,; =0or(471);, =0.

For the other columns, we can proceed in a similar way by replacing e; with the
appropriate e;. 0

As a special case, we have

COROLLARY 3.4. Suppose that A is inverse-positive, and the WHS condition
is satisfied. Then each element of the inverse of A(, ) is less than or equal to the
corresponding element of the inverse of A.

4. Numerical Examples and Remarks. The first example is given by

-2 1 1131
A—{7 _3} and A —{72].

By exchanging two columns, we have the M-matrix

1 -2 hose i . 7T 2
_3 7 |+ whoseinverseis | o | |.

This satisfies the normal Hawkins-Simon condition. The inverse of (1) is (1), and the
entry 1 is smaller than 7, thus verifying Corollary 3.4.
The second example is not an M-matrix:

1 -9 8 2 1 1
A= 0 12 —-12 | andA 1= 1 % 1
-1 6 -4 1 11

It should be noted that there does not exist a permutation matrix P such that PA
or AP satisfies the normal Hawkins-Simon condition. However, the WHS condition
is satisfied by A. The inverse of A3 3 is calculated as

bw] -[o 1]

This verifies Corollary 3.4.
The next example is again not an M-matrix:

1 -1 1 3 3 0

-1 o

A = 1 1 -1 and A = 0 5 ?
-1 1 1 : 0 3

The inverse of A3 3 is calculated as
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—1
= 1 .
L1 -3 2

The elements (A_l)ll, (A_l)lg, and (A_1)22 are all equal to (A(7313))11’ (A(:,)}3))12, and

(A&)j?)))QQ because (A71)32 = 0 and (A71);3 = 0. The entry (A@}S))Ql is, however, —3
and is smaller than the corresponding entry (A~1)s; = 0, confirming the statements
in the proof of Theorem 3.3.

The final example illustrates Theorem 3.3:

w2z _5 -1 —4 1
4 3 4
A= 612 —% é—z and A" =] 2 -3 2
= -2 H 5 4 3
Since
1z 2 771 _8 16
IR s
6 3 3 3

these results conform to Theorem 3.3.

REMARK 4.1. The Le Chatelier-Braun principle in thermodynamics states that
when an equilibrium in a closed system is perturbed, directly or indirectly, the equi-
librium shifts in the direction which can attenuate the perturbation. As is explained
in Fujimoto [6], the system of equations Az = b can be solved as an optimization
problem when A is an M-matrix. Thus, a solution z to the system can be viewed as
a sort of equilibrium. A similar argument can be made when A is inverse-positive.
That is, the solution vector z of the equations Ax = b can be obtained by solving the
minimization problem: min e-x subject to Az > b, x > 0, where e is the row n-vector
whose elements are all positive, or more simply unity. Thus, the solution vector =
can be regarded as a sort of physical equilibrium. In terms of economics, the above
minimization problem is to minimize the use of labor input while producing the final
output vector b. (Each column of A represents a production process with a positive
entry being output and a negative one input, while the vector e is the labor input
coefficient vector.) Then, in our case, a perturbation is a new constraint that the n-th
variable z,, should be kept constant even after the vector b shifts, destroying the n-th
equation. The changes in other variables may become smaller when the increase of
those variables requires z,, to be greater. This is obvious in the case of an M-matrix.
What we have shown is that it is also the case with an inverse-positive matrix or even
with a matrix with positively bordered inverse as can be seen from Theorem 3.3.

REMARK 4.2. Much more can be said about the sensitivity analysis in the case
of M-matrices. We can also deal with the effects of changes in the elements of A on
the solution vector x; see Fujimoto, Herrero, and Villar [7].
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