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1. Preliminaries.

1.1. Introduction. Vector-valued forms play a key role in the study of higher
codimensional geometries. For example, they occur naturally in the study of Rieman-
nian submanifolds (as the second fundamental form) and in CR geometry (as the Levi
form). In each of these there are natural group actions acting on the vector-valued
forms, taking care of different choices of local coordinates and the such. The alge-
braic invariants of these forms under these group actions provide invariants for the
given geometries. In Riemannian geometry, for example, the scalar curvature can be
expressed as an algebraic invariant of the second fundamental form. But before these
invariants can be used, their algebraic structure must be known. In [5], an explicit list
of the generators is given. In that paper, though, there is no hint as to the relations
among these generators. In this paper, a method is given for producing a list of the
generators for the relations of the invariants.

In [5], the problem of finding the rational invariants of bilinear maps from a
complex vector space V of dimension n to a complex vector space W of dimension k,
on which the group GL(n,C) ×GL(k,C) acts, is reduced to the problem of finding
invariant one-dimensional subspaces of the vector spaces (V ⊗ V ⊗W ∗)⊗r, for each
positive integer r. From this, it is shown that the invariants can be interpreted as
being generated by

(Invariants for GL(n,C) of V ⊗ V )⊗ (Invariants for GL(k,C) of W ∗),

each component of which had been computed classically.
In this paper we extend this type of result, showing how to compute the relations

of bilinear forms from knowledge of the relations for V ⊗ V under the action of
GL(n,C) and the relations for W ∗ under the action of GL(k,C). In particular, in a
way that will be made more precise later, we show that the relations can be interpreted
as being generated by:

((Relations for GL(n,C) of V ⊗ V )⊗ (Generators for GL(k,C) ofW ∗))
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⊕((Generators for GL(n,C) of V ⊗ V )⊗ (Relations for GL(k,C) ofW ∗)),

each component of which is known classically. While this paper concentrates on
the case when GL(n,C) acts on the vector space V and GL(k,C) acts on W , the
techniques that we use are applicable for when G and H are any completely reducible
Lie groups acting on the vector spaces V andW , respectively. When the bilinear form
is the second fundamental form of Riemannian geometry, then G is the orthogonal
group O(n) and H is the orthogonal group O(k). In CR geometry, when the bilinear
form is the Levi form, then G = GL(n,C), but now H = GL(k,R).

In sections 1.2 through 1.4, we set up our basic notation. Section 2 recalls how
to compute the invariants of bilinear forms. Section 3 recalls the classically known
relations for invariants of the general linear group. While well-known, we spend time
on writing these relations both in the bracket notation for vectors and in the tensor
language that we are interested in. Section 4 gives the relations among the invariant
one dimensional subspaces of (V ⊗ V ⊗ W ∗)⊗r, for each positive integer r. This is
the key step in this paper. The key proof will be seen to be not hard, reflecting the
fact that the difficulty in this paper is not the proofs but the finding of the correct
statements and correct formulations of the theorems. Section 5 gives a concrete
example of a relation from section 4. Section 6 finally deals with the finding the
relations of the invariants for vector-valued bilinear forms. Section 7 gives concrete,
if not painful, examples and discusses some geometric insights behind some of the
computed invariants and relations. Section 8 closes with some further questions.

It appears that the closest earlier work to this paper is in the study of the invari-
ants of n × n matrices (see [4] and [10]), but the group actions are different in this
case and links are not apparent. For general background in invariant theory, see [3],
[9], [11] or [13].

1.2. Vector-valued forms. For the rest of this paper, let V be a complex n-
dimensional vector space and W be a complex k-dimensional vector space. We are
concerned with the vector space Bil(V,W ), the space of bilinear maps from V × V
to W . Each such bilinear map is an element of V ∗ ⊗ V ∗ ⊗W , where V ∗ is the dual
space of V . The group Aut(V )×Aut(W ) acts on Bil(V,W ) by

gb(x, y) = pb(a−1x, a−1y)

for all g = (a, p) ∈ Aut(V )×Aut(W ), b ∈ Bil(V,W ), and x, y ∈ V . Stated differently,
we define gb so that the following diagram commutes:

a × a

V × V
b→ W

↓ ↓
V × V

→
gb W

p

As mentioned in the introduction, the results of this paper (and the results in
[5]) also work for completely reducible subgroups of Aut(V ) and Aut(W ), though for
simplicity, we restrict our attention to the full groups Aut(V ) and Aut(W ), which of
course are isomorphic to GL(n,C) and GL(k,C).
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1.3. Invariants. Let G be a group that acts linearly on a complex vector space
V . A function

f : V → C

is a (relative) invariant if for all g ∈ G and all v ∈ V , we have

f(gv) = χ(g)f(v),

where χ : G → C − {0} is a homomorphism (i.e. χ is an abelian character for the
group G). We call χ the weight of the invariant. Note that the sum of two invariants
of the same weight is another invariant. Thus the invariants of the same weight will
form in natural way a vector space.

As seen in [3] on pp. 5-9, every rational invariant is the quotient of polynomial
invariants, every polynomial invariant is the sum of homogeneous polynomial invari-
ants, every degree r homogeneous polynomial corresponds to an invariant r-linear
function on the Cartesian product V ×r and every invariant r-linear function on V ×r

corresponds to an invariant linear function on the r-fold tensor product V ⊗r. Thus
to study rational invariants on V we can concentrate on understanding the invariant
one-dimensional subspaces on V ∗⊗r.

Let C[V ] be the algebra of polynomial functions on V and let C[V ]G denote the
algebra of the polynomials invariant under the action of G. In general, the goal of
invariant theory is to find a list of generators of algebra C[V ]G (a “First Fundamental
Theorem”), a list of generators of the relations of these generators (a “Second Fun-
damental Theorem”) and then relations of relations, etc. A full such description is
the syzygy of C[V ]G.

By the above, we need to find the homogeneous polynomials in C[V ]G. Since the
homogeneous polynomials of degree r in C[V ] are isomorphic to symmetric tensors in
V ∗�r, we need to find the invariant one-dimensional subspaces of V ∗�r. Now, ifG acts
on V , it will act on V ∗⊗r. Suppose we have all invariant one-dimensional subspaces
on V ∗⊗r. Then we can easily recover all invariant one-dimensional subspaces on V ∗�r

by the symmetrizing map from V ∗⊗r to V ∗�r. This is the procedure we will use.
We are interested in rational invariants for the vector space Bil(V,W ) under the

group action of Aut(V ) × Aut(W ). Thus we are interested in rational invariants for
the vector space Bil(V,W ). Hence the vector space we are interested in is V ∗⊗V ∗⊗W
under the group action of Aut(V ) × Aut(W ), which we will see means that we are
interested initially in the invariant one-dimensional subspaces of (V ⊗V ⊗W ∗)⊗r for
each r and finally in the invariant one-dimensional subspaces of (V ⊗ V ⊗W ∗)�r.

1.4. Indicial notations. The following permutation notation will be used heav-
ily throughout this paper. For any positive integer m, define the permutation symbol
εi1i2...im to be equal to 1 if i1i2 . . . im is an even permutation of 1, 2, . . . ,m, to be
equal to (−1) if it is an odd permutation, and to be equal to 0 otherwise. To indicate
the product of d (where d is a positive integer) such symbols for any permutation
σ ∈ Sdm, we use the shorthand notation

εI(m, dm, σ) = εiσ(1)...iσ(m)εiσ(m+1)...iσ(2m) · · · εiσ(dm−m+1)...iσ(dm) .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 11, pp. 24-40, February 2004



ELA

On Relations of Invariants for Vector-valued Forms 27

The symbols εi1i2...im and εI(m, dm, σ) are defined in a similar manner. The Einstein
summation notation will be used. Thus whenever a superscript and a subscript appear
in the same term, this means sum over that term.

As an example of the notation, let V be a two dimensional vector space with
the basis {e1, e2}. Then εI(2, 2, identity)ei1 ⊗ ei2 denotes the following summation of
two-tensors from V ⊗ V :

εI(2, 2, identity)ei1 ⊗ ei2 = ε11e1 ⊗ e1 + ε12e1 ⊗ e2

+ε21e1 ⊗ e2 + ε22e2 ⊗ e2

= e1 ⊗ e2 − e2 ⊗ e1

= e1 ∧ e2

A slightly more complicated example is εI(2, 4, identity)ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4 . In
εi1i2,i3,i4 , each im can be either a 1 or a 2. Thus there are 24 terms being summed.
But whenever at least three of the im are a 1 or 2, the corresponding term is zero.
Hence there are really only six terms making up εI(2, 4, identity)ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4 .
We have

εI(2, 4, identity)ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4 = ε11ε22e1 ⊗ e1 ⊗ e2 ⊗ e2

+ ε12ε12e1 ⊗ e2 ⊗ e1 ⊗ e2

+ ε12ε21e1 ⊗ e2 ⊗ e2 ⊗ e1

+ ε21ε12e2 ⊗ e1 ⊗ e1 ⊗ e2

+ ε21ε21e2 ⊗ e1 ⊗ e2 ⊗ e1

+ ε22ε11e2 ⊗ e2 ⊗ e1 ⊗ e1

= e1 ⊗ e2 ⊗ e1 ⊗ e2

− e1 ⊗ e2 ⊗ e2 ⊗ e1

− e2 ⊗ e1 ⊗ e1 ⊗ e2

+ e2 ⊗ e1 ⊗ e2 ⊗ e1

= (e1 ∧ e2)⊗ (e1 ∧ e2).

We will see in section three that this will be the invariant on four vectors v1,v2,v3,v4

corresponding to the product of determinants:

[v1,v2][v3,v4].

One more example that we will use later. Consider εI(2, 4, (23))ei1⊗ei2⊗ei3⊗ei4 .
All we need to do is to flip, in the above formulas, i2 with i3 in the εi1i2,i3,i4 . Thus

εI(2, 4, (23)ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4 = ε12ε12e1 ⊗ e1 ⊗ e2 ⊗ e2

+ ε11ε22e1 ⊗ e2 ⊗ e1 ⊗ e2

+ ε12ε21e1 ⊗ e2 ⊗ e2 ⊗ e1

+ ε21ε12e2 ⊗ e1 ⊗ e1 ⊗ e2
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+ ε22ε11e2 ⊗ e1 ⊗ e2 ⊗ e1

+ ε21ε21e2 ⊗ e2 ⊗ e1 ⊗ e1

= e1 ⊗ e1 ⊗ e2 ⊗ e2

− e1 ⊗ e2 ⊗ e2 ⊗ e1

− e2 ⊗ e1 ⊗ e1 ⊗ e2

+ e2 ⊗ e2 ⊗ e1 ⊗ e1.

In section three we will see that this will be the invariant on the four vectors
v1,v2,v3,v4 corresponding to the product of determinants:

[v1,v3][v2,v4].

2. Generators for invariants of Bil(V,W ) . This section is a quick review of
the notation and the results in [5], which we need for the rest of this paper.

Let e1, . . . , en and f1, . . . , fk be bases for V and W and e1, . . . , en and f1, . . . , fk

be dual bases for V ∗ and W ∗. The goal in [5] is to find the invariant one-dimensional
subspaces of (V ⊗ V ⊗ W ∗)⊗r, for each possible r. We will throughout regularly
identify (V ⊗ V ⊗W ∗)⊗r with V ⊗2r ⊗ (W ∗)⊗r.

Let r be a positive integer such that n divides 2r and k divides r. For any element
σ in the permutation group S2r and any element η in Sr, define

vσ = εI(n, 2r, σ)ei1 ⊗ . . .⊗ ei2r

and

wη = εJ(k, r, η)f i1 ⊗ . . .⊗ f ir .

Theorem 2.1. Vector space V ⊗2r ⊗ (W ∗)⊗r has an invariant one-dimensional
subspace if and only if n divides 2r and k divides r. Every invariant one-dimensional
subspace is a linear combination of various vσ ⊗wη, where σ and η range through S2r

and Sr, respectively.
For each r, denote the subspace generated by all of the various vσ ⊗wη in V ⊗2r ⊗

(W ∗)⊗r by

(V ⊗2r ⊗ (W ∗)⊗r)inv.

As shown in [5], for each r the corresponding weights are the same. Hence the sum of
any two vσ⊗wη spans another one-dimensional invariant subspace of V ⊗2r⊗(W ∗)⊗r.
Thus, for each r, (V ⊗2r ⊗ (W ∗)⊗r)inv is the invariant subspace of V ⊗2r ⊗ (W ∗)⊗r

under our group action.
Hence for each r, the theorem is giving us a spanning set for (V ⊗2r ⊗(W ∗)⊗r)inv.

Part of the goal of this paper is to produce an algorithm to find the relations among
the elements for these spanning sets.

Let us put this into the language of bilinear forms, which will aid us later when
we look at specific examples. By making our choice of bases, we can write each
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bilinear map from V × V to W as a k-tuple of n × n matrices (B1, . . . , Bk), where
each Bα = (Bα

ij). More precisely, if b ∈ Bil(V,W ), then Bα
ij = fαb(ei, ej). We can

restate the above theorem in terms of the Bα
ij .

Theorem 2.2. There exists a nonzero homogeneous invariant of degree r on
Bil(V,W ) only if n divides 2r and k divides r. Further, every such homogeneous
invariant is a linear combination of various fσ

η , where

fσ
η = εI(n, 2r, σ)εJ(c, r, η)B

j1
i1i2

. . . Bjr

i2r−1i2r
.

Again, all of this is in [5].
For an example, let V have dimension two and W have dimension one. Let r = 1.

Then our vector-valued form B can be represented either as a two form

ae1 ⊗ e1 + be1 ⊗ e2 + ce2 ⊗ e1 + de2 ⊗ e2

or as a two by two matrix
(

a b
c d

)
.

We set

vσ = εI(2, 2, identity)ei1 ⊗ ei2 = e1 ⊗ e2 − e2 ⊗ e1.

Since W has dimension one, we must have wη be the identity. Then vσ ⊗ wη acting
on B will be

b− c

and is zero precisely when the matrix B is symmetric.

3. Relations among invariants for the general linear group.

3.1. Nontrivial relations. For Gl(n,C) acting on a vector space V , classically
not only are the invariants known, but also so are the relations. Everything in this
section is well-known. We will first discuss the second fundamental theorem in the
language of brackets, or determinants. This is the invariant language for which the
second fundamental theorem is the most clear. We then will state the second funda-
mental theorem for the two cases that we need in this paper, namely for V ⊗ V and
W ∗.

Let v1, . . . ,vn be n column vectors in Cn. The general linear group Gl(n,C)
acts on the vectors in Cn by multiplication on the left. Classically, the bracket of the
vectors v1, . . . ,vn, denoted by [v1, . . . ,vn], is defined to be the determinant of the
n× n matrix whose columns are the vectors v1, . . . ,vn. Thus by definition

[v1, . . . ,vn] = det(v1, . . . ,vn).
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By basic properties of the determinant, we have that the bracket is an invariant, since

[Av1, . . . , Avn] = det(Av1, . . . , Avn)
= det(A) det(v1, . . . ,vn)
= det(A)[v1, . . . ,vn]

The punchline of the first fundamental theorem in this language is that the only
invariants are combinations of various brackets and hence of determinants. (See p.
22 in [3] or p. 45 in [13].)

The second fundamental theorem reflects the fact that the determinant of a matrix
with two identical rows is zero. Choose n+1 column vectors v1, . . . ,vn+1 inCn. Label
the entries of the vector vi = (vij), for 1 ≤ j ≤ n. Let ek denote the vectors in the
standard basis for Cn. Thus all of the entries in ek are zero, except in the kth entry,
which is one. Then

[vi, e2, . . . , en] = det(vi, e2, . . . , en)
= vi1

Now consider the (n+ 1)× (n+ 1) matrix

V =




v11 v21 · · · v(n+1)1

v11 v21 · · · v(n+1)1

v12 v22 · · · v(n+1)2

...
...

...
...

v1n v2n · · · v(n+1)n




.

Since its top two rows are identical, its determinant is zero. Then

0 = det(V )

=
n+1∑
k=1

(−1)k+1vk1 det(v1, . . . , v̂k, . . . ,vn+1)

=
n+1∑
k=1

(−1)k+1[v1, . . . , v̂k, . . . ,vn+1][vk, e2, . . . , en],

where v̂k means delete the vk term. This equation is a relation among brackets. The
punchline of the second fundamental theorem is that all nontrivial relations are of the
form

n+1∑
k=1

(−1)k+1[v1, . . . , v̂k, . . . ,vn+1][vk,w2, . . . ,wn] = 0,

where w2, . . . ,wn are any column vectors.
We will define nontrivial in the next subsection. Basically the trivial relations

stem from the fact that rearranging the columns of a matrix will only change the
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determinant by at most a sign. Thus rearranging the vectors v1, . . . ,vn and then
taking the bracket will give us, up to sign, the same invariant.

Now to quickly put this into the language of tensors, first for the relations for
V ⊗ V . Using the notation of the last section, let n denote the dimension of V and
let 2r = nu. We know that all invariants for a given r are generated by all possible
vσ = εI(n, 2r, σ)ei1 ⊗ . . .⊗ ei2r . All of these invariants have the same weight. Thus,
for each r, the sum of any two vσ spans another invariant one dimensional subspace
in (V ⊗ V )⊗r. Denote the subspace of (V ⊗ V )⊗r spanned by the various vσ, with
σ ∈ S2r, by

(V ⊗ V )rinv
.

Then the first fundamental theorem in this context can be interpreted as giving a
spanning set for (V ⊗V )rinv

, for each r. For each r, denote the vector space with basis
indexed by the vσ by

(V ⊗ V )r0.

There is thus an onto linear transformation

(V ⊗ V )r0 → (V ⊗ V )rinv
.

We want to find a spanning set of the kernel of this map. This will be a set of relations
among the generators of the invariants.

We first need some notation. Let {i1, . . . , in+1} be a subset of n + 1 distinct
elements chosen from {1, 2, . . . , 2r} and let σ ∈ S2r. For 1 ≤ j ≤ n + 1, define
σj ∈ S2r by setting σj(k) = σ(k) if k is not in {i1, . . . , in+1} and

σj(ik) =




σ(ik) if k < j
σ(ik−1) if j < k
σ(in+1) if j = k

For a fixed σ and subsequence {i1, . . . , in+1}, let A(σ, {i1, . . . , in+1}) denote the subset
of S2r consisting of the σj . Then the earlier stated second fundamental theorem can
be reformulated in this context as:

Theorem 3.1. All nontrivial relations for (V ⊗V )⊗r are linear combinations of
∑

σj∈A(σ,{i1,...,in+1})
(−1)j+1vσj = 0,

for all possible subsets {i1, . . . , in+1} and all possible σ ∈ S2r. Again, the term
nontrivial means the same as before and is hence simply dealing with the fact that if
you flip two columns of a matrix, the corresponding determinants changes sign.

Note that this theorem states that the relations are linear for generators vσ with
σ ∈ S2r. Thus we are indeed capturing a spanning set for the kernel of the map
(V ⊗ V )r0 → (V ⊗ V )rinv

, for each r. Fixing r, denote the vector space with basis
indexed by each of the above relations and by each of the trivial relations by

(V ⊗ V )r1.
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Then we have an exact sequence

(V ⊗ V )r1 → (V ⊗ V )r0 → (V ⊗ V )rinv
,

an exact sequence that is a linear algebra description of both the first and second
fundamental theorems for this particular group action.

The relations for the invariants of the general linear group Gl(k, C) acting on
W ∗ are similar. Here we have r = kv. The invariants are generated by wη =
εJ(k, r, η)f i1⊗. . .⊗f ir . Choose k+1 distinct elements {i1, . . . , ik+1} from {1, 2, . . . , r}
and an η ∈ Sr. Let B(η, {i1, . . . , ik+1}) denote the set of all ηj ∈ Sr, for 1 ≤ j ≤ k+1,
defined by setting ηj(l) = η(l) if i is not in {i1, . . . , ik+1} and

ηj(il) =




η(il) if l < j
η(il−1) if j < l
η(in+1) if j = l

Then
Theorem 3.2. All nontrivial relations for (W ∗)⊗r are linear combinations of

∑
ηj∈B(η,{i1,...,ik+1})

(−1)jwηj = 0,

for all possible {i1, . . . , ik+1} and η ∈ Sr. The proofs of theorems 3 and 4 are in [13]
on pp. 70-76. Weyl uses the bracket notation, but the equivalence is straightforward.
A matrix approach is in section II.3, on page 71, in [1].

Mirroring what we did above, we know that the invariant linear subspaces for
(W ∗)⊗r are generated by all possible wη, for η ∈ Sr and that all of these invariants
have the same weight. Thus for each r, the various wη span an invariant subspace of
(W ∗)⊗r. Denote this subspace by

(W r)inv.

For each r, let the vector space with basis indexed by the wη be (W ∗)r0. Let the vector
space with basis indexed by the above relations for the various wη and by the trivial
relations be denoted by (W ∗)r1. Then we have the exact sequence

(W ∗)r1 → (W ∗)r0 → (W ∗)rinv
,

Now for an example. We first will write down a relation in the bracket notation,
give the translation in terms of tensors and then see that this explicit relation is in
the above list. Let v1,v2,v3,w be any four column vectors in C2. Then by explicit
calculation we have

[v1,v2][v3,w]− [v1,v3][v2,w] + [v2,v3][v1,w] = 0.

In the dimension two vector space W ∗, with basis f1, f2, consider the corresponding
relation

Σ = w(1) − w(23) + w(132)
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= (f1 ⊗ f2 ⊗ f1 ⊗ f2 − f1 ⊗ f2 ⊗ f2 ⊗ f1

−f2 ⊗ f1 ⊗ f1 ⊗ f2 + f2 ⊗ f1 ⊗ f2 ⊗ f1)
+(f2 ⊗ f1 ⊗ f1 ⊗ f2 − f2 ⊗ f2 ⊗ f1 ⊗ f1

−f1 ⊗ f1 ⊗ f2 ⊗ f2 + f1 ⊗ f2 ⊗ f2 ⊗ f1)
+(f1 ⊗ f1 ⊗ f2 ⊗ f2 − f2 ⊗ f1 ⊗ f2 ⊗ f1

−f1 ⊗ f2 ⊗ f1 ⊗ f2 + f2 ⊗ f2 ⊗ f1 ⊗ f1)
= 0.

Now to show that the relation Σ is in the above list. We have r = 4. Let η ∈ S4 be
the identity permutation. Let our sequence {i1, i2, i3} be simply {1, 2, 3}. Then η1 is
the permutation (132), η2 is the permutation (23) and η3 is the identity permutation.
Thus the relation Σ is an example of the relation:

wη3 − wη2 + wη1 = 0.

3.2. Trivial relations. All of this section is still classical.
It can be directly checked, continuing with our example for the two dimensional

vector space W ∗, that

w(1) + w(123) + w(132) = 0.

Here the invariant w(123) is trivially related to the invariant w(23) (more specifi-
cally, w(123) = −w(23)). This is easiest to see in bracket notation, as this is just
reflecting that

[v3,v1][v2,w] = −[v1,v3][v2,w],

which in turn simply reflects that fact that the sign of a determinant changes when
we flip two columns.

This is the source of all relations that we want to call trivial. Rearranging the
columns of a matrix will not change the determinant if the rearrangement is given by
an even permutation of the permutation group and will change the determinant by a
sign if the rearrangement is given by an odd permutation of the permutation group.

We will give the explicit criterion for trivial relations for the case of a k dimen-
sional vector space W ∗. As always, let r = kv. Our goal is to determine, given
σ, τ ∈ Sr, when

wσ = ±wτ .

This happens when we have the following v equalities of sets:

{σ−1(1), . . . , σ−1(k)} = {τ−1(1), . . . , τ−1(k)}
{σ−1(k + 1), . . . , σ−1(2k)} = {τ−1(k + 1), . . . , τ−1(2k)}

...
{σ−1((v − 1)k + 1), . . . , σ−1(kv)} = {τ−1((v − 1)k + 1), . . . , τ−1(kv)}
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Each set on the right is thus a permutation of the corresponding set on the left. We
will have wσ = wτ if there are an even number of odd permutations taking the left
hand side of the above set equalities to the right and wσ = −wτ if there are an odd
number.

Consider our initial example w(123) = −w(23) when W ∗ is two dimensional. Let
σ = (123) and τ = (23). Then

σ−1(1) = 3, σ−1(2) = 1, σ−1(3) = 2, σ−1(4) = 4

and

τ−1(1) = 1, τ−1(2) = 3, σ−1(3) = 2, σ−1(4) = 4.

Then {σ−1(1), σ−1(2)} is an odd permutation of {τ−1(1), τ−1(2)}, while {σ−1(3), σ−1(4)}
is exactly the same as {τ−1(1), τ−1(2)}, reflecting the fact that w(123) = −w(23).

4. A Second Fundamental Theorem for (V ⊗V ⊗W ∗)⊗r. We have the two
exact sequences

(V ⊗ V )r1 → (V ⊗ V )r0 → (V ⊗ V )rinv

and

(W ∗)r1 → (W ∗)r0 → ((W ∗)r)inv.

Tensoring either of these exact sequences by a complex vector space will maintain the
exactness. The point of [5] is that the natural map

(V ⊗ V )r0 ⊗ (W ∗)r0 → (V ⊗ V )rinv ⊗ (W ∗)rinv

is onto. We want to find the kernel of this map.
We have the following commutative double exact sequence:

0 0 0
↑ ↑ ↑

(V ⊗ V )r
1 ⊗ (W ∗)r

inv → (V ⊗ V )r
0 ⊗ (W ∗)r

inv → (V ⊗ V )r
inv ⊗ (W ∗)r

inv → 0

↑ ↑ ↑
(V ⊗ V )r

1 ⊗ (W ∗)r
0 → (V ⊗ V )r

0 ⊗ (W ∗)r
0 → (V ⊗ V )r

inv ⊗ (W ∗)r
0 → 0

↑ ↑ ↑
(V ⊗ V )r

1 ⊗ (W ∗)r
1 → (V ⊗ V )r

0 ⊗ (W ∗)r
1 → (V ⊗ V )r

inv ⊗ (W ∗)r
1 → 0

with

(V ⊗ V )r0 ⊗ (W ∗)r0 → (V ⊗ V )rinv ⊗ (W ∗)rinv

from the above double exact sequence being onto. All of the above maps are linear
transformations of vector spaces. A second fundamental theorem for vector-valued
forms will be a description of the kernel of this map.
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Theorem 4.1. Under the natural maps from the above double exact sequence,
the kernel of the map from (V ⊗ V )r0 ⊗ (W ∗)r0 to (V ⊗ V )rinv ⊗ (W ∗)rinv is

(V ⊗ V )r1 ⊗ (W ∗)r0 ⊕ (V ⊗ V )r0 ⊗ (W ∗)r1.

The proof is a routine diagram chase.
Thus by standard arguments involving commutative diagrams, the following se-

quence of vector spaces is exact:

(V ⊗ V )r1 ⊗ (W ∗)r0 ⊕ (V ⊗ V )r0 ⊗ (W ∗)r1 → (V ⊗ V )r0 ⊗ (W ∗)r0
→ (V ⊗ V )rinv ⊗ (W ∗)rinv
→ 0.

In another language, this theorem can be stated as:
Theorem 4.2 (A Second Fundamental Theorem). Among invariants of vector-

valued bilinear forms, there exist relations of the following type:

((V ⊗ V )1 ⊗ (W ∗)0)⊕ ((V ⊗ V )0 ⊗ (W ∗)1) .

All relations are linear combinations of the above relations.

5. An example of a relation. Let V and W ∗ both have dimension two. Recall
our example of a relation for W :

Σ = w1 − w(23) + w(132).

Here k = 2 and r = 4. Choose (23)(67) ∈ S8. Then

v(23)(67) = εI(2, 8, (23)(67))ei1 ⊗ . . .⊗ ei2r

= e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 − e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e1

−e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e1

−e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 + e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e1

+e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 − e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e1

−e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 + e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e1

+e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 − e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e1

+e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 − e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e1

−e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 + e2 ⊗ e2 ⊗ e1 ⊗ e1 ⊗ e2 ⊗ e2 ⊗ e1 ⊗ e1.

Then we have the relation

v(23)(67) ⊗Σ = v(23)(67) ⊗ w(1) − v(23)(67) ⊗ w(23) + v(23)(67) ⊗ w(132)

= 0,

which can now be directly checked.
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6. Finding Relations for Bilinear Forms. Most people, though, are not that
interested in invariant one-dimensional subspaces of (V ⊗V ⊗W ∗)⊗r for various pos-
itive integers r, but are more interested in invariants of bilinear forms. As discussed
in section 1.3, this means that we are interested in the algebra of homogeneous poly-
nomials in C[V ∗ ⊗ V ∗ ⊗ W ] that are invariant under the previously defined group
action by Aut(V ) × Aut(W ). But the homogeneous polynomials of degree r can be
identified to elements in the symmetric space (V ∗ ⊗ V ∗ ⊗ W )�r. We thus want to
find the invariant lines in the dual space and hence the invariant one-dimensional
subspaces of (V ⊗ V ⊗W ∗)�r. So far all we have are the invariant one dimensional
subspaces of (V ⊗ V ⊗W ∗)⊗r.

Denote the vector space spanned by the invariant one-dimensional subspaces in
(V ⊗ V ⊗W ∗)�r by

(V ⊗ V ⊗W ∗)�r

inv.

There is a natural onto map from (V ⊗ V )rinv ⊗W r
inv to (V

∗ ⊗ V ∗ ⊗W )�r

inv. This is
simply the restriction to (V ⊗ V )rinv ⊗W r

inv of the symmetrizing map

S : (V ⊗ V ⊗W ∗)⊗r → (V ⊗ V ⊗W ∗)�r.

We need, though, to check that an element of (V ⊗ V ⊗W ∗)⊗r that generates a one-
dimensional invariant subspace still generates a one-dimensional invariant subspace
after the application of the map S.

The permutation group Sr acts naturally on both (W ∗)⊗r and on (V ⊗V )⊗r. Let
τ ∈ Sr. Then for any η ∈ Sr, it can be directly checked that

τ(wη) = wη·τ−1
,

another element in our list of generators.
Similarly, for any τ ∈ Sr, we will have τ(vσ) be in our list of generators, for any

vσ. Here the notation is a bit cumbersome. Each τ ∈ Sr will induce an element
τ̂ ∈ S2r, where if τ(i) = j, then

τ̂(2i− 1) = 2j − 1
τ̂(2i) = 2j.

Then it can be checked that

τ(vσ) = vσ·τ̂−1 .

Thus τ(vσ) is another invariant.
Then, as is implicit in [5], we have:
Theorem 6.1 (First Fundamental Theorem for Bilinear Forms). The vector

space (V ⊗ V ⊗ W ∗)�r has an invariant one-dimensional subspace if and only if n
divides 2r and k divides r. Every invariant one-dimensional subspace is a linear com-
bination of various S(vσ⊗wη), where σ and η range through S2r and Sr, respectively.
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We are interested in the relations among the various S(vσ ⊗wη). Since (V ⊗V ⊗
W ∗)�r is contained in (V ⊗ V ⊗W ∗)⊗r, any relation in (V ⊗ V ⊗W ∗)�r must be in
the relations for (V ⊗ V ⊗W ∗)�r.

Hence we just need to map all of our previous relations to (V ⊗ V ⊗W ∗)�r via
S. If there is a relation of invariants in (V ⊗ V ⊗W ∗)�r, we have already captured
it.

Thus we have
Theorem 6.2 (Second Fundamental Theorem for Bilinear Forms). All nontrivial

relations among the nonzero elements S(vσ ⊗ wη), where σ and η range through S2r

and Sr, respectively, are linear combinations of all

S(vσ ⊗
∑

ηj∈B(η,{i1,...,ik+1})
(−1)jwηj )

and

S(
∑

σj∈A(σ,{i1,...,in+1})
(−1)j+1vσj ⊗ wη).

We had to use the term “nonzero” in the above theorem. Some of our invariants
in (V ⊗ V ⊗ W ∗)⊗r will be mapped to zero under S. None of the above describes
the kernel of S. As we will see in the next section, this does happen. In fact, if we
consider the example of symmetrizing map S : (W ∗)⊗r → (W ∗)�r, then it is not at
all obvious that every vσ ⊗ wη is not sent to zero, since

S(wη) = 0

for all η ∈ Sr, which can be directly checked. (This just reflects that the geometric
fact that there are no invariants for a singe vector in a vector space under the group
action of the automorphisms of the vector space, since any vector can be sent to
any other vector.) Again, we will see an example in the next section that there are
nontrivial relations.

Thus we have an algorithm for finding the invariants and for finding the relations.
For each r, we just map all of our generators in (V ⊗ V ⊗W ∗)⊗r to (V ⊗ V ⊗W ∗)�r

by S, disposing of those that map to zero. All the remaining relations will be already
be accounted for by applying S to the previous relations.

7. An Example. We now translate the above relations into the language of
invariant polynomials of bilinear forms, for the particular case of an element in (V ⊗
V ⊗W ∗)⊗4. Let

B =
((

b111 b112
b121 b122

)
,

(
b211 b212
b221 b222

))

be a bilinear form from V × V to W . As a tensor in V ∗ ⊗ V ∗ ⊗W , this bilinear form
becomes the tensor:

b = bk
ije

i ⊗ ej ⊗ fk

= b111e
1 ⊗ e1 ⊗ f1 + b112e

1 ⊗ e2 ⊗ f1 + b121e
2 ⊗ e1 ⊗ f1 + b122e

2 ⊗ e2 ⊗ f1

+b211e
1 ⊗ e1 ⊗ f2 + b212e

1 ⊗ e2 ⊗ f2 + b221e
2 ⊗ e1 ⊗ f2 + b122e

2 ⊗ e2 ⊗ f2.
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To see what the invariants v(23)(67) ⊗ w(1), v(23)(67) ⊗ w(23) and v(23)(67) ⊗ w(132) are
in terms of the variables bk

ij , we have each act on the tensor b⊗ b⊗ b⊗ b. Then, after
a painful calculation, we get that

v(23)(67) ⊗ w(1)(b ⊗ b⊗ b⊗ b) = 0

v(23)(67) ⊗ w(23)(b ⊗ b⊗ b⊗ b) = 4b111b
1
22b

2
11b

2
22 + 4b112b

1
22b

2
11b

2
21

−8b112b121b211b222 − 8b111b
1
22b

2
12b

2
21

+4b111b
1
21b

2
12b

2
22 + 4b121b

1
22b

2
11b

2
12

−2b122b122b211b211 − 2b111b
1
11b

2
22b

2
22

+4b112b
1
21b

2
12b

2
21 − 2b121b

1
21b

2
12b

2
12

−2b112b112b221b221 + 4b111b
1
12b

2
21b

2
22

v(23)(67) ⊗ w(132)(b ⊗ b⊗ b⊗ b) = 4b111b
1
22b

2
11b

2
22 + 4b112b

1
22b

2
11b

2
21

−8b112b121b211b222 − 8b111b
1
22b

2
12b

2
21

+4b111b
1
21b

2
12b

2
22 + 4b121b

1
22b

2
11b

2
12

−2b122b122b211b211 − 2b111b
1
11b

2
22b

2
22

+4b112b
1
21b

2
12b

2
21 − 2b121b

1
21b

2
12b

2
12

−2b112b112b221b221 + 4b111b
1
12b

2
21b

2
22

Since v(23)(67) ⊗ w(23)(b ⊗ b ⊗ b ⊗ b) = v(23)(67) ⊗ w(132)(b ⊗ b ⊗ b ⊗ b) and since
v(23)(67) ⊗w(1)(b⊗ b⊗ b⊗ b) = 0, we see that our relations from the tensor language
do translate to relations on the invariant polynomials in the bk

ij terms.
Also, note that this means that

S(v(23)(67) ⊗ w(1)) = 0

and hence v(23)(67) ⊗ w(1) is in the kernel of the symmetrizing map S : (V ⊗ V ⊗
W ∗)⊗r → (V ⊗ V ⊗W ∗)�r.

Of course, it is difficult to see what these invariants and relations actually measure.
There must be geometry behind these formulas, though it is almost always hidden.
There are times that we can understand some of the information contained in the
formulas. As an example, we will now see why we chose r = 4 for our example. We
will see that for when the rank of V and W are both two, this is the first time we
would expect any interesting invariants for bilinear forms. Consider the relation

v(1) − v(23) + v(132) = 0

for V ∗ ⊗ V ∗. (This is the V -analogue of our earlier w1 − w(23) + w(132) = 0.) Next
we construct an invariant of (W )0 by letting k = 2, r = 2, and η = id. This gives us
the invariant wη = f1 ⊗ f2 − f2 ⊗ f1. Then a relation is

(v(1) − v(23) + v(132))⊗ wη = 0.
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But this relation is not at all interesting when made into a statement about polynomi-
als on the entries of a bilinear form, since each invariant becomes the zero polynomial:

(v(1) ⊗ wη)(b⊗ b) = 0
(v(23) ⊗ wη)(b⊗ b) = 0
(v(132) ⊗ wη)(b⊗ b) = 0,

following from a direct calculation.
When n = k = 2, the first time that interesting invariants can occur is indeed

when r = 4 (which is why our example has r = 4), as we will now see. Start with our
bilinear form

B = (B1, B2) =
((

b111 b112
b121 b122

)
,

(
b211 b212
b221 b222

))

and consider the polynomial

P (x, y) = det(xB1 + yB2)

= det
(

xb111 + yb211 xb112 + yb212
xb121 + yb221 xb122 + yb222

)

= (b111b
1
22 − b112b

1
21)x

2 + (b111b
2
22 + b122b

2
11 − b112b

2
21 − b121b

2
12)xy

+(b211b
2
22 − b212b

2
21)y

2,

a polynomial that Mizner [8] used in the study of codimension two CR structures and
which was mentioned earlier, independently, by Griffiths and Harris in the study of
codimension two subvarieties of complex projective space [6]. Note that P (x, y) is
homogeneous of degree two in the variables x and y. Let A ∈ GL(n,C) act on our
bilinear form B. Thus we have B becoming (ATB1A,ATB2A). Then the polynomial
P (x, y) transforms as follows:

det(xATB1A+ yATB2A) = | det(A)|2 det(xB1 + yB2) = | det(A)|2P (x, y).
By looking at this polynomial, we have effectively eliminated the influence of the
GL(n,C) action. In other words, one method for generating invariants of the bilinear
form B under the action of GL(n,C)×GL(k,C) is to find invariants of the polynomial
P (x, y) under the action of GL(k,C). The action of GL(k,C) is just the standard
change of basis on the variables x and y. For degree two homogeneous polynomials
in two variables, it is well know that the only invariant is the discriminant. (See
Chapter One of [11]; recall, for the polynomial Ax2+Bxy+Cy2, that the discriminant
is B2 − 4AC.) Thus for our bilinear form B, the invariant corresponding to the
discriminant of the polynomial det(xB1 + yB2) will be

(b111b
2
22 + b122b

2
11 − b112b

2
21 − b121b

2
12)

2 − 4(b111b
1
22 − b112b

1
21)(b

2
11b

2
22 − b212b

2
21),

which can be checked is

(−1/2)v(23)(67) ⊗ w(23).

Again, we have added this last part only to emphasis that there is geometry and
meaning (though largely unexplored) behind the mechanical, almost crude, invariants
that this paper generates.
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8. Conclusions. There are many questions remaining. One difficulty is in de-
termining what a particular invariant or relation means. This paper and [5] just give
lists, with no clue as to which have any type of important meaning, save for the in-
variants associated to the Mizner polynomial. (Of course, this is one of the difficulties
in almost all of classical invariant theory). Even harder is to determine when two
vector-valued forms are equivalent. It is highly unlikely that the algebraic techniques
in this paper will answer this question.
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