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MATRIX RANK CERTIFICATION∗
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Abstract. Randomized algorithms are given for computing the rank of a matrix over a field
of characteristic zero with conjugation operator. The matrix is treated as a black box. Only the
capability to compute matrix×column-vector and row-vector×matrix products is used. The methods
are exact, sometimes called seminumeric. They are appropriate for example for matrices with integer
or rational entries. The rank algorithms are probabilistic of the Las Vegas type; the correctness of
the result is guaranteed.
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1. Introduction. The rank of a matrix A over a field F can be computed using
an elimination method. However, this may be excessively costly in time and/or space.
Iterative “black box” methods, also called “matrix-free” methods, are an alternative
to using elimination.

Several randomized black box algorithms of the Monte Carlo kind—probably
correct (not certified) and always fast—for computing the rank have been devel-
oped [6, 11, 16]. For A an n × n matrix of rank r they require O(r) matrix-vector
and vector-matrix products involving A and O(nr) additional operations over F [6,
Theorem 6.2]. Note that the cost of a matrix-vector product may be much less than
n2 field operations for a sparse or structured matrix. Also, the black box methods re-
quire space for only O(n) additional field elements beyond the matrix storage, whereas
elimination usually requires O(n2). This improvement in space complexity is an im-
portant consideration for large sparse matrices in practice. The Monte Carlo black
box methods depend on random preconditioners and random vectors. In the likely
event that these random choices produce preconditioners and projection vectors with
the desired properties, the rank is correctly computed. However, it was not known
how to incorporate detection of wrong answers into the black box approach.

The methods presented here can be used to remove the possibility of an erro-
roneous result in the case when F is a field of characteristic zero with conjugation
operator, which we assume throughout the rest of the paper. For instance, F is an
ordered field or a subfield of the complex numbers.

We give two randomized black box algorithms of the Las Vegas kind where the
answer is always correct and computed quickly with controllably high probability.
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These algorithms essentially provide output certificates for the approaches in [6, 11].
They require the computation of the trace of ADA∗ or (ADA∗)2 whereD is a diagonal
matrix and A∗ the Hermitian transpose of A. For instance, when A ∈ Fn×m is a
black box the trace computation costs n or 2n multiplications of A by a vector, the
same number of multiplications of A∗ by a vector, plus O(nm) field operations. In
addition to the trace computation, the algorithms use an expected number of O(r)
multiplications of A by a vector, the same number of multiplications of A∗ by a vector
and, respectively, O((m+n)r) and O((m+n log r)r) additional operations in F . The
first algorithm, presented in Section 2, is based on minimal polynomial computation
using Wiedemann’s algorithm [16]. The second algorithm, presented in Section 3,
gives a rank certificate based on the Lanczos approach. We apply these algorithms
to derive new bit-complexity estimates for computing the rank of integer matrices in
Section 4 and give concluding remarks in Section 5.

2. Rank Certificate using Trace. The problem is to compute the rank of
a given matrix A ∈ Fn×m. We will reduce this problem to that of computing the
minimal polynomial of a square matrix B ∈ Fn×n that has the same rank as A and
possesses in addition the following properties:

a B is diagonalizable, that is, the Jordan form of B can be written as
diag(λ1, . . . , λr, 0, . . . , 0), where r is the rank of B, and the λ∗ are the nonzero
eigenvalues of B in the appropriate extension field.

b B is positive semi-definite, that is, λi > 0, 1 ≤ i ≤ r.
The matrix B will be constructed from A as in the following fact and proposition.
We use A∗ to mean the Hermitian transpose of A, the transpose of A with entries
conjugated.

Fact 1. Let A ∈ Fn×m be given. Let D be an m×m diagonal matrix with positive
real entries from F , so that D can be expressed as EE∗ for a diagonal matrix E in
the algebraic closure of F . Then B = ADA∗ has the same rank as A and possesses
properties a and b.

Similar preconditioned forms such as DAA∗D or DAA∗ are discussed in [4, 15].
The form ADA∗ has the additional property that, when applied over a field of positive
characteristic, the rank is likely preserved [13] (with some exceptions [6]).

Proposition 1. Let B be as in Fact 1. Let the diagonal entries in D be chosen
uniformly and randomly from a subset of F \ {0} with cardinality s. With probability
at least 1− n(n− 1)/(2s) the minimal polynomial of B is x

∏r
i=1(x − λi) when B is

singular (r < n) and
∏n

i=1(x− λi) otherwise (r = n).
Proof. We use the techniques of [4, Section 4]. We first show that with D =

diag(y1, . . . , ym) a diagonal matrix whose diagonal entries are indeterminates, the
characteristic polynomial c(x) = xn + c1x

n−1 + . . .+ cn−1x+ cn of B = ADA∗ has no
repeated factor other than x. Each coefficient ci is a sum of i×iminors of B or is zero.
Since an i× i minor of B is a linear combination over F of i× i minors of D, each ci

is either homogeneous of degree i in y1, . . . , ym or is zero. Hence c(x) is homogeneous
of degree n in y1, . . . ym and x. In addition, c(x) is at most linear in each yj since
each i × i minor of D is. Now, if c(x) has a repeated factor c̄(x) so that c̄2(x) is a
factor of c(x), then no indeterminate yj can occur in c̄(x) since otherwise c̄2(x) and
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c(x) would not be linear in yj. Thus the repeated factor c̄(x) is a polynomial in F [x],
is homogeneous since any factor of c(x) is and must be a monomial in x.

Together with property a, the fact that the nonzero eigenvalues of B = ADA∗ are
distinct gives that the minimal polynomial of B has degree ρ = r + 1 if B is singular
and ρ = r = n otherwise. Let u be a vector in Fn such that u,Bu,B2u, . . . ,Bρ−1u are
linearly independent. There is a ρ×ρ submatrix of the matrix with these vectors as its
columns whose determinant is a nonzero polynomial of total degree ρ(ρ−1)/2 ≤ n(n−
1)/2 in the indeterminates y1, . . . , ym. By the Schwartz-Zippel Lemma [5, 14, 17] if
we evaluate this polynomial, each variable y1, . . . , ym chosen uniformly and randomly
from a subset of F of size s, then the probability that the result is nonzero is at
least 1 − n(n − 1)/(2s). Hence the minimal polynomial of B also has degree ρ with
probability at least 1 − n(n − 1)/(2s). Since B is diagonalizable (property a) the
assertion of the proposition follows.

Proposition 1 gives that the minimal polynomial of B is xh(x) or h(x) where
h(x) =

∏r
i=1(x−λi), λi 
= 0, with high probability if the cardinality s is large enough.

In this case the rank of B and hence of A can be recovered as deg h(x).
The minimal polynomial of B can be computed in an output sensitive fashion

(with respect to r) by adapting Wiedemann’s approach [16]. Choose a random vector
u ∈ Fn×1 and, for increasing i, iteratively apply the Berlekamp–Massey algorithm
to the scalar sequence prefix u∗u, u∗Bu, u∗B2u, . . . , u∗B2iu. Stop for the first i such
that this sequence prefix has an annihilator of degree i. Because we are assuming F
has characteristic zero, this annihilator will be the minimal polynomial of the vector
sequence u,Bu,B2u, . . ., and thus be a factor of the minimal polynomial of B. In
particular, the matrix Ku = [u,Bu,B2u . . . , Bi−1u] is rank deficient if and only if the
Hankel matrix Hu = K∗

uKu is singular.
Lemma 2.1. [16] Let B ∈ Fn×n be as in Fact 1. There exists a Monte Carlo

probabilistic algorithm that recovers the minimal polynomial of B using O(r) matrix-
vector products involving B plus additional O(nr) field operations, r the rank of B.
The output will always be a monic factor of the minimal polynomial of B.

Suppose B possesses property a with nonzero eigenvalues λ1, . . . , λr. Then r
is the rank of B. Let g(x) = xq + g1x

q−1 + · · · + gq (gq 
= 0) be such that the
minimal polynomial of B is equal to g(x) or xg(x). Let f(x) = xp + f1x

p−1 + · · ·+ fp

(fp 
= 0) be a monic factor of g(x). Thus f(x)|g(x)|h(x) where h(x) =
∏r

i=1(x−λi) =
xr + h1x

r−1+ (lower order terms). Then p ≤ q ≤ r and, up to reordering of the λi,
we have f1 = −(λ1 + · · · + λp), g1 = −(λ1 + · · · + λq) and h1 = −(λ1 + · · · + λr).
Now suppose that B possesses also property b. Then f1 = g1 if and only if p = q.
Similarly, g1 = h1 if and only if q = r. Using the fact that λ1 + · · · + λr = trace(B)
we get the following result:

Lemma 2.2. Let B possess property a and b. Let f(x) = xp + f1x
p−1 + . . .+ fp

(fp 
= 0) be a monic factor of the minimal polynomial of B. Then −f1 = trace(B) if
and only if p is the rank of B.

We can now give our first algorithm for rank.
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Algorithm Rank-certificate-using-trace

Input: A ∈ Fn×m.
Output: rank A or “failed”.

1. Choose D to be an m×m diagonal matrix with entries chosen
uniformly and randomly from a subset of F with cardinality 2n2.
Let B := ADA∗.

2. Compute a monic factor of the minimal polynomial of B which is, with
probability at least 3/4, the minimal polynomial.

3. Express the factor as f(x) or xf(x) where
f(x) = xp + f1x

p−1 + · · ·+ fp with fp 
= 0.
4. If −f1 = trace(B) return p otherwise return “failed” (or start over).

Repetition of algorithm Rank-certificate-using-trace is required with probability
less than n(n−1)/(4n2)+1/4 < 1/2. Note also that a matrix-vector product involving
B requires one product of A by a vector, one product of A∗ by a vector and O(m)
additional field operations. We get the following result as a corollary to all of the
above.

Proposition 2. Let A ∈ Fn×m be of rank r. The Las Vegas algorithm Rank-
certificate-using-trace works as announced using the trace of ADA∗, O(r) further
multiplications of A by a vector, the same number of multiplications of A∗ by a vector,
and O((n +m)r) additional field operations.

For instance, in the black box case the trace of B may be computed from the
diagonal entries of A · (DA∗) in n multiplications of A and of A∗ by vectors plus
O(nm) operations.

3. Rank Certificate using Orthogonalization. Our second rank certificate,
à la Lanczos, is based on vector norms. It can be used for instance in combination
with Monte Carlo black box algorithms for the rank such as the one based on the
Lanczos approach in [6]. We assume that A ∈ Fn×m has presumed rank r. We will
use the same preconditioning as in Section 2 and thus consider B = ADA∗ ∈ Fn×n for
a random diagonal matrix D. Given a basis u1, . . . , ur of the (presumed) range space
V ⊆ Fn of B, to certify that the rank of B is r can be done by showing that all the
column vectors b1, . . . , bn of B are in V . For F a field as specified, we may equivalently
show that the projections b̄i = bi −

∑r
j=1 γi,juj (for appropriate coefficients γi,j in

F ) of the bi’s onto V⊥ are zero. This also turns out to be equivalent to certify that
τi = 〈bi, b̄i〉 = 0, 1 ≤ i ≤ n, or

n∑

i=1

τi =
n∑

i=1

〈bi, b̄i〉 = 0(3.1)

since the dot products must be nonnegative.
For computing the b̄i’s and the τi’s we introduce Ku, an n × r matrix whose

columns form a Krylov basis of the (presumed) range space of B. Such a matrix can
be computed from a random vector v ∈ Fn and u = Bv which is therefore a random
vector in the range space of B. If r is the actual rank of A then Proposition 1 gives
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that with high probability the minimal polynomial of B has degree r (when A has
full row rank) or r + 1. Hence we know from [16, section vi] (see also Lemma 2.1)
or from [10, section 2] that with high probability Ku = [u,Bu,B2u . . . , Br−1u] has
rank r. The matrix Hu = K∗

uKu which is a square Hankel matrix of dimension r is
thus invertible with high probability. The bi’s are projected onto V⊥ using the matrix
P ∈ F r×n such that:

HuP = K∗
uKuP = K∗

uB(3.2)

or equivalently, such that K∗
u(B−KuP ) = 0. Taking V equal to the range space of Ku

the columns of B −KuP are the b̄i’s, and we see that the test dot products of (3.1)
are the diagonal entries of

B(B −KuP ).(3.3)

The rank certification thus amounts to the following. Identity (3.2) gives that the
matrix P can be computed as H−1

u (K∗
uB). The construction of the Krylov matrix

Ku and of K∗
uB require O(r) products of B by vectors. The matrix Hu is computed

in O(nr) and since it is a Hankel matrix one may check its invertibility in O(r log2 r)
and compute the product H−1

u (K∗
uB) in O(rn log r) operations in F [3, 2] (see also [1,

sections 2.5-2.7]). The computation of the diagonal entries of (3.3) then needs the
trace of B2, O(r) products of B by vectors to get the matrix BKu and O(nr) opera-
tions to get the diagonal entries of BKuP .

Algorithm Rank-certificate-using-orthogonalizations

Input: A ∈ Fn×m; r, the presumed rank of A.
Output: rank A or “failed”.

1. Let B := ADA∗. * Random preconditioning *
2. Choose a random vector v. Let u := Bv.
3. Apply B iteratively to compute Ku and K ′

u = BKu.
4. If detHu = detK∗

uKu = 0 then return “failed” (or start over).
Otherwise use a Hankel solver for P := H−1

u (K ′
u)

∗.
5. Apply B to compute B2

i,i, 1 ≤ i ≤ n.
6. Let τi = B2

i,i − 〈(K ′
u)i,·, P·,i〉, 1 ≤ i ≤ n.

7. If
∑n

i=1 τi = 0 then return r otherwise return “failed” (or start over).

As in Section 2 we can fix the random choice of D and v in order to achieve a
probability of repetition of the algorithm smaller than 1/2. Hence if r is the actual
rank of A, the algorithm will certify the value with a probability at least 1/2. If the
input r is not the rank then the algorithm will always fail. Indeed, if r is too small
then some column of B, say the j-th one, will not belong to the range space of Ku

and will lead to τj 
= 0. If r is larger than the rank then Hu will be singular. Note
that when r linearly independent columns of B are known in advance only n− r dot
products (for the remaining columns) need to be tested.

Proposition 3. Let A ∈ Fn×m. The Las Vegas algorithm Rank-certificate-
using-orthogonalizations works as announced using the trace of (ADA∗)2, O(r) fur-
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ther multiplications of A by a vector, the same number of multiplications of A∗ by a
vector and O((m + n log r)r) additional field operations.

In the black box case the trace is computed using 2n multiplications of A and of
A∗ by vectors plus O(nm) operations in F .

The term O(nr log r) in the cost of this second certificate differs by a logarithmic
factor from the corresponding term O(nr) in Section 2. Despite its larger asymptotical
cost for larger r, we have presented this second rank certificate for possible insights in
finding a certificate over any field. Also, although we have in mind exact (symbolic)
computation here, its potentially greater stability properties may be relevant in some
contexts. We may also notice that the two certificates are closely related to each
other: the test trace(B) + f1 = 0 may be compared to the test

∑n
i=1 τi = 0.

4. Integer matrix rank. The rank of an integer matrix A ∈ Zn×m can be
computed with high probability as the rank of A modulo a randomly chosen prime
number p. If p is chosen in a sufficiently large set with respect to n and to the infinity
norm ‖A‖ of A, this leads to a Monte Carlo algorithm for computing the rank of A
using O(n3 log log ‖A‖+n2 log ‖A‖) bit operations. That cost is without utilizing sub-
cubic matrix multiplication algorithms and with p chosen in a set of primes having
O(log n + log log ‖A‖) bits (see, e.g., [7, Section 3.2] for this latter choice). However
this approach may produce wrong answers.

If the rank is to be certified, the lengths of the integers involved in the computation
further affect the running time of the algorithms and an extra factor O(n) occurs in
the complexity estimates.

Algorithm Rank-certificate-using-trace can be adapted to the case of a dense integer
matrix A ∈ Zn×m and improve the complexity exponent for certifying the rank. Con-
struct B = ADAT ∈ Zn×n as in Fact 1 and Proposition 1. The baby-step/giant-step
approach of Kaltofen [9, 12] can be used to construct a monic factor of the minimal
polynomial of B (which will with high probability be the minimal polynomial of B)
using an expected number of O(n3.5 log2 ||A||) bit operations. Our rank certificate can
also be applied for certifying the rank of sparse or structured integer matrices using
the black box approach. Indeed the techniques we have presented can be combined
with Chinese remaindering (following [7, Corollary3.10] for instance). In both the
dense and the black box case, one needs to certify the fact that the computed monic
polynomial is a factor of the minimal polynomial over Z, this can be accomplished
using the techniques of [8, Lemma 2.4].

5. Conclusions. We have provided two algorithms of Las Vegas type for exact
computation of the rank of a matrix over a field of characteristic zero.

We note that in the black box model the certificates both add O(n) matrix-
vector products to the O(r) products needed for the rank itself. This extra cost
for smaller r is for computing the trace of the conditioned matrix. Under the same
asumptions it would be interesting to know whether the rank can be certified in only
O(r) applications of the black box.

For a number of applications it would be desirable to efficiently certify the rank
of a matrix over a field with positive characteristic, in particular over a finite field.
Our methods do not work in this setting, the essential problem being the existence of
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self-orthogonal vectors. However, the probability estimates for the Monte Carlo rank
algorithms typically require random choice from a set whose size is a small multiple
n2. When n > 216 or n > 232, for example, this can force modular methods to
choose large finite fields requiring multiple computer words to store each individual
field element and requiring relatively expensive arithmetic costs. In practice, the rank
is correctly found, even when the random values are from a much smaller set, say of
size O(n). The algorithms of this paper can be used over finite fields as heuristics
to strengthen confidence in the result. For instance, naively, one would suppose that
if the trace corresponds to the first coefficient of the purported minimal polynomial
of a preconditioned matrix, it is a strong indicator that the polynomial is in fact the
minimal polynomial. Still we have no argument to quantify the probability here.

In addition to this use as a heuristic, it may be hoped that one or the other of
the two presented algorithms will provide insight useful for solving the open problem
for any field.
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