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AN ALGORITHM THAT CARRIES A SQUARE MATRIX INTO ITS
TRANSPOSE BY AN INVOLUTORY CONGRUENCE

TRANSFORMATION∗

D.Ž. D– OKOVIĆ† , F. SZECHTMAN‡ , AND K. ZHAO§

Abstract. For any matrix X let X′ denote its transpose. It is known that if A is an n-by-n
matrix over a field F , then A and A′ are congruent over F , i.e., XAX′ = A′ for some X ∈ GLn(F ).
Moreover, X can be chosen so that X2 = In, where In is the identity matrix. An algorithm is
constructed to compute such an X for a given matrix A. Consequently, a new and completely
elementary proof of that result is obtained.

As a by-product another interesting result is also established. Let G be a semisimple complex
Lie group with Lie algebra g. Let g = g0 ⊕ g1 be a Z2-gradation such that g1 contains a Cartan
subalgebra of g. Then L.V. Antonyan has shown that every G-orbit in g meets g1. It is shown
that, in the case of the symplectic group, this assertion remains valid over an arbitrary field F of
characteristic different from 2. An analog of that result is proved when the characteristic is 2.
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1. Introduction. Let F be a field and Mn(F ) the algebra of n-by-n matrices
over F . For X ∈Mn(F ), let X ′ denote the transpose of X . In a recent paper [5], the
following theorem is proved.

Theorem 1.1. If A ∈Mn(F ), then there exists X ∈ GLn(F ) such that

(1.1) XAX ′ = A′.

Subsequently, the first author of that paper was informed that this result was not
new. Indeed, R. Gow [7] proved in 1979 the following result.

Theorem 1.2. If A ∈ GLn(F ), then there exists X ∈ GLn(F ) such that XAX ′ =
A′ and X2 = In.

The latter theorem is much stronger than the former except that A is required
to be nonsingular. This restriction was removed in [3], yielding

Theorem 1.3. If A ∈Mn(F ), then there exists X ∈ GLn(F ) such that

(1.2) XAX ′ = A′, X2 = In.
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We point out that the proof of Theorem 1.1 in [5] and that of Theorem 1.2 in [7]
are based on the previous work of C. Riehm [9]. In section 3 we shall indicate how
Theorem 1.3 can be derived from Theorem 1.2 by means of a result of P. Gabriel [6]
(as restated by W.C. Waterhouse in [11]).

In a certain sense, Theorem 1.1 is quite surprising (and so is Theorem 1.3).
Indeed the matrix equation (1.1) is equivalent to a system of n2 quadratic equations
in n2 variables xij , the entries of the matrix X = [xij ]. There is no apparent reason
why this system of quadratic equations should have a nonsingular rational solution,
i.e., a solution X ∈ GLn(F ). (Note that if A is nonsingular then (1.1) implies that
det(X) = ±1.)

Let us illustrate this point with an example. Say, n = 3 and the given matrix is

A =


 a 1 0
0 0 1
0 0 0


 , a �= 0.

Writing the unknown matrix X as

X =


 x y z
u v w
p q r


 ,

the above mentioned system of quadratic equations is:

ax2 + xy + yz = a, axu + xv + yw = 0,
axp+ xq + yr = 0, axu + yu+ zv = 1,
au2 + uv + vw = 0, aup+ uq + vr = 0,
axp+ yp+ zq = 0, aup+ vp+ wq = 1,
ap2 + pq + qr = 0.

It is not obvious that this system has a nonsingular rational solution. Nevertheless
such a solution exists, for instance the matrix

X =


 2 −a 1
2a−1 −1 2a−1

−1 a 0




with determinant −1. In fact, we have X2 = I3.
The proofs of the first two theorems above are rather complicated and they neither

explain why a nonsingular rational solution exists nor do they provide a simple method
for finding such a solution. The main objective of this paper is to construct an
algorithm for solving this problem, i.e., to prove the following theorem.

Theorem 1.4. For any field F , there exists an algorithm which solves the system
(1.2). More precisely, the input of the algorithm is a positive integer n and an arbitrary
matrix A ∈ Mn(F ), and the output is a matrix X ∈ GLn(F ) which is a solution of
the system (1.2).
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The proof is given in section 4. We point out that we do not assume that there is
an algorithm for factoring polynomials in F [t] into product of irreducible polynomials.
The GCD-algorithm is sufficient. Our algorithm is applicable to arbitrary F and n
and so we obtain a new proof of Theorem 1.3. This proof is completely elementary in
the sense that it is independent from the work of Riehm and Gabriel and it uses only
the standard tools of Linear Algebra and some elementary facts about the symplectic
group.

We shall see that Theorem 1.3 is closely related to (the rational version of) a
special case of a theorem of L.V. Antonyan on Z2-graded complex semisimple Lie al-
gebras, which may seem surprising. Let us first state Antonyan’s theorem [2, Theorem
2]:

Theorem 1.5. Let g = g0 ⊕ g1 be a Z2-graded complex semisimple Lie algebra
and G a connected complex Lie group with Lie algebra g. Then the following are
equivalent:

(i) g1 contains a Cartan subalgebra of g.
(ii) Every G-orbit in g (under the adjoint action) meets g1.
As a motivation for his theorem, Antonyan mentions the following well known

fact: Every complex (square) matrix is similar to a symmetric one. On the other
hand, the corresponding statement is utterly false for real matrices. We shall be
concerned with another special case of Antonyan’s theorem, namely the one dealing
with the symplectic group. As we shall prove, in this case the rational version of his
result is valid.

A matrix A = [aij ] ∈Mn(F ) is said to be an alternate matrix if A′ = −A and all
diagonal entries aii are 0. Of course, the latter condition follows from the former if
the characteristic of F is not two.

In the concrete matrix style, let us define the symplectic group Spn(F ), n = 2m
even, over any field F by:

(1.3) Spn(F ) = {X ∈ GLn(F ) : X ′JX = J},

where J ∈ Mn(F ) is a fixed nonsingular alternate matrix. Recall that Spn(F ) acts
on its Lie algebra

spn(F ) = {Z ∈Mn(F ) : Z ′J + JZ = 0}

via the adjoint action (X,Z) → XZX−1. It also acts on the space Symn(F ) of
symmetric matrices S ∈ Mn(F ) via the congruence action (X,S) → XSX ′. These
two modules are isomorphic. An explicit isomorphism is given by S → Z = −J−1S.

In order to state our result it is convenient to fix

(1.4) J =
[

0 Im
−Im 0

]
.

Then we shall prove the following result.
Theorem 1.6. Let F be any field and let n = 2m be even.
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(i) If the characteristic is not 2 and A ∈ Symn(F ), then there exists X ∈ Spn(F )
such that

(1.5) XAX ′ =
[
B 0
0 C

]
,

where B,C ∈ Symm(F ).
(ii) If the characteristic is 2 and A ∈ Mn(F ) satisfies A + A′ = J , then there

exists X ∈ Spn(F ) such that

(1.6) XAX ′ =
[
B Im
0 C

]
,

where B is invertible and B,C ∈ Symm(F ).
When F = C, the assertion (i) is a special case of Theorem 1.5. We leave to the

reader the task of reformulating part (i) of our result in terms of the adjoint action of
Spn(F ). One should point out that for special fields there exist more precise results.
For instance, if F = C or F = R, then the canonical forms (under simultaneous
congruence) are known for pairs consisting of a symmetric and a skew-symmetric
matrix. We refer the reader to the important survey paper of R.C. Thompson [10]
and the extensive bibliography cited there.

In the last section we state two open problems concerning the congruence action
of SLn(F ) on Mn(F ).

2. Preliminaries. As usual, we set F ∗ = F \ {0}. We denote by In the identity
matrix of order n. As in Linear Algebra, we say that E ∈ GLn(F ) is an elementary
matrix if it is obtained from In by one of the following operations:

(i) Multiply a row by a nonzero scalar different from 1.
(ii) Add a nonzero scalar multiple of a row to another row.
(iii) Interchange two rows.

If E is an elementary matrix, then A→ EA is an elementary row transformation and
A → AE′ is an elementary column transformation. We shall refer to A → EAE′ as
an elementary congruence transformation or ECT for short.

For later use, we state the following trivial lemma concerning an arbitrary matrix
A ∈Mn(F ).

Lemma 2.1. Let A ∈ Mn(F ). If B = PAP ′ with P ∈ GLn(F ) and Y BY ′ = B′

for some Y ∈ GLn(F ), then X = P−1Y P is a solution of (1.1). Moreover, if Y 2 = In
then also X2 = In.

This lemma shows that, when considering the problem of finding rational non-
singular solutions of equation (1.1) or the system (1.2), we may without any loss of
generality replace the matrix A with any matrix B = PAP ′, where P ∈ GLn(F ).

Let V be a vector space over F and assume that V is equipped with a nondegen-
erate alternate bilinear form f . The group of all u ∈ GL(V ) such that f(u(x), u(y)) =
f(x, y) for all x, y ∈ V is the symplectic group of (V, f) and will be denoted by Sp(V, f)
or Spn(F ) if dim(V ) = n and V and f are fixed. Note that n must be even. In this
paper, f will be given usually by its matrix. If f(v, w) = 1, then we say that (v, w)
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is a symplectic pair. We shall need the following well known fact about symplectic
groups.

Proposition 2.2. The symplectic group Sp(V, f) is transitive on the set of
nonzero vectors of V . More generally, it is transitive on sequences

(v1, w1, v2, w2, . . . , vk, wk)

of orthogonal symplectic pairs (vi, wi).
We denote by Jm the direct sum of m blocks

(2.1)
[
0 1
−1 0

]

and by Nr the nilpotent lower triangular Jordan block of size r.
For the sake of convenience, we shall say that a matrix A ∈ Mn(F ) splits if we

can construct P ∈ GLn(F ) such that PAP ′ is a direct sum of two square matrices of
size < n.

In the proof of the main result we shall use the square-free factorization algorithm
for the polynomial ring F [t]. A nonzero polynomial is square-free if it is not divisible
by the square of any irreducible polynomial. Let p ∈ F [t] be a monic polynomial. By
using the GCD-algorithm, one can find the factorization p = p1p2 · · · pk, where pi’s are
monic square-free polynomials of positive degree and such that pi|pi−1 for 1 < i ≤ k.
Such an algorithm is described in [4, Appendix 3]. We say that p = p1p2 · · · pk is
the square-free factorization of p and that p1 is the square-free part of p. We wish
to remind the reader that we do not assume the existence of a prime factorization
algorithm in F [t], and this is the main reason for using the square-free factorization.

3. Proofs of Theorems 1.3 and 1.6. The first of these theorems is an easy
consequence of the following important proposition, which will be used also later in
the proof of our main result.

Proposition 3.1. Let A ∈ Mn(F ), n ≥ 1, and det(A) = 0. Then there is a
recursive algorithm which constructs P ∈ GLn(F ) such that PAP ′ = Nr⊕B for some
r (1 ≤ r ≤ n) and some B ∈Mn−r(F ).

Proof. Let us write A = [aij ] and let d be the defect of A, i.e., the dimension of
the nullspace of A. By hypothesis, d ≥ 1. Without any loss of generality, we may
assume that the first d rows of A are 0.

Assume that the first d columns of A are linearly dependent. By performing
suitable ECT’s on the first d rows and columns, we may assume that the first column
of A is also 0. Then A = N1 ⊕B with N1 = [0] and we are done.

Otherwise we have n ≥ 2d and by performing suitable ECT’s on the last n − d
rows and columns, we may assume that

A =


 0 0 0
A21 A22 A23

0 ∗ ∗


 ,

where A21 = Id and the diagonal blocks are square. By subtracting suitable linear
combinations of the first d columns from the other columns (using ECT’s), we may
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further simplify A and assume that the blocks A22 and A23 are 0. Thus

A =


 0 0 0
Id 0 0
0 ∗ Z


 .

If n = 2d, then A splits as the direct sum of d copies of N2 and we are done.
We may now assume that n > 2d. Consider first the case where Z is nonsingular.

By subtracting suitable linear combinations of the last n − 2d columns (via ECT’s)
from the previous d columns, we may assume that the starred block is 0. As a side-
effect, the blocks A22 and A23 may be spoiled. These blocks can be again converted
to zero by adding suitable linear combinations of the first d columns. Then A splits
as the direct sum of Z and d copies of N2.

Next we consider the case where Z is singular. Since Z is of size n− 2d < n, we
may apply our recursive algorithm to it and so we may assume that A has the form:

A =



0 0 0 0
Id 0 0 0
0 A32 Ns 0
0 A42 0 A44


 ,

where s ≥ 1. By subtracting suitable linear combinations of the s columns containing
the block Ns from the columns containing A32 (using ECT’s), we may assume that
all the rows of A32 but the first are 0. As a side-effect, the zero blocks in the second
block-row may be spoiled but we can convert them back to 0 as before. Note that
the first row of A32 must be nonzero. By using ECT’s whose matrices have the form
Y ⊕ (Y ′)−1 ⊕ In−2d, we may assume that the first entry of the first row of A32 is 1,
while all other entries are 0.

Assume that n = 2d+ s. If d = 1, then A = Nn and we are done. If d > 1, then
A splits, i.e., by permuting (simultaneously) rows and columns we can transform A
into a direct sum N2 ⊕ B, where N2 comes from the principal submatrix occupying
the positions d and 2d.

From now on we assume that n > 2d+s. Let X be the n−2d−s-by-n−d−s−1
matrix obtained from (A42, A44) by deleting its first column v. We leave to the reader
to check that X has rank n− 2d− s. Hence by adding a suitable linear combination
of the columns of A containing the submatrix X to the d+1-column (via ECT’s), we
may assume that the first column v of A42 is 0. That might affect the blocks in the
second block-row but A21 will remain nonsingular. As before, we can convert to 0 the
blocks of A in the second block-row except A21 itself. Additionally, we may assume
that A21 = Id. It is now easy to see that A splits, i.e., by permuting (simultaneously)
rows and columns we can transform A into a direct sum Ns+2 ⊕ B. (This Jordan
block comes from the principal submatrix occupying the positions 1, d+1, and those
of the block Ns.)

Proof of Theorem 1.3. On the basis of the above proposition, we see that in
order to extend Gow’s theorem to obtain Theorem 1.3, it suffices to observe that, for
each positive integer r, there exists a permutation matrix Pr such that P 2

r = Ir and
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PrNrP
′
r = N

′
r. We can take Pr to be the permutation matrix with 1’s at the positions

(i, r + 1− i) with 1 ≤ i ≤ r. This completes the proof of Theorem 1.3.
Proof of Theorem 1.6. Let F , m,n, and A be as in the statement of the theorem

and let J be as in (1.4).
(i) By hypothesis, the characteristic of F is not 2. By Theorem 1.3, there exists

Y ∈ GLn(F ) such that Y ′(A+ J)Y = A− J and Y 2 = In. Thus we have

(3.1) Y ′JY = −J, Y ′AY = A.

Let V = Fn be the space of column vectors. Denote by E+ (resp. E−) the eigenspace
of Y for the eigenvalue +1 (resp. −1). We note that J2 = −In. Hence, for v, w ∈ E+,

v′Jw = (Y v)′Jw = v′Y ′Jw = −v′JY w = −v′Jw.
As the characteristic of F is not 2, v′Jw = 0. Thus E+ is totally isotropic with
respect to the nondegenerate skew-symmetric bilinear form defined by J . The same
is true for E−. Since V = E+ ⊕ E−, we conclude that each of these eigenspaces has
dimension m. By Proposition 2.2, there exists a T ∈ Spn(F ) which maps E+ (resp.
E−) onto the subspace spanned by the first (resp. last) m standard basis vectors of
V . Equivalently, we have

P := TY T−1 =
[
Im 0
0 −Im

]
.

Then X := (T ′)−1 ∈ Spn(F ) and the second equality in (3.1) gives PXAX
′ =

XAX ′P and, consequently, (1.5) holds. Thus (i) is proved.
(ii) Now suppose the characteristic of F is 2. By Theorem 1.3, there exists

Y ∈ GLn(F ) such that Y ′AY = A′ and Y 2 = In. Thus we have Y ′A′Y = A and
Y ′JY = J . Denote by E the eigenspace of Y for the eigenvalue 1. As Y 2 = In, we
have dim(E) ≥ m. For v, w ∈ E, we have v′Jw = v′(A+A′)w = v′(A+Y ′AY )w = 0.
We conclude that E is totally isotropic with respect to the nondegenerate alternate
bilinear form defined by J . Therefore dim(E) ≤ m. The two inequalities for dim(E)
imply that dim(E) = m.

By Proposition 2.2, there is a T ∈ Spn(F ) which maps E onto the subspace
spanned by the first m standard basis vectors of V . Equivalently, we have

P := TY T−1 =
[
Im S
0 Im

]
,

for some invertible S ∈ Symm(F ). Then Q := (T ′)−1 ∈ Spn(F ) and Y ′AY = A′ gives
P ′QAQ′ = QA′Q′P . As QAQ′ + (QAQ′)′ = J , we can write

QAQ′ =
[
B Im + Z
Z ′ W

]

with B,W ∈ Symm(F ) and deduce that B = S
−1 and SZ ∈ Symm(F ). Consequently,

R =
[
Im 0
Z ′S Im

]
∈ Spn(F ).

Then X = RQ satisfies (1.6) with B = S−1 and C =W+Z ′S+Z ′SZ. This concludes
the proof of Theorem 1.6.
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4. The description of the algorithm. In this section we prove our main
result, Theorem 1.4. Our algorithm operates recursively, i.e., we reduce the problem
for matrices A of size n to the case of matrices of smaller size.

We now begin the description of our algorithm. Let A = [aij ] ∈ Mn(F ) be
given. Throughout this section we shall use the following notation: A0 := A + A′

and A1 := A − A′. The first of these matrices is symmetric and the second one is
alternate. If the characteristic is 2, then A0 = A1. The rank of A1 is even, say 2m.

By Lemma 2.1, we may replace A by any matrix congruent to it. Hence without
any loss of generality we may assume that A1 is normalized, i.e.,

A1 =
[
Jm 0
0 0

]
.

Let G denote the subgroup of GLn(F ) that preserves the matrix A1, i.e.,

G = {X ∈ GLn(F ) : X ′A1X = A1}.

For S ∈ G, we say that A→ SAS′ is a symplectic congruence transformation or SCT.
An ECT can be an SCT only if 2m < n. If it is not an SCT, we can compose it
with another ECT to obtain an SCT. For instance, if m > 0 and we multiply the first
row and column by a nonzero scalar λ �= 1, then we also have to multiply the second
row and column by λ−1. An elementary SCT is an SCT which is either an ECT or a
product of two ECT’s none of which is an SCT by itself.

The main idea of the algorithm is to find P ∈ GLn(F ) such that, when we replace
A with PAP ′, the system (1.2) has an obvious solution Y . Then Lemma 2.1 provides
a solution X for the original system.

We distinguish four cases:
(a) det(A1) = 0 and the characteristic is not 2.
(b) det(A1) �= 0, det(A0) = 0 and the characteristic is not 2.
(c) det(A1) = 0 and the characteristic is 2.
(d) det(A0A1) �= 0.
Each of these cases will be treated separately. We set V = Fn, considered as the

space of column vectors, and we shall use its standard basis {e1, e2, . . . , en}.
4.1. Algorithm for case (a). The characteristic of F is not 2, 2m < n, and

we set k = n− 2m.
In this case, our recursive algorithm will construct an involutory matrix Y ∈

GLn(F ) and a sequence of ECT’s with the following properties: After transforming
A with this sequence of ECT’s, Y and the new A satisfy the following conditions:

(i) A1 is normalized, i.e., A1 = Jm ⊕ 0.
(ii) Y AY ′ = A′.
(iii) All entries of the last k rows and columns of Y are 0 except the diagonal

entries (which are ±1).
We remark that if A = B ⊕ C, where B and C are square matrices of smaller

size, and if our algorithm works for B and C, then it also works for A.
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If m = 0, we take Y = In. From now on we assume that m ≥ 1. Let us partition
the symmetric matrix A0 into four blocks:

A0 =
[
B C
C′ D

]
,

where B is of size 2m. Assume that D �= 0. Then we may assume that its last
diagonal entry is not 0. By elementary row operations and corresponding column
operations, we can make all other entries in the last row and column of A0 vanish.
(These operations do not affect A1.) Hence A splits.

From now on we assume that D = 0. If the rank of C is smaller than k, then we
may assume that the last column of C is zero and so A splits. Thus we may assume
that C has rank k. Our next goal is to simplify the block C = [cij ]. Note that if
X ∈ G is block-diagonal:

X =
[
X1 0
0 X2

]
, X1 ∈ Sp2m(F ), X2 ∈ GLk(F ),

then the effect of the SCT: A→ XAX ′ on the block C is given by C → X1CX
′
2.

Let vj denote the j-th column of A.

Assume that there exist p, q such that 2m < p, q ≤ n and v′pA1vq �= 0. By
applying a suitable SCT (of the type mentioned above), we may further assume that
c2m−1,k−1 = c2m,k = 1 and all other entries of the last two rows and columns of C
vanish. Next by subtracting multiples of the last two columns of A from the first
2m− 2 columns (via ECT’s), we can assume that also the first 2m− 2 entries of the
last two rows of B vanish. If n > 4, then A splits. Otherwise, n = 4, we can assume
that B = 0 and then take Y = diag(1,−1, 1,−1).

It remains to consider the case where v′pA1vq = 0 for all p, q > 2m, i.e., the
columns of C form a basis of a k-dimensional totally isotropic space (with respect to
Jm). Since Sp2m(F ) acts transitively on such bases, without any loss of generality,
we may assume that

(4.1) c2m,k = c2m−2,k−1 = · · · = c2m−2k,1 = 1

while all other entries of C are 0. Since the column-space of C is totally isotropic, we
must have k ≤ m.

By subtracting suitable multiples of the last k columns from the first 2m columns
(via ECT’s), we may assume that each of the rows 2m−2k+2, 2m−2k+4, . . . , 2m of
A0 has a single nonzero entry. (The corresponding columns have the same property.)

In order to help the reader visualize the shape of the matrix A0 at this point, we
give an example. We take m = 5 and k = 2. Then A0 has the form:
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A0 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0




,

where the blank entries have not been specified.
In order to give a simple formula for the matrix P (which provides the solution

of our problem for the matrix A), it will be convenient to perform a congruence
transformation which is not an SCT. For that purpose we just rearrange the rows
of A so that the rows 2m − 2k + 1, 2m − 2k + 3, . . . , 2m − 1 come before the rows
2m − 2k + 2, 2m − 2k + 4, . . . , 2m (and similarly the columns). We continue (as in
programming) to refer to this new matrix as the matrix A. Now A1 is no longer
normalized. The matrices A0 and A1 have the following form

A0 =



R1 R2 0 0
R′

2 R3 0 0
0 0 0 Ik
0 0 Ik 0


 , A1 =



Jm−k 0 0 0
0 0 Ik 0
0 −Ik 0 0
0 0 0 0




where all the blocks, except those in the first row and column, are square of size k.
We now introduce a truncated version of the problem, in which we replace A with

its principal submatrix Ā obtained by deleting the last 2k rows and columns. Define
Ā0 and Ā1 similarly. These truncated matrices have all size n− 2k(= 2m− k). Note
that Ā1 is already normalized and has rank 2(m − k). Hence, by using recursion,
our algorithm can compute a matrix P̄ ∈ GLn−2k(F ) and an involutory matrix Ȳ
satisfying the conditions (i–iii). In particular,

Ȳ P̄ Ā0(P̄ )′Ȳ = P̄ Ā0(P̄ )′, P̄ Ā1(P̄ )′ = Ā1 and Ȳ Ā1Ȳ = −Ā1.

We now show that we can use P̄ and Ȳ to construct P ∈ GLn(F ) and an involu-
tory matrix Y , such that

Y PA0P
′Y = PA0P

′, PA1P
′ = A1 and Y A1Y = −A1.

Let us partition P̄ as follows:

P̄ =
[
P1 P2

P3 P4

]
,
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where P4 is of size k. The matrix Ā1 has the form Jm−k⊕0. The equation P̄ Ā1(P̄ )′ =
Ā1 implies that P1Jm−kP

′
1 = Jm−k and P3 = 0.

Our matrix P is now given by the following formula:

P =



P1 P2 0 Q1

0 P4 0 Q2

P5 P6 (P ′
4)

−1 Q3

0 0 0 P4


 ,

where

P5 = −(P−1
1 P2P

−1
4 )′Jm−k,

P6 = −1
2
(P ′

4)
−1P ′

2Jm−kP2,

Q1 = −(P1R1 + P2R
′
2)P

′
5P4 − (P1R2 + P2R3)P ′

6P4,

Q2 = −P4(R′
2P

′
5 +R3P

′
6)P4,

Q3 = −1
2
(P5R1P

′
5 + P5R2P

′
6 + P6R

′
2P

′
5 + P6R3P

′
6)P4.

Clearly P is invertible. It is easy to verify that PA1P
′ = A1 and that PA0P

′ has
the same shape as A0 except that the blocks R1, R2 and R3 may be different from
those in A0. Recall that P̄ Ā1(P̄ )′ = Ā1 and that Ȳ = ∆ ⊕ Λ, where Λ is a diagonal
matrix of size k. Moreover, Ȳ commutes with P̄ Ā0(P̄ )′ and anti-commutes with Ā1.
Set Y = Ȳ ⊕ (−Λ) ⊕ (−Λ). It is easy to verify that Y commutes with PA0P

′ and
anti-commutes with A1. Consequently, the conditions (ii) and (iii) are satisfied. By
transforming A with a suitable permutation matrix, we may also satisfy the condition
(i).

This completes the treatment of case (a).

4.2. Algorithm for case (b). We recall that the characteristic is not 2, n = 2m,
A1 = Jm, and A0 is singular. We define here the symplectic group, Spn(F ), by using
definition (1.3) with J = Jm. Let N be the nullspace of A0, i.e., N = {v ∈ V : A0v =
0} and let d be its dimension. Since det(A0) = 0, we have d > 0.

In this case, our recursive algorithm will construct an involutory matrix Y ∈
GLn(F ) and a sequence of ECT’s with the following properties: After transforming
A with this sequence of ECT’s, Y and the new A satisfy the following conditions:

(i) A1 is normalized, i.e., A1 = Jm.
(ii) Y AY ′ = A′.
(iii) Exactly d rows and d columns of A0 are 0, and the corresponding rows and

columns of Y have all entries 0 except the diagonal entries (which are ±1).
Again we remark that if A = B ⊕ C, where B and C are square matrices of

smaller size, and if our algorithm works for B and C, then it also works for A.
Assume that there exist v, w ∈ N such that v′A1w = 1. Then it is easy to

construct a matrix P ∈ Spn(F ) having v and w as its first two columns. Hence the
first two columns (and rows) of P ′A0P are zero. If m = 1, then Y = diag(1,−1)
works, otherwise P ′AP splits. Thus we may assume that v′A1w = 0 for all vectors
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v, w ∈ N . Since det(A1) �= 0, we deduce that d ≤ m. Then we can construct
P ∈ Spn(F ) such that its columns in positions n, n− 2, . . . , n− 2d+2 form a basis of
N . We replace A with P ′AP .

If d = m, then Y = diag(1,−1, . . . , 1,−1) satisfies (ii) and (iii) and we are done.

Now assume that d < m. Recall that {en, en−2, . . . , en−2d+2} is a basis of N . We
set m̄ = m− d and define Ā0 to be the submatrix of A0 of size n̄ = 2m̄ in the upper
left hand corner. We denote by N̄ the nullspace of Ā0 and by d̄ its dimension.

Assume that d̄ = 0, i.e., Ā0 is nonsingular. Then, by applying a suitable sequence
of elementary SCT’s, we may assume that the n− n̄-by-n̄ submatrix of A0 just below
the submatrix Ā0 is zero. This means that A splits.

Now assume that d̄ > 0. By using recursion, we may assume that we already
have an involutory matrix Ȳ ∈ GLn̄(F ) and that Ȳ and Ā satisfy the conditions
(i-iii) above.

For convenience, we partition the set of the first n̄ rows (and similarly columns)
of A0 in two parts: We say that one of these rows or columns is of the first kind if it
contains a nonzero entry of the submatrix Ā0 and otherwise it is of the second kind.
The sequence of elementary SCT’s that we are going to construct has the additional
property that it will not alter the submatrix Ā0.

Denote by B the d̄-by-d submatrix of A0 in the intersection of the rows of the
second kind and the columns in positions n− 1, n− 3, . . . , n− 2d+ 1. Since d is the
dimension of N , B must have rank d̄. By using elementary SCT’s which act only on
the last 2d columns (and rows), we can modify B without spoiling the zero entries of
A0 which were established previously and assume that B = (Id̄, 0), i.e., B consists of
the identity matrix of size d̄ followed by d− d̄ zero columns.

Let us illustrate the shape of the matrix A0 at this stage by an example where
n = 2m = 18, d = 5, and d̄ = 4. We point out that the submatrix made up of the
starred entries is nonsingular. Hence a row or column of A0 is of the first kind if and
only if it contains a star entry. The submatrix Ā0 is the block of size 8 in the upper
left hand corner.
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A0 =




0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

By subtracting suitable multiples of the columns of A0 of the first kind (using
elementary SCT’s) from the columns in positions n− 1, n− 3, . . . , n− 2d+1, we may
assume that all entries of A0 in the intersection of the latter columns and the rows of
the first kind are zero. In the above example this means that all blank entries in the
first eight rows (and columns) are being converted to zero.

We can now use elementary SCT’s to convert to zero all entries in the 2d-by-2d
submatrix of A0 in the lower right hand corner, except those in the 2(d − d̄)-by-
2(d − d̄) submatrix in the same corner. Similarly, if d > d̄, we can diagonalize the
(nonsingular) square submatrix of size d− d̄ in the intersection of rows and columns
in positions n− 1, n− 3, . . . , n− 2(d− d̄) + 1.

We extend Ȳ to Y as follows. Let ε1, ε2, . . . , εd̄ be the entries in the diagonal of
Ȳ occurring in the rows of A0 of the second kind. We set the diagonal entries of Y in
positions n̄+1, n̄+3, . . . , n̄+2d̄−1 to be ε1, ε2, . . . , εd̄. Furthermore, we set the diagonal
entries of Y in positions n̄ + 2, n̄ + 4, . . . , n̄ + 2d̄ to be equal to −ε1,−ε2, . . . ,−εd̄.
Finally, the last 2(d − d̄) diagonal entries of Y are set to be 1,−1, . . . , 1,−1. One
verifies that Y , A0 and A1 satisfy the conditions (i-iii) above.

This completes the treatment of case (b).

4.3. Algorithm for case (c). In this case, the characteristic of F is 2, 2m < n,
and we set k = n − 2m. We recall that A1 = Jm ⊕ 0. Let us partition A into four
blocks:

A =
[
B C
C′ D

]
,
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where B +B′ = Jm and D′ = D is of size k. In this case our recursive algorithm will
produce a solution X of (1.2) of the form

X =
[
X1 X2

0 Ik

]
.

Assume that D is non-alternate. Then we can assume that its last entry ann �= 0.
By adding suitable multiples of the last row of A to other rows (via ECT’s), we may
assume that ann is the sole nonzero entry in the last row and column. If n = 1, i.e.,
m = 0 and k = 1, then we can take X = I1. Otherwise A splits and we can use
recursion.

Next assume that D is alternate and nonzero. Then we may assume that it is
the direct sum of a symmetric matrix of size k − 2 and the block J1. We can now
proceed in the same way as above to convert to 0 the last two columns of C. If m = 0
and k = 2, then n = 2 and we can take X = I2. Otherwise A splits and we can use
recursion.

Hence, we may now assume that D = 0. We can also split A if the rank of C is
less than k. Thus we may assume that C has rank k.

Assume that the k-dimensional space spanned by the columns of C is not totally
isotropic (with respect to Jm). If n > 4, we can split A as in subsection 4.1. Otherwise
n = 4 and we may assume that C = I2. Then

X =
[
I2 B
0 I2

]

is a solution of (1.2) and has the desired form. Hence we may now assume that the
above space is totally isotropic. Consequently, k ≤ m. As in the previous section, we
may also assume that (4.1) holds and all other entries of C are 0.

By adding suitable multiples of the last k columns to the first 2m− 2k columns
(via ECT’s), we may assume that the first 2m−2k entries of the rows 2m−2k+2, 2m−
2k + 4, . . . , 2m of B are 0. The corresponding columns have the same property. By
using the same argument, we can also assume that all entries in the intersection of the
rows 2m−2k+2, 2m−2k+4, . . . , 2m and columns 2m−2k+1, 2m−2k+3, . . . , 2m−1
of B are 0. As A + A′ = J remains valid, all entries in the intersection of the rows
2m−2k+1, 2m−2k+3, . . . , 2m−1 and columns 2m−2k+2, 2m−2k+4, . . . , 2m of B
are 0, except that the entries just above the diagonal are equal to 1. This completes
the first subroutine of the algorithm.

In order to help the reader visualize the shape of the matrix A at this point, we
give an example. We take m = 6 and k = 3. Then A has the form:
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A =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

• 1 • 0 • 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

• 0 • 1 • 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

• 0 • 0 • 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0




,

where the blank, bullet, and star entries remain unspecified.

In order to give a simple formula for the matrixX , it will be convenient to perform
a congruence transformation which is not an SCT. For that purpose we just rearrange
the rows of A so that the rows 2m− 2k+1, 2m− 2k+3, . . . , 2m− 1 come before the
rows 2m − 2k + 2, 2m − 2k + 4, . . . , 2m (and similarly the columns). Now A1 is no
longer normalized. The matrices A and A1 have the following form

A =



A11 A12 0 0
A′

12 A22 Ik 0
0 0 A33 Ik
0 0 Ik 0


 , A1 =



Jm−k 0 0 0
0 0 Ik 0
0 Ik 0 0
0 0 0 0




where all the blocks, except those in the first row and column, are square of size k.
As A+A′ = A1, the matrices A22 and A33 are symmetric and A11 +A′

11 = Jm−k.

Let us illustrate these modifications in the example given above. Then the new
matrix A has the following shape:
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A =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

• • • 1 0 0 0 0 0
• • • 0 1 0 0 0 0
• • • 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0




,

where the bullet (resp. star) entries are those of A22 (resp., A33).
Assume that A22 is non-alternate. By performing congruence transformation on

A with a suitable block-diagonal matrix I2(m−k) ⊕ Z ⊕ (Z ′)−1 ⊕ Z, we can assume
that A22 is a diagonal matrix (see [8]) and that its last diagonal entry is nonzero.
By using elementary SCT’s, we can assume that the last column of A12 is 0. As a
side-effect of these elementary SCT’s, the zero blocks just below A′

12 and A22 may
be spoiled (and the block A33 may be altered). This damage can be easily repaired
by using elementary SCT’s which add multiples of the last k columns to the first
2m − k columns. By adding suitable multiples of the last k columns (and rows) we
may assume that the symmetric matrix A33 is diagonal. If n = 3, i.e., m = k = 1,
then we can take

X =


 1 0 1
0 1 0
0 0 1


 .

Otherwise A splits (with one of the blocks of size 3).
Next assume that A22 is alternate and nonzero. Then we may assume that it is

the direct sum of a symmetric matrix of size k − 2 and the block J1. We can now
proceed in the same way as above to convert to 0 the last two columns of A12 and to
diagonalize A33. If n = 6, i.e., m = k = 2, then we can take

X =


 I2 0 I2
0 I2 0
0 0 I2


 .

Otherwise A splits and we can use recursion.
Hence, we may now assume that A22 = 0.
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We now introduce a truncated version of the problem, in which we replace A
with its principal submatrix Ā obtained by deleting the last 2k rows and columns.
The truncated matrix, Ā, is of size n − 2k(= 2m− k). Let Ā1 be the corresponding
submatrix of A1, i.e., Ā1 = Ā+ (Ā)′ = Jm−k ⊕ 0.

By using recursion, our algorithm can compute a matrix X̄ ∈ GLn−2k(F ) of the
form

X̄ =
[
X1 X2

0 Ik

]

such that (X̄)2 = In−2k and X̄Ā(X̄)′ = (Ā)′. The last condition is equivalent to X̄Ā
being a symmetric matrix. In terms of the blocks of Ā and X̄, we have

X2
1 = I2(m−k), X1X2 = X2, X1A12 = A12, X1A11 +X2A

′
12 ∈ Sym2(m−k)(F ).

We now use X̄ to construct the desired X ∈ GLn(F ). Our matrix X is given by
the following formula:

X =



X1 X2 0 X3

0 Ik 0 X4

X5 X6 Ik A33

0 0 0 Ik


 ,

where

X3 = A11Jm−kX2 +A12X
′
2Jm−kA11Jm−kX2,

X4 = Ik +A′
12Jm−kX2,

X5 = X ′
2Jm−k,

X6 = X ′
2Jm−kA11Jm−kX2.

The matrix X6 is symmetric. Indeed we have:

X ′
6 = X

′
2Jm−kA

′
11Jm−kX2 = X ′

2Jm−k(A11 + Jm−k)Jm−kX2 = X6 +X ′
2Jm−kX2.

Since X1X2 = X2, the column-space of X2 is contained in the 1-eigenspace of X1.
On the other hand, we know from the proof of Theorem 1.6 that this eigenspace is
a maximal totally isotropic subspace (with respect to Jm−k). Hence X ′

2Jm−kX2 = 0
and so X ′

6 = X6. It is now straightforward to verify that XA is symmetric.
It remains to verify that X2 = In. Note that the column-space of I2(m−k) +X1

and also of A12 is contained in the 1-eigenspace of X1. The same argument as above
shows that X ′

2Jm−k(I2(m−k) + X1) = 0 and A′
12Jm−kX2 = 0. The first of these

equalities can be rewritten as X ′
1Jm−kX2 = Jm−kX2. By using these equalities, we
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find that

X5X1 +X5 = X ′
2Jm−k(I2(m−k) +X1) = 0,

X5X2 = X ′
2Jm−kX2 = 0,

X1X3 +X2X4 +X3 = X1A11Jm−kX2 +A11Jm−kX2 +X2 +X2A
′
12Jm−kX2

= (A′
11X

′
1 +A12X

′
2)Jm−kX2 +A11Jm−kX2 +X2

= A′
11X

′
1Jm−kX2 +A11Jm−kX2 +X2

= A′
11Jm−kX2 +A11Jm−kX2 +X2 = 0,

X5X3 +X6X4 = X ′
2Jm−kA12X

′
2Jm−kA11Jm−kX2

+X ′
2Jm−kA11Jm−kX2A

′
12Jm−kX2 = 0.

Thus X2 = In as claimed.
This completes the treatment of case (c).

4.4. Algorithm for case (d). In this case there is no restriction on the char-
acteristic of F , n = 2m, both matrices A0 and A1 are nonsingular, and we have
A1 = Jm. In view of Proposition 3.1, we may also assume that det(A) �= 0. Thus all
three bilinear forms:

〈x, y〉 = x′Ay, x, y ∈ V,
〈x, y〉0 = x′A0y, x, y ∈ V,
〈x, y〉1 = x′A1y, x, y ∈ V

are nondegenerate. The second form is symmetric and the third is alternate. If W is
a subspace of V , there are two kinds of orthogonal complements with respect to the
first form: The right orthogonal complement

W⊥ = {y ∈ V : 〈x, y〉 = 0, ∀x ∈W},

and the left orthogonal complement

⊥W = {y ∈ V : 〈y, x〉 = 0, ∀x ∈W}.

Set S = JmA, an invertible matrix which we also consider as a linear operator on
V . We make V into a module over the polynomial algebra F [t] by letting t act as the
multiplication by S. We write f ·x for the action of f ∈ F [t] on x ∈ V . We denote by
∗ the involutorial automorphism of the F -algebra F [t] which sends t to −1− t. Thus
if f ∈ F [t], then f∗ ∈ F [t] is defined by f∗(t) = f(−1 − t). One can check without
difficulty that f∗ = f holds if and only if f(t) = g(t + t2) for some g ∈ F [t]. If the
characteristic of F is not 2, then f∗ = −f holds if and only if f(t) = (2t+1)g(t+ t2)
for some g ∈ F [t] and, consequently, if f �= 0, then f∗ = −f implies that f has odd
degree.
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It is straightforward to verify that for all x, y ∈ V we have

〈x, t · y〉 = −〈(1 + t) · x, y〉,
〈x, t · y〉1 = −〈(1 + t) · x, y〉1,
〈x, t · y〉1 = −〈x, y〉,
〈x, y〉+ 〈y, x〉 = 〈x, y〉0,
〈x, y〉 − 〈y, x〉 = 〈x, y〉1.

The first two of these identities imply that

〈x, f · y〉 = 〈f∗ · x, y〉, ∀x, y ∈ V, ∀f ∈ F [t];
〈x, f · y〉1 = 〈f∗ · x, y〉1, ∀x, y ∈ V, ∀f ∈ F [t].

The second and third imply that if a subspace W of V is S-invariant (i.e., an F [t]-
submodule), then

⊥W =W⊥ =W⊥1 ,

and we shall denote this subspace simply by W⊥.
Let f denote the minimal polynomial of S and let f = f1f2 · · · fk be its square-

free factorization. Since JmS
′ = −JmA

′Jm = −JmAJm − Jm = −(In + S)Jm and S′

is similar to S, we conclude that S and −In − S are similar matrices. This implies
that f∗ = ±f , and so each f∗i = ±fi. If the characteristic of F is not 2, since
2S + In = JmA0 and A0 is nonsingular, we conclude that 2t + 1 does not divide f .
Hence f∗ = f in all cases, and also f∗i = fi for all i’s.

Let f1 = gh where g∗ = g and h∗ = h are monic polynomials. We set

Vg =
⋃
i≥0

ker(g(S)i)

and define Vh similarly. Then V = Vg ⊕ Vh and V ⊥
g = Vh. Consequently, if g∗ = g is

a monic divisor of f1, then

(4.2) V = Vg ⊕ V ⊥
g .

Assume that fi �= f1 for some i. Then g = fi and h = f1/fi = h∗ are relatively
prime monic nonconstant polynomials. Hence (4.2) is valid. Clearly, we can construct
the subspace Vg and so we obtain a splitting of A.

From now on we assume that fi = f1 for all i = 2, . . . , k, i.e., f = fk
1 . For

0 ≤ i ≤ k, we denote by Vi the kernel of the operator f1(S)k−i. In particular, V0 = V
and Vk = 0. Set V = V/V1 and, for x ∈ V , x̄ = x+V1. The bilinear form V ×V → F
defined by (x, y) → 〈x, fk−1

1 · y〉0 has V1 as its (left and right) radical. It induces a
nondegenerate bilinear form V × V → F given by (x̄, ȳ)→ 〈x, f k−1

1 · y〉. This form is
not skew-symmetric because

〈x, fk−1
1 · y〉+ 〈y, fk−1

1 · x〉 = 〈x, fk−1
1 · y〉+ 〈fk−1

1 · y, x〉 = 〈x, fk−1
1 · y〉0
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and 〈·, ·〉0 is nondegenerate.
Therefore we can choose v ∈ V such that v̄ is a non-isotropic vector with respect

to the above form, i.e., if w = fk−1
1 · v, then 〈v, w〉 �= 0. Let W = F [t] · v be

the cyclic submodule generated by v and set U = W ∩ W⊥. Of course, U is also
cyclic, say U = F [t] · u, where u = g · v and g is a monic divisor of f . Since
0 = 〈u, v〉 = 〈g · v, v〉 = 〈v, g∗ · v〉, we deduce that g∗ · v ∈ U , i.e., g divides g∗. It
follows that g∗ = g. Thus f = gh, with h∗ = h also monic. As 〈v, w〉 �= 0, we have
w /∈ U which implies that f1 does not divide h. Thus h1, the square-free part of h,
is a proper divisor of f1 and h∗1 = h1. If h1 �= 1, then by applying an argument used
above we can construct a splitting of A. Otherwise U = 0, i.e., V = W ⊕W⊥. If
W �= V , then again A splits. Hence we may assume that V =W .

The vectors Siv for 0 ≤ i < n form a basis of V . Hence if W0 is the subspace of
V with basis {vi = (t+ t2)i−1 · v : 1 ≤ i ≤ m} and W1 = t ·W0, then V =W0 ⊕W1.
Since

〈(t+ t2)i · v, (t+ t2)j · v〉1 = (−1)i+j〈ti+j · v, ti+j · v〉1 = 0,

we have W⊥1
0 =W0 and similarly W⊥1

1 =W1. Since

〈t(t+ t2)i · v, (t+ t2)j · v〉 = (−1)i+j〈ti+j+1 · v, ti+j · v〉
= (−1)i+j〈ti+j+1 · v, ti+j+1 · v〉1 = 0,

we have also W⊥
1 = W0. Hence there exists a unique ordered basis {w1, . . . , wm}

of W1 such that {v1, w1, . . . , vm, wm} is a symplectic basis of V . Denote by P the
matrix whose columns are the vectors v1, v2, . . . , vm, w1, w2, . . . , wm (in this order).
Since 〈wj , vi〉 = 0, we have 〈vi, wj〉 = 〈vi, wj〉1 for all i, j. We infer that

P ′AP =
[
B Im
0 C

]

for some invertible symmetric matrices B and C. It remains to observe that

Y =
[ −Im C−1

0 Im

]

is involutory and satisfies Y P ′APY ′ = P ′A′P .
This completes the description of our algorithm (and the proof of Theorem 1.4).

5. Two open problems. We denote by F an arbitrary field. The matrices will
be denoted by lower case latin letters. We set Mn = Mn(F ) and G = SLn(F ). The
congruence action of G on Mn is defined by a · x = axa′ (a ∈ G, x ∈ Mn). It is one
of the several most important group actions studied in Linear Algebra. (One usually
considers the restriction of this action to symmetric or skew-symmetric matrices.)

Let F [Mn] be the algebra of polynomial functions onMn. The congruence action
of G on Mn induces an action of G on F [Mn] by

(a · f)(x) = f(a−1 · x) = f(a−1x(a′)−1),
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where a ∈ G, f ∈ F [Mn], and x ∈Mn.
When F = C, Adamovich and Golovina [1] have computed the subalgebra,

C[Mn]G, of G-invariants in C[Mn]. More precisely, they have shown that this sub-
algebra is isomorphic to a polynomial algebra over C in [(n + 1)/2] explicitly given
algebraically independent generators.

One can ask many interesting questions about the congruence action of G onMn

but we shall state only two of them.
Problem 1 Extend the results of Adamovich and Golovina to algebraically

closed fields of prime characteristic (or to arbitrary fields).
Problem 2 If F is algebraically closed and x ∈ Mn, determine which G-orbits

are contained in the Zariski closure of the orbit G · x.
In connection with Proposition 3.1 we would like to make the following remark.

This proposition shows that an arbitrary A ∈ Mn(F ) is congruent to the direct sum
of various niloptent Jordan blocks Nr and a nonsingular matrix X (where either of
these two types may be missing). By applying the well known theory of matrix pencils
λA + µB to the special pencils λA + µA′, it is easy to see that the nilpotent Jordan
blocks Nr are indecomposable under congruence and that the sizes of Jordan blocks
Nr and their multiplicities in the above decomposition are uniquely determined by
A. As shown by Gabriel [6], X is unique up to congruence. In the statement of
Gabriel’s theorem as given by Waterhouse [11], instead of the Jordan blocks Nr,
more complicated singular indecomposable blocks Br are used. Since for each size
r ≥ 1 there is only one (up to congruence) singular indecomposable matrix of size
r, the matrices Br and Nr must be congruent. This can be also shown directly by
constructing a permutation matrix P such that PBrP

′ = Nr.
Acknowledgement. An anonymous referee of an earlier mini-version of this

paper is to be thanked for pointing out the references [7] and [11].
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