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ON NONNEGATIVE MATRICES WITH GIVEN ROW AND
COLUMN SUMS∗

S.W. DRURY†, J.K. MERIKOSKI ‡ , V. LAAKSO‡ , AND T. TOSSAVAINEN§

Abstract. Let A be a nonnegative n × n matrix with row sums r1, . . . , rn and column sums

c1, . . . , cn. Order them decreasingly: r↓1 ≥ . . . ≥ r↓n and c↓1 ≥ . . . ≥ c↓n. The conjectures suAm ≤
(r1c1)

m
2 + · · ·+(rncn)

m
2 and suAm ≤ (r↓1c↓1)

m
2 + · · ·+(r↓nc↓n)

m
2 are considered, where suB denotes

the sum of the entries of a matrix B and m is a nonnegative integer.
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1. Introduction. Throughout this paper, m and n denote integers, and A =
(ajk) denotes a nonnegative n×n matrix (n ≥ 1) with row sums r1, . . . , rn and column
sums c1, . . . , cn, ordered decreasingly as r↓1 ≥ . . . ≥ r↓n and c↓1 ≥ . . . ≥ c↓n.

London [5] conjectured in 1966 and Hoffman [2] proved in 1967 that for A sym-
metric

suAm ≤ rm
1 + · · · + rm

n ,(1.1)

where suB denotes the sum of the entries of a matrix B and m ≥ 0 (define 00 = 1).
Hoffman’s proof was based on certain properties of stochastic matrices. Much later,
in 1985, Sidorenko [9], without knowing Hoffman’s work, gave an independent proof
as an elementary application of Hölder’s inequality.

In 1990, Virtanen [10] generalized (1.1) to the nonsymmetric case. He proved,
using majorization, that

suAm ≤ 1
2


 n∑

j=1

rm
j +

n∑
j=1

cm
j


 .

In 1991, Merikoski and Virtanen [7] gave an elementary proof for this. In 1995, they
[8] proved a sharper inequality

suAm ≤

 n∑

j=1

rm
j




1
2


 n∑

j=1

cm
j




1
2

(1.2)
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and asked whether the still sharper inequality

suAm ≤ (r1c1)
m
2 + · · · + (rncn)

m
2(1.3)

holds.
For m = 2, (1.3) is actually an equality. For m = 1 and m = 3, Merikoski

and Virtanen [8] gave counterexamples (n ≥ 2) but claimed erroneously that the
counterexample for m = 3 works for all m ≥ 3. Laakso [4] noted this error and ([4],
Theorem 3.2) gave a complete description about the validity of (1.3) as follows:

Theorem 1.1. Conjecture (1.3) is
• true (equality) if n = 1,
• true (equality) if m = 0 or m = 2,
• true (inequality) if n = 2 and m ≥ 4 is even,
• false in the remaining cases.

Merikoski and Virtanen [8] posed also the conjecture

suAm ≤ (r↓1c
↓
1)

m
2 + · · · + (r↓nc

↓
n)

m
2 ,(1.4)

which is stronger than (1.2) but weaker than (1.3). We will study this conjecture.
To find counterexamples, we have made heavy use of the algorithm for the trans-

portation problem presented in Hoffman [1]. This enables one to compute numerically
the maximum value of xTAy where x and y are fixed vectors and A runs through
all nonnegative matrices whose row sum vector and column sum vector are fixed.

In Section 2 we present counterexamples to disprove (1.4) for m = 3, n ≥ 8
and m = 4, n ≥ 50. More generally, we will in Section 3 disprove this conjecture
for all m ≥ 3 if n (depending on m) is large enough. Our key idea is to study the
continuous analogue of this problem, which leads us to consider integral kernels. Next,
in Section 4, we will prove (1.3) for all n if m (depending on n) is large enough.

At the end of the paper we will study the case n = 2. Laakso’s [4] proof for n =
2,m even is extremely tedious, using brute combinatorics. We will in Section 5 give
another proof, which is shorter but, regarding the easy-looking claim, still surprisingly
involved. Since Laakso disproved (1.3) for n = 2, m odd, it is natural to ask whether
(1.4) is true in this case. We will finally show that the answer is yes.

2. The cases m = 3, n ≥ 8 and m = 4, n ≥ 50. Let p = q = n and denote
11 = (1, . . . , 1)T . The row sum vector of A is r = A11 and the column sum vector is
c = AT 11. Consider suA3 = 11TA311 = cTAr. So the optimal upper bound for suA3

is given (at least numerically) by the solution of the transportation problem [1].
Even the case n = 2 is quite complicated. Figure 1 shows the maximum of suA3

if suA = 1, r = (x, 1 − x), and c = (y, 1 − y). Note that the contours fail to be
smooth across the lines x = y and x + y = 1.

Later results will allow us to find precise upper bounds for suAm for all m ≥ 3
at least in the case n = 2.

Now we disprove (1.4) for certain m and n.
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Fig. 2.1. Contour plot of max suA3 for n = 2.

Theorem 2.1. Conjecture (1.4) is false if m = 3 and n ≥ 8.
Proof. Let A be the 8 × 8 matrix with a11 = 5, a21 = 1, a32 = · · · = a82 = 1

and all the other entries zero. Then r1 = 5, r2 = · · · = r8 = 1, c1 = c2 = 6,
c3 = · · · = c8 = 0, and so

suA3 = 180 >

n∑
j=1

(r↓j c
↓
j )

3
2 = 30

3
2 + 6

3
2 ≈ 179.0137057.

Theorem 2.2. Conjecture (1.4) is false if m = 4 and n ≥ 50.
Proof. See the appendix.
The cases m = 3, 3 ≤ n ≤ 7 and m = 4, 3 ≤ n ≤ 49 remain open. (The case

n = 2 is discussed in Section 5.)

3. The case m ≥ 3, n large. Theorems 2.1 and 2.2 suggest that (1.4) is false
for all m ≥ 3 if n is large enough. This indeed holds.

Theorem 3.1. Conjecture (1.4) is false for all m ≥ 3 if n (depending on m) is
large enough.
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If (1.4) were true for a fixed m ≥ 3 and all n ≥ 1, then a corresponding result for
integral kernels would hold. This could further be extended to certain types of singular
kernels given by a measure. The measure of interest is given by dµ(x) = x−αdx on
the curve y = xβ in [1,∞) × [1,∞) for suitable α and β. Here the calculations are
easy, but the limiting arguments are not entirely straightforward, and it seems better
to give an example in terms of matrices.

Proof of Theorem 3.1. We index our matrices from 0 to n − 1. Let 0 < s < n,

α > 0, and 0 < β < 1. We impose the constraint α+ β > 1. Let xj = 1 +
sj

n
. Define

the mapping ν by

ν(j) =
⌊n
s

(xβ
j − 1)

⌋
.

Then 0 ≤ ν(j) ≤ j < n for j = 0, . . . , n− 1. We define the n× n matrix A by

ajk =
{
x−α

j if k = ν(j),
0 otherwise.

Then rj = x−α
j and ck =

∑
ν(j)=k x

−α
j . Observe that xν(j) ≤ xβ

j and therefore

suAm =
n−1∑
j=0

x−α
j x−α

ν(j) · · ·x−α
νm−1(j) ≥

n−1∑
j=0

x−α
j x−αβ

j · · ·x−αβm−1

j =
n−1∑
j=0

x−γ
j(3.1)

where γ = α
1 − βm

1 − β
.

We find an upper bound for ck.
First assume k ≥ 1. Let jk be the smallest j such that ν(j) = k. Then

ck =
jk+1−1∑
j=jk

(
1 +

sj

n

)−α

≤
∫ jk+1−1

jk−1

(
1 +

sx

n

)−α

dx =

β−1

∫ yk+1

yk

(
1 +

sy

n

)−α
β

(
1 +

sy

n

) 1
β −1

dy = β−1

∫ yk+1

yk

(
1 +

sy

n

)−α+β−1
β

dy,(3.2)

after the change of variable 1 +
sy

n
=

(
1 +

sx

n

)β

where yk is defined by

1 +
syk

n
=

(
1 +

s(jk − 1)
n

)β

.

Now 	yk
 = ν(jk − 1) = k− 1 and 	yk+1
 = k, and so yk+1 − yk ≤ 2. Hence, by (3.2),

ck ≤ 2β−1

(
1 +

s(k − 1)
n

)−α+β−1
β

.(3.3)
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For k = 0 we proceed slightly differently

c0 =
j1−1∑
j=0

(
1 +

sj

n

)−α

≤ 1 +
j1−1∑
j=1

(
1 +

sj

n

)−α

≤ 1 +
∫ j1−1

0

(
1 +

sx

n

)−α

dx = 1 + β−1

∫ y1

0

(
1 +

sy

n

)−α+β−1
β

dy

≤ 1 + β−1,

since y1 ≤ 1. Note that

1 + β−1 < 2β−1 < 2β−1
(
1 − s

n

)−α+β−1
β

,

and so (3.3) holds also for k = 0.
Since α + β > 1, the right-hand side of (3.3) decreases in k. Thus, finally

n−1∑
j=0

(r↓j c
↓
j )

m
2 ≤

(
2
β

)m
2 n−1∑

j=0

(
1 +

sj

n

)−αm
2

(
1 +

s(j − 1)
n

)−m(α+β−1)
2β

,

which, together with (3.1), implies

lim inf
n→∞

suAm∑n−1
j=0 (r↓j c

↓
j )

m
2

≥
(
β

2

)m
2

∫ 1+s

1
x−γdx∫ 1+s

1 x−θdx

where θ =
m(αβ + α + β − 1)

2β
. We will show that α and β can be chosen so that

γ < 1 < θ, thus forcing a counterexample to (1.4) with n and s large.

We need to choose α so that
m− (m− 2)β
m(1 + β)

< α <
1 − β

1 − βm
. In fact, the upper

and lower bounds have double contact at β = 1, α = m−1. We have

m(1 + β)(1 − β) − (1 − βm)(m− (m− 2)β) =
(
m

3

)
(1 − β)3 + O((1 − β)4),

showing that suitable α and β exist with β slightly smaller than 1.

4. The case m large. If m ≥ 3 is fixed, we saw above that (1.4) is false if n is
large enough. If instead, we fix n and make m large enough, then we find the opposite
result. Then (1.4) is true, and the stronger (1.3) is in “almost all” cases true. Before
showing this, we recall that the Perron root of A, denoted by ρ(A) = ρ, satisfies (see
e.g., [6], p. 151)

ρ ≤ max
j

(rjcj)
1
2 ≤ (r↓1c

↓
1)

1
2 .(4.1)
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Fig. 3.1. Constraints on α and β for m = 3. The point (α, β) must be chosen in the shaded
region.

Theorem 4.1. Assume that ρ < maxj(rjcj)
1
2 . Then (1.3) is true for all n ≥ 1

if m (depending on n) is large enough.
Proof. Applying the norm properties of suA = su |A| (see e.g., [3], Corollary

5.6.14), we obtain

lim
m→∞(suAm)

1
m = ρ < max

j
(rjcj)

1
2 = lim

m→∞((r1c1)
m
2 + · · · + (rncn)

m
2 )

1
m ,

and the claim follows.
To show that the assumption ρ < maxj(rjcj)

1
2 is crucial, consider

A =


 0 4 0

0 0 1
1 0 1


 ,

which has ρ(A) = 2. It can be proved by induction (for details, see [4], Example
3.3) that the row sums of Am (m ≥ 4), denoted by r

(m)
1 , r

(m)
2 and r

(m)
3 , satisfy

r
(m)
1 + r

(m)
2 > 2.4 . 2m and r

(m)
3 > 0.6 . 2m. Hence

suAm = r
(m)
1 + r

(m)
2 + r

(m)
3 > 3 . 2m,
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but r1c1 = r2c2 = r3c3 = 4, which implies

(r1c1)m/2 + (r2c2)m/2 + (r3c3)m/2 = 3 . 2m,

contradicting (1.3).
Theorem 4.2. Conjecture (1.4) is true for all n ≥ 1 if m (depending on n) is

large enough.
Proof. If ρ < (r↓1c

↓
1)

1
2 , a trivial modification of the proof of Theorem 4.1 applies.

Thus, by (4.1), the case ρ = (r↓1c
↓
1)

1
2 remains.

Assume first that A is positive. Then B = A ⊗ AT is positive with row sums
r1c1, . . . , r1cn, . . . , rnc1, . . . , rncn. The largest row sum of B is

max
j,k

rjck = r↓1c
↓
1 = ρ2 = ρ(B).

Therefore all the row sums of B are equal (see e.g. [6], Section 3.1.1), and so r1 = · · · =
rn = c1 = · · · = cn, which implies (1.4). Finally, we omit the positivity assumption
by continuity argument.

5. The case n = 2. We present for the main part of Theorem 1.1 a new proof,
which is shorter than Laakso’s [4].

Theorem 5.1. Conjecture (1.3) is true if n = 2 and m ≥ 0 is even.
Lemma 5.2. For n ≥ 2, let κ1 > . . . > κn > 0 and t1 > . . . > tn−1 ≥ 0, and

suppose that a1, . . . , an are real numbers with a1 > 0. If the function

f(t) =
n∑

j=1

ajκ
t
j

satisfies f(t1) = · · · = f(tn−1) = 0, then f(t) > 0 for all t > t1.
To prove this lemma, we apply induction.
First consider n = 2. We can without loss of generality assume κ2 = 1. Then

f(t) = a1κ
t
1 + a2 is strictly increasing, which proves the assertion in this case.

We next suppose that the assertion holds for n(≥ 2) and claim that it holds for
n + 1. Again we can without loss of generality assume κn+1 = 1. Then

f(t) =
n∑

j=1

ajκ
t
j + an+1

and

f ′(t) =
n∑

j=1

ajκ
t
j lnκj ≡

n∑
j=1

bjκ
t
j

where b1 > 0. Applying the induction hypothesis to f ′, we see that (i) there are at
most n − 1 numbers τ1 > . . . > τk ≥ 0 such that f ′(τ1) = . . . = f ′(τk) = 0, and
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(ii) if there are n − 1 such numbers, then f ′(t) > 0 for all t > τ1. But (i) implies,
by Rolle’s theorem, that there are at most n numbers t1 > . . . > tk ≥ 0 such that
f(t1) = . . . = f(tk) = 0. Now assume that there are n such numbers, and let t > t1.
Then f is strictly increasing, since t1 > τ1 and, by (ii), f ′(t) > 0 for t > τ1. Therefore
f(t) > 0, which completes the proof.

Proof of Theorem 5.1. We can without loss of generality assume that suA = 1
and r1 = max(r1, r2, c1, c2). If the maximum is attained at r2, then interchange both
the rows and columns. If it is attained at c1, then transpose A. If it is attained at
c2, then interchange both the rows and columns and transpose A.

Given row and column sums, one entry of A determines all the others, and so the
A’s form a one parameter family. In fact A is a convex combination of

B =
(
r + c− 1 1 − c

1 − r 0

)
and C =

(
c r − c
0 1 − r

)
,

where r = r1, 1 − r = r2, c = c1, 1 − c = c2.
The case r = 1 reduces to cm + mcm−1(1 − c) ≤ c

m
2 which is easily checked, and

so we assume r < 1. Then

A = t

(
r + c− 1 1 − c

1 − r 0

)
+ (1 − t)

(
c r − c
0 1 − r

)

with 0 ≤ t ≤ 1. We prefer to work with s = 1
2 (r − c) + (1 − r)t satisfying 1

2 (r − c) ≤
s ≤ 1

2 (2 − r − c) since the eigenvalues of A are then λ± = 1
2 − s ±

√
s2 + q where

q = (r − 1
2 )(c− 1

2 ).
For m ≥ 0, consider

σm ≡ suAm =

(
1 +

s√
s2 + q

)
λm

+ +

(
1 − s√

s2 + q

)
λm
− .(5.1)

Omitting the trivial case m = 0, let m ≥ 2. The quantity

∂σm

∂s
= − mq

s2 + q

(
λm−1

+ + λm−1
−

)
+

q

(s2 + q)
3
2

(
λm

+ − λm
−

)
= −qβ−3

(
mβ

(
(α + β)m−1 + (α− β)m−1

) − (α + β)m + (α − β)m
)
,

where α = 1
2 −s and β =

√
s2 + q, is opposite in sign to q. For, denoting γ = αβ−1 ≥

0, we have

m
(
(γ + 1)m−1 + (γ − 1)m−1

) − (γ + 1)m + (γ − 1)m =

2
∑

m−k odd
0≤k≤m−1

(
m

(
m− 1
k

)
−

(
m

k

))
γk ≥ 0.
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Now, since r ≥ 1
2 , it remains to establish (1.3) for B if c ≤ 1

2 and for C if c ≥ 1
2 .

We first dispose of the case q = (r − 1
2 )(c − 1

2 ) = 0. Then σm =
(

1
2

)m−1. Because
the average of rc and (1− r)(1 − c) is q + 1

4 = 1
4 and the function x �→ x

m
2 (x ≥ 0) is

convex, we have

1
2
σm =

(
1
2

)m

=
(

1
4

)m
2

≤ 1
2

(
(rc)

m
2 +

(
(1 − r)(1 − c)

) m
2
)
,

which proves (1.3).

Case A = C, 1
2 < c ≤ r < 1. We have t = 0, s = 1

2 (r − c), λ+ = c, λ− = 1 − r. If
c = r, then equality holds in (1.3). So we can assume 1

2 < c < r < 1. Denoting
µ± = 1

2 ±√
q, we obtain

σm =
2r − 1

r + c− 1
cm +

2c− 1
r + c− 1

(1 − r)m ≤ µm
+ + µm

−(5.2)

by Lemma 5.2, because equality holds in (5.2) for m = 0, 1 and 2, and because
0 < 1 − r < µ− < c < µ+. Finally, we note that

µm
+ + µm

− ≤ (rc)
m
2 +

(
(1 − r)(1 − c)

) m
2
,(5.3)

due to the inequalities (1 − r)(1 − c) ≤ µ2
− ≤ µ2

+ ≤ rc, the convexity of the function
x �→ x

m
2 (x ≥ 0), and the equality µ2

+ + µ2− = rc + (1 − r)(1 − c).
Now (5.2) and (5.3) imply (1.3).

Case A = B, 0 < c < 1
2 < r < 1. We have t = 1, s = 1

2 (r− c)+1−r = 1
2 (2−r− c). If

c = 1−r, then B2 = r(1−r)I, and equality in (1.3) follows. We can therefore assume
1 − c < r, and hence s < 1

2 . Unfortunately λ± do not simplify as in the previous
case. We note that λ− < 0 and define ν± = λ2± > 0. Since m ≥ 2 is even, we set
k = m/2 ≥ 1. By Lemma 5.2,

σ2k =

(
1 +

s√
s2 + q

)
νk
+ +

(
1 − s√

s2 + q

)
νk
− ≤ 2

(
q +

1
4

)k

,(5.4)

because equality holds for k = 0 and 1, and because 0 < ν− < ν+ < q + 1
4 .

Noting that q+ 1
4 is the average of rc and (1−r)(1−c), and applying the convexity

of the function x �→ xk (x ≥ 0), we finally obtain

2
(
q +

1
4

)k

≤ (rc)k +
(
(1 − r)(1 − c)

)k

.(5.5)

Now (5.4) and (5.5) imply (1.3).
If n = 2 and m is odd, then (1.3) is false by Theorem 1.1, but we show that the

weaker (1.4) is true.
Theorem 5.3. If n = 2, then (1.4) is true for all m ≥ 0.
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Proof. Since
2∑

j=1

(rjcj)
m
2 ≤

2∑
j=1

(r↓j c
↓
j )

m
2 , the claim follows from Theorem 5.1 if m

is even. We therefore assume m odd and proceed as in the proof of Theorem 5.1.
Again, there are two cases.

Case A = C, 1
2 < c ≤ r < 1. The proof is identical to the corresponding part of The-

orem 5.1, because the hypothesis m even is not used there.

Case A = B, 0 < c < 1
2 < r < 1. Expanding λm± in (5.1) we find that

σm =
2s√
s2 + q

m−1∑
k=0

k even

(
m

k

) (
1
2
− s

)k

(s2 + q)
m−k

2 +

2
m∑

k=1
k odd

(
m

k

) (
1
2
− s

)k

(s2 + q)
m−k

2 .(5.6)

In the first sum every m − k ≥ 1, which allows us to cancel the denominator. Since
q = (r− 1

2 )(c− 1
2 ) < 0 and 0 < s = 1− 1

2r− 1
2c ≤ 1

2 , we can bound (s2+q)
m−k

2 ≤ sm−k.
Thus, by (5.6),

σm ≤ 2
m∑

k=0

(
m

k

) (
1
2
− s

)k

sm−k = 2
(

1
2

)m

≤ 2
(

1
4
− q

)m
2

= 2
(

1
2
r +

1
2
c− rc

) m
2

≤
(
r(1 − c)

) m
2

+
(
c(1 − r)

) m
2
,

and (1.4) follows.
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Appendix: Counterexample for m = 4, n = 50. Let A be the 50× 50 matrix
with

a11 = 678, a21 = 73, a22 = 519, a32 = 153, a33 = 4, a43 = 102,
a53 = a63 = 91, a73 = 78, a83 = a93 = 77, a10,3 = 76,
a11,3 = a13,4 = a14,4 = a15,4 = a16,4 = a17,4 = a18,4 = a20,5 =
a21,5 = a22,5 = a23,5 = a24,5 = a25,5 = a27,6 = a28,6 = a29,6 =
a30,6 = a31,6 = a32,6 = a34,7 = a35,7 = a36,7 = a37,7 = a39,8 =
a40,8 = a41,8 = a42,8 = a44,9 = a45,9 = a46,9 = a47,9 = a49,10 = a50,10 = 74,
a12,3 = 2, a12,4 = 72, a19,4 = a38,7 = 45, a19,5 = a38,8 = 29, a26,5 = 63,
a26,6 = 11, a33,6 = 50, a33,7 = 24, a43,8 = 36, a43,9 = 38,
a48,9 = 1, a48,10 = 73,
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and all the other elements zero. Then

r1 = 678, r2 = 592, r3 = 157, r4 = 102, r5 = r6 = 91, r7 = 78,

r8 = r9 = 77, r10 = 76, r11 = · · · = r50 = 74

and

c1 = 751, c2 = c3 = 672, c4 = 561, c5 = 536, c6 = 505, c7 = 365,

c8 = 361, c9 = 335, c10 = 221, c11 = · · · = c50 = 0

are in decreasing order. We have suA4 = 440830340180, but (r1c1)2+· · ·+(r50c50)2 =
438953283911, contradicting (1.4).
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