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Abstract. In this paper a new generalization of the Hermite matrix polynomials is given.
An explicit representation and an expansion of the matrix exponential in a series of these matrix
polynomials is obtained. Some recurrence relations, in particular the three terms recurrence relation,
are given for these matrix polynomials. It is proved that the generalized Hermite matrix polynomials
satisfy a matrix differential equation.

Key words. Generalized Hermite matrix polynomials, Three terms recurrence relation, Hermite
matrix differential equation.

AMS subject classifications. 33C25, 15A60.

1. Introduction. It is well known that special matrix functions appear in statis-
tics, Lie group theory and number theory [1, 8, 14, 16]. Herz [7] defined special matrix
functions through Laplace and inverse Laplace transforms. In the two last decades,
matrix polynomials have become more important and some results in the theory of
classical orthogonal polynomials have been extended to orthogonal matrix polynomi-
als see for instance [5, 6, 9, 13, 15] and the references therein. In [10], the Laguerre
and Hermite matrix polynomials are introduced as examples of right orthogonal ma-
trix polynomial sequences for appropriate right matrix moment functionals of integral
type. Hermite matrix polynomials have been introduced and studied in [11, 12] for
matrices in C

N×N whose eigenvalues are all situated in the right open half-plane.
Moreover, some properties of the Hermite matrix polynomials are given in [2, 3].

Our main aim in this paper is to consider a new generalization of the Hermite
matrix polynomials. The structure of this paper is the following. In section 2, we
introduce the generalized Hermite matrix polynomials and an explicit representation
is given. We expand the matrix exponential in a series of the generalized Hermite
matrix polynomials. Section 3 deals with some recurrence relations in particular the
three terms recurrence relation for these matrix polynomials. Furthermore, we prove
that the generalized Hermite matrix polynomials satisfy a matrix differential equation.

Throughout this paper, for a matrix A in C
N×N , its spectrum σ(A) denotes the

set of all eigenvalues of A. If f(z) and g(z) are holomorphic functions of the complex
variable z, which are defined in an open set Ω of the complex plane and A is a matrix
in C

N×N with σ(A) ⊂ Ω, then from the properties of the matrix functional calculus
[4, p. 558], it follows that:

f(A)g(A) = g(A)f(A).(1.1)

If D0 is the complex plane cut along the negative real axis and log(z) denoting
the principle logarithm of z, then z1/2 represents exp( 1

2 log(z)). If A is a matrix in
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C
N×N with σ(A) ⊂ D0, then A1/2 =

√
A denotes the image by z1/2 of the matrix

functional calculus acting on the matrix A.
Let A be a matrix in C

N×N such that

Re(µ) > 0 for every eigenvalue µ ∈ σ(A).(1.2)

Then the nth Hermite matrix polynomials Hn(x, A) is defined by [11, p. 25]

Hn(x, A) = n!
[n/2]∑

k=0

(−1)k

k!(n − 2k)!
(x
√

2A)n−2k ; n ≥ 0,(1.3)

and satisfies the three terms recurrence relationship

Hn(x, A) = Ix
√

2AHn−1(x, A) − 2(n − 1)Hn−2(x, A); n ≥ 1;(1.4)

H−1(x, A) = 0, H0(x, A) = I,

where I is the unit matrix in C
N×N .

According to [11], we have

exp(xt
√

2A − t2I) =
∞∑

n=0

1
n!

Hn(x, A)tn.(1.5)

Also, we recall that if A(k, n) and B(k, n) are matrices in C
N×N for n ≥ 0 and

k ≥ 0, then it follows that [2]:

∞∑

n=0

∞∑

k=0

A(k, n) =
∞∑

n=0

[n/2]∑

k=0

A(k, n − 2k),(1.6)

and
∞∑

n=0

∞∑

k=0

B(k, n) =
∞∑

n=0

n∑

k=0

B(k, n − k).(1.7)

For m is a positive integer, similarly to (1.6) one can find

∞∑

n=0

∞∑

k=0

A(k, n) =
∞∑

n=0

[n/m]∑

k=0

A(k, n − mk) ; n > m.(1.8)

2. Definition of generalized Hermite matrix polynomials. In this section,
we introduce a new matrix polynomial which represents a generalization of the Her-
mite matrix polynomials as given by the relation (1.5). Let A be a matrix in C

N×N

satisfies (1.2). For n = 0,1,2,. . ., λ ∈ R
+ and m is a positive integer, we define the

generalized Hermite matrix polynomials by

F (x, t) = exp(λ(xt
√

2A − tmI)) =
∞∑

n=0

Hλ
n,m(x, A)tn.(2.1)
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Since

exp(λ(xt
√

2A − tmI)) = exp(λ(xt
√

2A))exp(−λ(tmI))

=
∞∑

n=0

λn(x
√

2A)n

n!
tn

∞∑

k=0

(−1)kλk

k!
tmkI

=
∞∑

n=0

∞∑

k=0

(−1)kλn+k(
√

2A)n

k!n!
xntn+mk,

then by using (1.8) we have

exp(λ(xt
√

2A − tmI)) =
∞∑

n=0

[n/m]∑

k=0

(−1)kλn−(m−1)k(
√

2A)n−mk

k!(n − mk)!
xn−mktn.

Thus, we obtain an explicit representation for the generalized Hermite matrix poly-
nomials in the form:

Hλ
n,m(x, A) = λn

[n/m]∑

k=0

(−1)k(
√

2A)n−mk

λ(m−1)kk!(n − mk)!
xn−mk.(2.2)

For simplicity we denote Hn,m(x, A) for the generalized Hermite matrix polyno-
mials when λ = 1. It should be observed that, in view of the explicit representation
(2.2), the generalized Hermite matrix polynomials Hn,2(x, A) reduces to the Hermite
matrix polynomials Hn(x, A)/n! as given in (1.3).

Note that

(
√

2A)−1 d

dx
exp(xt

√
2A) = t exp(xt

√
2A),

and hence

[(
√

2A)−1 d

dx
]nexp(xt

√
2A) = tn exp(xt

√
2A).

Thus

exp(−(
√

2A)−m dm

dxm
) exp(xt

√
2A) =

∞∑

n=0

(−1)n

n!
[(
√

2A)−1 d

dx
]mn exp(xt

√
2A)

=
∞∑

n=0

(−1)n

n!
tmn exp(xt

√
2A)

= exp(xt
√

2A − tmI).

Therefore, by (2.1), we have

exp(−(
√

2A)−m dm

dxm
) exp(xt

√
2A) =

∞∑

n=0

Hn,m(x, A)tn,
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which by expanding in powers of t becomes

exp(−(
√

2A)−m dm

dxm
)

∞∑

n=0

xn

n!
(
√

2A)ntn =
∞∑

n=0

Hn,m(x, A)tn.

Identification of the coefficients of tn in both sides gives a new representation for the
generalized Hermite matrix polynomials for λ = 1 in the form:

Hn,m(x, A) =
1
n!

exp(−(
√

2A)−m dm

dxm
) (
√

2A)nxn.(2.3)

For m = 2, the expression (2.3) gives another representation for the Hermite
matrix polynomials in the form:

Hn(x, A) = exp(−(
√

2A)−2 d2

dx2
) (
√

2A)nxn.

Let B be a matrix in C
N×N satisfies the spectral property

|Re(µ)| > |Im(µ)| for all µ ∈ σ(B).(2.4)

Suppose that A = 1
2B2. In view of the spectral mapping theorem [4] it is easy to find

that σ(A) = { 1
2b2 : b ∈ σ(B)} and by (2.4) we have

Re(
1
2
b2) =

1
2

[(Re(b))2 − (Im(b))2] > 0, b ∈ σ(B).

That is, A is a positive stable matrix. In (2.1), putting t = 1 and B =
√

2A gives

exp(λ(xB − I)) =
∞∑

n=0

Hλ
n,m(x,

1
2
B2).

Therefore, for the matrix B satisfies (2.4), an expansion of exp(λBx) in a series of
the generalized Hermite matrix polynomials is obtained in the form:

exp(λxB) = exp(λ)
∞∑

n=0

Hλ
n,m(x,

1
2
B2), −∞ < x < ∞.(2.5)

3. Recurrence relations. In this section the three terms recurrence relation is
carried out on the generalized Hermite matrix polynomials. At first, we obtain the
following:

Theorem 3.1. The generalized Hermite matrix polynomials satisfy the following
relations:

DkHλ
n,m(x, A) = (λ

√
2A)kHλ

n−k,m(x, A);(3.1)

n
√

2AHλ
n,m(x, A) = x

√
2ADHλ

n,m(x, A) − mDHλ
n−m+1,m(x, A);(3.2)
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xn

n!
I = (

√
2A)−n

[n/m]∑

k=0

1
k!

Hn−m,m(x, A);(3.3)

unHn,m(x, A) =
[n/m]∑

k=0

(1 − um)k

k!
Hn−mk,m(x, A),(3.4)

where D=d/dx.
Proof. Differentiating (2.1) with respect to x yields

λt
√

2A exp(λ(xt
√

2A − tmI)) =
∞∑

n=1

DHn−mk,m(x, A)tn.(3.5)

By (2.1) and (3.5) we have

λ
√

2A

∞∑

n=0

Hλ
n,m(x, A)tn+1 =

∞∑

n=1

DHλ
n,m(x, A)tn.

Since DHλ
0,m(x, A) = 0, then for n ≥ 1 one obtains

DHλ
n,m(x, A) = λ

√
2AHλ

n−1,m(x, A).(3.6)

Iteration (3.6), for 0 ≤ k ≤ n gives (3.1).
Differentiating (2.1) with respect to x and t we find

∂F/∂x = λt
√

2A exp(λ(xt
√

2A − tmI)),

and

∂F/∂t = λ(x
√

2A − mtm−1I)exp(λ(xt
√

2A − tmI)).

Therefore, F (x, t) satisfies the partial matrix differential equation

(xI − mtm−1(
√

2A)−1)∂F/∂x − t∂F/∂t = 0,

which, by using (2.1), becomes

(xI − mtm−1(
√

2A)−1)
∞∑

n=1

DHλ
n,m(x, A)tn −

∞∑

n=1

nHλ
n,m(x, A)tn = 0,

or
∞∑

n=1

nHλ
n,m(x, A)tn =

∞∑

n=1

xDHλ
n,m(x, A)tn − (

√
2A)−1

∞∑

n=1

mDHλ
n,m(x, A)tn+m−1.

Since Hλ
n,m(x, A) = (λx

√
2A)n/n! for 0 ≤ n ≤ m − 1, then we get (3.2).
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For λ = 1, (2.1) reduces to

exp(xt
√

2A − tmI) =
∞∑

n=0

Hn,m(x, A)tn.

Hence

exp(xt
√

2A) =
∞∑

k=0

tmk

k!

∞∑

n=0

Hn,m(x, A)tn,

and by (1.8) we get

∞∑

n=0

(x
√

2A)n

n!
tn =

∞∑

n=0

[n/m]∑

k=0

1
k!

Hn−mk,m(x, A)tn.

By equating of the coefficients of tn one gets (3.3).
Since

exp(xt
√

2A − tmumI) = exp(xt
√

2A − tmI)exp(tmI − tmumI),

then
∞∑

n=0

Hn,m(x, A)tnun =
∞∑

n=0

∞∑

k=0

(1 − um)ktmk

k!
Hn,m(x, A)tn

=
∞∑

n=0

[n/m]∑

k=0

(1 − um)k

k!
Hn,m(x, A)tn.

which, by comparing the coefficients of tn, we get (3.4).
Now, inserting (3.6) in (3.2) yields

nHλ
n,m(x, A) = λx

√
2AHλ

n−1,m(x, A) − m(
√

2A)−1DHλ
n−m+1,m(x, A).(3.7)

Replacing n by n − m + 1 in (3.6) gives

DHλ
n−m+1,m(x, A) = λ

√
2AHλ

n−m,m(x, A).(3.8)

Substituting from (3.8) into (3.7) yields the three terms recurrence relation as given
in the following theorem:

Theorem 3.2. The generalized Hermite matrix polynomials Hλ
n,m(x, A), satisfy

the three terms recurrence relation:

nHλ
n,m(x, A) = λ(x

√
2AHλ

n−1,m(x, A) − mHλ
n−m,m(x, A)), n ≥ m,(3.9)

with initial values Hλ
n,m(x, A) = (λx

√
2A)n/n!, 0 ≤ n ≤ m − 1.

Finally, we prove the following:
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Theorem 3.3. Suppose that A is a matrix in C
N×N satisfying (1.2). Then the

generalized Hermite matrix polynomials Hλ
n,m(x, A) are a solution of the differential

equation of m-th order in the form:

Y (m) − m−1λm−1(
√

2A)m(xY ′ − nY ) = 0.(3.10)

Proof. With the aid of the relations (3.1) and (3.9), we have

(λ
√

2A)mHλ
n−m,m(x, A) − m−1λm(

√
2A)m+1xHλ

n−1,m(x, A))+

m−1λm−1(
√

2A)mnHλ
n−m,m(x, A))

= m−1λm−1(
√

2A)m[mλHλ
n−m,m(x, A) − xλ

√
2AHλ

n−1,m(x, A) + nHλ
n,m(x, A)] = 0.

The differential equation (3.10) will be called the generalized Hermite matrix
differential equation. For m=2 and λ = 1, the differential equation (3.10) gives the
Hermite matrix differential equation in the form:

Y
′′ − A(xY ′ − nY ) = 0.
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[9] L. Jódar, R. Company and E. Navarro. Laguerre matrix polynomials and system of second-order

differential equations. Appl. Num. Math., 15:53–63, 1994.
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