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THE (WEAKLY) SIGN SYMMETRIC P -MATRIX COMPLETION
PROBLEMS∗

LUZ MARIA DEALBA† , TIMOTHY L. HARDY‡ , LESLIE HOGBEN§ , AND

AMY WANGSNESS§

Abstract. In this paper it is shown that a partial sign symmetric P -matrix, whose digraph
of specified entries is a symmetric n-cycle with n ≥ 6, can be completed to a sign symmetric P -
matrix. The analogous completion property is also established for a partial weakly sign symmetric
P -matrix and for a partial weakly sign symmetric P0-matrix. Patterns of entries for 4 × 4 matrices
are classified as to whether or not a partial (weakly) sign symmetric P - or weakly sign symmetric
P0-matrix specifying the pattern must have completion to the same type of matrix. The relationship
between the weakly sign symmetric P - and sign symmetric P -matrix completion problems is also
examined.
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1. Introduction. A partial matrix is a rectangular array in which some entries
are specified while others are free to be chosen. A completion of a partial matrix is a
specific choice of values for the unspecified entries. A pattern for n× n matrices is a
list of positions of an n×n matrix, that is, a subset of N ×N where N = {1, . . . , n}.
A partial matrix specifies a pattern if its specified entries lie exactly in those positions
listed in the pattern. In this paper a pattern is assumed to contain all diagonal
positions.

Matrix completion problems have been studied for many classes of matrices. We
use most of the definitions and notation from [2]. One slight distinction: here the
term “symmetric” is used for a pattern with the property that (j, i) is in the pattern
whenever (i, j) is in the pattern; such patterns were called “positionally symmetric”
in [2].

An n × n matrix is called a P0-matrix (P -matrix ) if all its principal minors
are nonnegative (positive). We shall use P -(P0-)matrix to mean P -matrix or P0-
matrix. A matrix, A, is sign symmetric if for each i, j ∈ N , either aij = 0 = aji or
aijaji > 0. The matrix is weakly sign symmetric if aijaji ≥ 0. We shall use (weakly)
sign symmetric to mean weakly sign symmetric or sign symmetric. A partial P0-matrix
(partial P -matrix) is a partial matrix in which all fully specified principal submatrices
are P0-matrices (P -matrices). Similarly, a partial (weakly) sign symmetric matrix is
a partial matrix in which all fully specified principal submatrices are (weakly) sign
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symmetric.
We shall use the following properties of (weakly) sign symmetric P -(P0-)matrices.

Let A be a (weakly) sign symmetric P -(P0-)matrix. If D is a positive diagonal ma-
trix then DA is a (weakly) sign symmetric P -(P0-)matrix. If D is a nonsingular
diagonal matrix then D−1AD is a (weakly) sign symmetric P -(P0-)matrix. If P is a
permutation matrix, then P−1AP is a (weakly) sign symmetric P -(P0-)matrix.

Throughout the paper we will usually denote the entries of a partial matrix as
follows: di denotes a (specified) diagonal entry, aij a specified off-diagonal entry, and
xij an unspecified off-diagonal entry, 1 ≤ i, j ≤ n. In addition, cij may be used to
denote the value assigned to the unspecified entry xij during the process of completing
a partial matrix. In the case of a symmetrically placed pair, aij and xji, in a partial
matrix, the specified entry aij shall be referred to as the specified twin. The other
member of the pair, xij , shall be referred to as the unspecified twin.

Digraphs are used to study matrices (nonzero digraphs) and patterns (pattern-
digraphs), when all diagonal entries are nonzero in a matrix or all diagonal positions
are present in a pattern. For a pattern Q for n×n matrices that contains all diagonal
positions, the digraph of Q (pattern-digraph) is the digraph having as vertex set N
and, as arcs the ordered pairs (i, j) ∈ Q, where i �= j. When diagonal positions are
omitted or diagonal entries of a matrix can be zero, it is sometimes necessary to use
L-digraphs (digraphs that include loops). For a fully specified matrix A, the nonzero-
L-digraph of A is the L-digraph having vertex set N and, as arcs, the ordered pairs
(i, j). where aij �= 0. The reader is referred to [2] for formal definitions of most graph
theory terms.

A path in the digraph or L-digraph G = (VG, EG) is a sequence of vertices
v1, v2, . . . , vk−1, vk in VG such that for i = 1, . . . , k− 1, the arc (vi, vi+1) ∈ EG and all
vertices are distinct except possibly v1 = vk. A cycle is a path in which v1 = vk. If the
partial matrix A specifies a digraph G that includes the k-cycle Γ = v1, v2, . . . , vk, v1

then the k-cycle product of Γ in A is av1v2av2v3 . . . avk−1vk
avkv1 .

In Section 2 we present theorems that relate weakly sign symmetric P -, sign sym-
metric P -, and weakly sign symmetric P0-completions. In Section 3 we consider the
symmetric n-cycle, and demonstrate that it has weakly sign symmetric P0-completion
for n ≥ 6. We apply the results of Section 2 to show that such a cycle has (weakly)
sign symmetric P -completion, answering a question of [3]. In Section 4 of this pa-
per we completely classify all digraphs up to order 4 as to (weakly) sign symmetric
P -completion and weakly sign symmetric P0-completion.

2. Relationship Theorems. If X and Y are classes of matrices with X ⊆ Y ,
in general it is not possible to conclude either that a pattern that has Y -completion
must have X-completion (because the completion to a Y -matrix may not be an X-
matrix) or that a pattern that has X-completion must have Y -completion (because
there may be a partial Y -matrix that is not a partial X-matrix). However, in cases
where there is a natural relationship between the classes X and Y , it is sometimes
possible to conclude that certain (or all) patterns that have Y -completion have X-
completion or vice versa (cf. [7]). In this section we present relationship theorems
that are relevant to the three separate matrix completion problems we are studying,
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that is, the weakly sign symmetric P -, sign symmetric P - and weakly sign symmetric
P0-matrix completion problems.

Theorem 2.1 ([7]). Any pattern that has weakly sign symmetric P0-completion
has weakly sign symmetric P -completion.

Lemma 2.2. Let Q be a pattern that has weakly sign symmetric P -completion,
where for any partial weakly sign symmetric P -matrix specifying Q, there is a weakly
sign symmetric P -completion in which zero is assigned to any unspecified twin whose
specified twin is zero. Then Q has sign symmetric P -completion.

Proof. Let A be a partial sign symmetric matrix specifying Q. The matrix A
is a partial weakly sign symmetric matrix specifying Q, and so can be completed to
a weakly sign symmetric P -matrix B = [bij ] in a way that zero is assigned to any
unspecified twin whose specified twin is zero. The only reason B might not be a sign
symmetric P -matrix is if some bij is nonzero and bji is zero. In this case, either both
entries were unspecified in A, or bij was specified nonzero in A while the unspecified
twin xji was assigned zero. Since there are only finitely many principal minors of
B and these are continuous functions of the entries of B, we can slightly perturb
zero entries that were originally unspecified while maintaining all principal minors
positive. This converts B into a sign symmetric P -matrix that completes A.

Corollary 2.3. Any symmetric pattern that has weakly sign symmetric P -
completion has sign symmetric P -completion.

Lemma 2.4. Any asymmetric pattern that has sign symmetric P -completion has
weakly sign symmetric P -completion.

Proof. Since the pattern is asymmetric, any partial weakly sign symmetric P -
matrix is a sign symmetric P -matrix, and so can be completed to a sign symmetric
P -matrix, which is necessarily a weakly sign symmetric P -matrix.

Question 2.5. In all cases examined in this paper, a pattern has weakly sign
symmetric P -completion if and only if it has sign symmetric P -completion. Is this
always the case?

3. Symmetric n-cycles. The completability of symmetric n-cycles was first
studied in [3] for various classes of matrices, including the classes of (weakly) sign
symmetric P - and (weakly) sign symmetric P0-matrices. It is shown in Example
3.4 of [3] that for any n > 3, the symmetric n-cycle does not have sign symmetric
P0-completion, because the partial sign symmetric P0-matrix

A =




1 1 ? · · · ? −1
1 1 1 · · · ? ?
? 1 1 · · · ? ?
...

...
...

. . .
...

...
? ? ? · · · 1 1
−1 ? ? · · · 1 1




cannot be completed to a sign symmetric P0-matrix. In Theorem 4.1 of [3], it is
asserted that this example also shows that for any n > 3, the symmetric n−cycle
does not have weakly sign symmetric P0-completion. However, the proof in Example
3.4 of [3] requires sign symmetry; weak sign symmetry is not enough, as shown in
Example 3.1 below. In fact, Theorem 4.1 of [3] applies only to sign symmetric P0-
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and P0,1-matrices, not weakly sign symmetric P0- and P0,1-matrices, as established
below in Theorem 3.7.

Example 3.1. The partial weakly sign symmetric P0-matrix, A, can be completed
to a weakly sign symmetric P0-matrix, Â, where

A =




1 1 ? ? ? −1
1 1 1 ? ? ?
? 1 1 1 ? ?
? ? 1 1 1 ?
? ? ? 1 1 1
−1 ? ? ? 1 1




and Â =




1 1 1 0 0 −1
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1
−1 0 0 1 1 1
−1 −1 0 0 1 1



.

It is a straightforward computation to verify that all principal minors of Â are
either zero or one.

However, as noted in Example 3.3 of [3], the symmetric 4-cycle does not have
(weakly) sign symmetric P -(P0)-completion, and our Example 3.2 shows the sym-
metric 5-cycle also lacks completion.

Example 3.2. The symmetric 5-cycle does not have (weakly) sign symmetric P -
or P0-completion because the partial sign symmetric P -matrix

A =




1 1 x13 z14 −0.99
0.99 1 1 x24 z25

x31 0.99 1 1 x35

z41 x42 0.99 1 1
−1 z52 x53 0.99 1


 cannot be completed to a weakly sign

symmetric P0-matrix (here xij and zij are both used to denote unspecified entries).
Proof. Suppose that there is a weakly sign symmetric P0-completion of A. Ta-

ble 3.1 lists selected principal minors that must be nonnegative, giving conditions on
the variables xij and zij .

Table 3.1

α DetA(α)
{1,2,3} −0.98 + 0.9801x13 + x31 − x13x31

{2,3,4} −0.98 + 0.9801x24 + x42 − x24x42

{3,4,5} −0.98 + 0.9801x35 + x53 − x35x53

{1,4,5} −0.98 − z14 − 0.9801z41 − z14z41

{1,2,5} −0.98 − z25 − 0.9801z52 − z25z52

{1,3,4} 0.01 − x13x31 + 0.99x31z14 + x13z41 − z14z41

{1,2,4} 0.01 − x24x42 + 0.99x42z14 + x24z41 − z14z41

{1,3,5} 0.01 − x13x31 − x13x35 − 0.99x31x53 − x35x53

{2,3,5} 0.01 − x35x53 + 0.99x53z25 + x35z52 − z25z52

{2,4,5} 0.01 − x24x42 + 0.99x42z25 + x24z52 − z25z52

Since xijxji and zijzji ≥ 0, from the first five principal minors in Table 3.1 it is
clear that x13, x31, x24, x42, x35, x53 ≥ 0 and z14, z41, z25, z52 ≤ 0. Furthermore:
at least one of x13, x31 > 0.49, at least one of x24, x42 > 0.49, at least one of x35,
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x53 > 0.49, at least one of |z14|, |z41| > 0.49, and at least one of |z25|, |z52| > 0.49.
From DetA({1, 3, 4}) ≥ 0 taken in conjunction with the signs of the entries, each

of the terms x13x31, x31z14, x13z41, z14z41 must be less in absolute value than 0.0102.
Thus, one of two things must happen:
(1a) x13 ≥ 0.49, x31 ≤ 0.021, |z41| ≤ 0.021 and |z14| ≥ 0.49,
(1b) x31 ≥ 0.49, x13 ≤ 0.021, |z14| ≤ 0.021 and |z41| ≥ 0.49.
Similarly, from DetA({1, 2, 4}), one of two things must happen:
(2a) x24 ≥ 0.49, x42 ≤ 0.021, |z41| ≤ 0.021 and |z14| ≥ 0.49,
(2b) x42 ≥ 0.49, x24 ≤ 0.021, |z14| ≤ 0.021 and |z41| ≥ 0.49.
From DetA({1, 3, 5}), one of two things must happen:
(3a) x13 ≥ 0.49, x35 ≤ 0.021, x53 ≥ 0.49 and x31 ≤ 0.021,
(3b) x31 ≥ 0.49, x53 ≤ 0.021, x13 ≥ 0.49 and x35 ≤ 0.021.
From DetA({2, 3, 5}), one of two things must happen:
(4a) x35 ≥ 0.49, x53 ≤ 0.021, |z52| ≤ 0.021 and |z25| ≥ 0.49,
(4b) x53 ≥ 0.49, x35 ≤ 0.021, |z25| ≤ 0.021 and |z52| ≥ 0.49.
From DetA({2, 4, 5}), one of two things must happen:
(5a) x24 ≥ 0.49, x42 ≤ 0.021, |z52| ≤ 0.021 and |z25| ≥ 0.49,
(5b) x42 ≥ 0.49, x24 ≤ 0.021, |z25| ≤ 0.021 and |z52| ≥ 0.49.
Consider Case 1a, x13 ≥ 0.49, x31 ≤ 0.021, |z41| ≤ 0.021 and |z14| ≥ 0.49.
Then by examining z14, we must have Case 2a, x24 ≥ 0.49, x42 ≤ 0.021, |z41| ≤

0.021 and |z14| ≥ 0.49. By examining x24, we must have Case 5a, x24 ≥ 0.49,
x42 ≤ 0.021, |z52| ≤ 0.021 and |z25| ≥ 0.49.

By examining x13, we must have Case 3a, x13 ≥ 0.49, x35 ≤ 0.021, x53 ≥ 0.49 and
x31 ≤ 0.021 and by examining x35, we must have Case 4b, x53 ≥ 0.49, x35 ≤ 0.021,
|z25| ≤ 0.021 and |z52| ≥ 0.49, which contradicts the previously established restrictions
on |z25| and |z52|.

Case 1b is similar.
We will now establish the main theorem of this section, namely, the symmetric

6-cycle does have weakly sign symmetric P0-completion, through a series of lemmas.
Lemma 3.3. Let A be a partial weakly sign symmetric P0-matrix, whose digraph

of specified entries is a symmetric n-cycle with n > 4, such that neither n-cycle
product is negative. Then A can be completed to a weakly sign symmetric P0-matrix.

Proof. Use a permutation similarity to renumber the vertices of the graph as
desired. We may assume that the symmetric n−cycle specified by A is 1, 2, . . . , n, 1.
Index arithmetic is mod n.

Case 1: At least one n-cycle product is positive, or there is a k such that ak,k+1 =
0 = ak+1,k. In the latter situation, use a permutation similarity to get an1 = 0 = a1n.

Since A is weakly sign symmetric, ak,k+1 and ak+1,k cannot have opposite signs,
although one can be 0 and the other either sign. For k = 2, . . . , n, define sk = 1
unless ak−1,k or ak,k−1 < 0, in which case sk = −1. Then s2

k = 1, skak,k−1 ≥ 0, and
skak−1,k ≥ 0. Define the diagonal matrix D = diag(1, s2, s2s3, . . . , s2s3 . . . sn). Note
D = D−1.

We show DAD is nonnegative:
• (DAD)k−1,k = (s2 . . . sk−1)2skak−1,k ≥ 0, for k = 2, . . . , n.
• (DAD)k,k−1 = (s2 . . . sk−1)2skak,k−1 ≥ 0, for k = 2, . . . , n.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 257-271, November 2003



ELA

262 L.M. DeAlba, T.L. Hardy, L. Hogben, and A. Wangsness

• (DAD)1n = (s2 . . . sn)a1n ≥ 0, because:
If a1n = 0 then (DAD)1n = 0.
If a1n �= 0 and an,n−1 . . . a32a21a1n > 0, then (s2 . . . sn)a1n > 0.
If a1n �= 0 and an,n−1 . . . a32a21a1n = 0, then a12a23 . . . an−1,nan1 > 0.
Thus (s2 . . . sn)an1 > 0, and so (s2 . . . sn)a1n > 0.

• Similarly, (DAD)n1 = (s2 . . . sn)an1 ≥ 0.
Thus B = DAD is a partial nonnegative P0-matrix with the same pattern of

entries as A.
Complete B to C by Theorem 3.2 of [2]. Then DCD will complete A to a weakly

sign symmetric P0-matrix.
Case 2: Both n-cycle products are 0 and for each k, ak,k+1 �= 0 or ak+1,k �= 0.
Since both n-cycle products are 0, there exist distinct i and j such that ai,i+1 = 0

and aj+1,j = 0. Without loss of generality, i = n. Let α = 1, . . . , j and β =
j + 1, . . . , n. Then A(α) and A(β) are partial weakly sign symmetric P0-matrices
specifying block-clique patterns and so can be completed to weakly sign symmetric
P0-matrices C(α) and C(β) [3]. Complete A by setting all other entries to 0.

The resulting matrix is weakly sign symmetric, and is also a P0-matrix because
it is a block triangular matrix with diagonal blocks C(α) and C(β), [6].

Lemma 3.4. Let A be a partial weakly sign symmetric P0-matrix, whose digraph
of specified entries is a symmetric 6-cycle, such that one 6-cycle product is negative
and dk = 0 for some k. Then A can be completed to a weakly sign symmetric P0-
matrix.

Proof. Without loss of generality we may assume d6 = 0, di = 1 or 0 for i =
1, . . . 5, the 6-cycle is 1, 2, . . . , 6, 1, and a12a23a34a45a56a61 < 0. This implies a16 = 0
and a65 = 0. By use of a diagonal similarity, a12 = a23 = a34 = a45 = a56 = 1, and
a61 < 0 (since a diagonal similarity does not affect cycle products). Complete A to
the weakly sign symmetric matrix

Â =




d1 1 0 0 0 0
a21 d2 1 0 0 0

a32a21 a32 d3 1 0 0
a43a32a21 a43a32 a43 d4 1 0

a54a43a32a21 a54a43a32 a54a43 a54 d5 1
a61 0 0 0 0 0




.

We establish Â is a P0-matrix by examining the principal minors. First, we observe
that DetÂ = −a61 > 0. Furthermore, all proper principal minors are zero except
those minors in which row and column 6 are removed. When row and column 6 are
removed from matrix A, the completion is precisely that used to complete a block-
clique partial P0-matrix. Thus Â is a P0-matrix.

Lemma 3.5. Let A be a partial weakly sign symmetric P0-matrix, whose digraph
of specified entries is a symmetric 6-cycle, such that dk �= 0 for all k, and where one
6-cycle product is negative and the other is zero. Then A can be completed to a weakly
sign symmetric P0-matrix.

Proof. By left multiplication by a positive diagonal matrix, we may assume dk = 1
for all k. Without loss of generality, the 6-cycle is 1, 2, . . . , 6, 1, a12a23 . . . a56a61 is
negative and a16 = 0. Apply a diagonal similarity to make all superdiagonal entries
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equal to 1. Since cycle products are not affected by diagonal similarity, a61 < 0.
Complete A to the weakly sign symmetric matrix

Â =




1 1 1 0 0 0
a21 1 1 1 0 0
0 a32 1 1 1 0
0 0 a43 1 1 1
0 0 0 a54 1 1
a61 0 0 0 a65 1



.

We establish that Â is a P0-matrix by computing all principal minors and writing
them as sums of nonnegative terms. Since A is a partial P0-matrix, all the original
2×2 minors 1−ak+1,k, k = 1, . . . , 5 are nonnegative. Since A is weakly sign symmetric,
ak+1,k ≥ 0, for k = 1, . . . , 5, and a61 < 0 by hypothesis.

Table 3.2

α DetÂ(α)
{1, 2, 3, 4, 5} (1 − a32) (1 − a43) (1 − a54) (1 − a21) +

a32a43a54 (1 − a21) + a21a32a43

{1, 2, 3, 4, 6} (1 − a43) (1 − a21) (1 − a32) − a61 (1 − a32) +
a43a32a21

{1, 3, 4, 5, 6} (1 − a43) (1 − a54) (1 − a65) − a61 (1 − a54) +
a43a54a65

{2, 3, 4, 5, 6} (1 − a32) (1 − a43) (1 − a54) (1 − a65) +
a32a43a54 (1 − a65) + a65a54a43

{1, 2, 3, 4, 5, 6}
(1 − a21) (1 − a32) (1 − a43) (1 − a54) (1 − a65) +
a21a32a43 (1 − a65) + a43a54a65 (1 − a21) +
a32a43a54 (1 − a65) (1 − a21) − a43a61

Table 3.2 exhibits the factored forms that demonstrate the listed principal minors
of Â are nonnegative. Each of the omitted principal minors of Â is either equal to
1, one of the original 2 × 2 minors, a product of two original minors, a product of
three original minors, the sum of a nonnegative term and the product of three original
minors, or (1 − ak+1,k) − a61. Thus Â is a P0-matrix.

Lemma 3.6. Let A be a partial weakly sign symmetric P0-matrix, whose digraph
of specified entries is a symmetric 6-cycle, such that dk �= 0 for all k and both 6-
cycle products are negative. Then A can be completed to a weakly sign symmetric
P0-matrix.

Proof. We may assume that dk = 1 for all k, the symmetric 6-cycle specified
by A is 1, 2, . . . , 6, 1, with |a12a23a34a45a56a61| ≤ |a21a32a43a54a65a16| and a61a16 ≤
ak,k+1ak+1,k for k = 1, . . . , 5, and all superdiagonal entries equal to one. Since cycle
products are not affected by diagonal similarity, a61 < 0, |a61| ≤ |a21a32a43a54a65a16|,
and a16a61 ≤ ak+1,k. By weak sign symmetry and the fact that both cycle products
are nonzero, a16 < 0 and ak+1,k > 0, k = 1, . . . , 5.

To reduce the number of subscripts and make all symbols positive, we introduce
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the following notation: ak = ak,k−1, b = −a61, c = −a16. The specified 2 × 2 minors
(original minors) are 1 − ak, k = 2, . . . , 6 and 1 − bc, all of which are nonnegative.
Complete A to the weakly sign symmetric matrix Â as shown:

Â =




1 1 1 0 0 −c
a2 1 1 1 0 0
0 a3 1 1 1 0
0 0 a4 1 1 1
−b 0 0 a5 1 1
−b −b 0 0 a6 1




.

We must show Â is a P0-matrix. From the fact A is a partial P0-matrix, the
assumptions for this lemma, and the preprocessing we have:

0 < ak ≤ 1, for k = 2, . . . , 6; bc ≤ ak, for k = 2, . . . , 6; b ≤ a2a3a4a5a6c.
Let am = mink=2,...,6 {ak}. Then bc ≤ am, so b ≤ a2a3a4a5a6c implies b2 ≤

a2a3a4a5a6bc ≤ a2a3a4a5a6am, or b ≤ √
a2a3a4a5a6am ≤ am (since ak ≤ 1). Thus,

also b ≤ 1 and b ≤ ak for k = 2, . . . , 6. Also c ≤ am

b since bc ≤ am and b
a2a3a4a5a6

≤ c
since b ≤ a2a3a4a5a6c.

Each of the 2 × 2 principal minors of Â is either equal to 1 or one of the original
minors. Each of the 3×3 principal minors of Â is one of: an original minor, a product
of two such original minors, or 1 − b. Each of the 4 × 4 principal minors is one of: a
product of two original minors, a sum of a product of two original minors and b, or a
sum of a product of three original minors and a nonnegative term.

The 5 × 5 principal minors:
DetÂ({2, 3, 4, 5, 6}) = (1 − a3)(1 − a4)(1 − a5)(1 − a6) + a4a5(a3 + a6 − a3a6) +

b(1 − a4 − a5). The first term, (1 − a3)(1 − a4)(1 − a5)(1 − a6) ≥ 0 since it is the
product of original minors. We show a4a5(a3 + a6 − a3a6) + b(1 − a4 − a5) ≥ 0.
Note, a3 + a6 − a3a6 = a3 + a6(1 − a3) ≥ am > 0, so if 1 − a4 − a5 ≥ 0 we are
done. If 1 − a4 − a5 < 0, b ≤ am so a4a5(a3 + a6 − a3a6) + b(1 − a4 − a5) ≥
a4a5(am) + am(1 − a4 − a5) ≥ am(1 − a4)(1 − a5) ≥ 0.

DetÂ({1, 3, 4, 5, 6}) = ((1 − a4)(1 − bc) + b)(1 − a5)(1 − a6) + (a4 − b)a5a6 +
a5a6bc(1 − a4) ≥ 0.

DetÂ({1, 2, 4, 5, 6}) = (1−a2)(1−a5)(1−a6− bc)+ b(1−a6)(1− bc)+a6bc(1− b)
≥ ((1 − a2)(1 − a5)(1 − a6 − bc)) + a6bc(1 − b). Also, b ≤ a2, so 1 − b ≥ 1 − a2 ≥
(1 − a2)(1 − a5). Thus ((1 − a2)(1 − a5)(1 − a6 − bc)) + a6bc(1 − b) ≥ ((1 − a2)(1 −
a5)(1 − a6 − bc)) + a6bc(1 − a2)(1 − a5) = (1 − a2)(1 − a5)(1 − a6)(1 − bc) ≥ 0.

The computation of DetÂ({1, 2, 3, 5, 6}) is similar to that of DetÂ({1, 2, 4, 5, 6}).
Other corresponding pairs of minors are DetÂ({1, 2, 3, 4, 6}) with DetÂ({1, 3, 4, 5, 6})
and DetÂ({1, 2, 3, 4, 5}) with DetÂ({2, 3, 4, 5, 6}).

The determinant of the whole 6 × 6 matrix, DetÂ, can be expressed as:

(1 − a4)(1 − a2)(1 − a5)(1 − a3)(1 − a6)(3.1)
+ (1 − a4)a6(1 − a3)bc(3.2)
+ a4a2a3(1 − a6)(1 − a5)(3.3)
+ a4a5a6(1 − a2)(1 − a3)(3.4)
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+ a4a3a5(1 − a2a6)(3.5)
+ b(1 − a2)(1 − a5)(3.6)
+ b(1 − a3)(1 − a6)(3.7)
+ a2a3a4a5a6c− b(3.8)
+ b(1 − bc)(1 − a4)(3.9)
+ b2 + (a3 − a3a5 − a3a4)bc(3.10)
− (1 − a4)(1 − a2)(1 − a5)bc(3.11)

Note that all terms are clearly nonnegative except (10) and (11). Note that DetÂ
is a linear function of c, so it is sufficient to show DetÂ ≥ 0 for cmin = b

a2a3a4a5a6
and

for cmax = am

b .
If c = cmax = am

b :
We rewrite (8): a2a3a4a5a6c− b = ( 1

b )(a2a3a4a5a6am − b2). And (10):
(b2 − a2a3a4a5a6am) + a2a3a4a5a6am + (a3 − a3a5 − a3a4)am

= (b2 − a2a3a4a5a6am) + a3am(a2a4a5a6 + 1 − a5 − a4 + a4a5 − a4a5)
= (b2 − a2a3a4a5a6am) + a3am(1 − a5 − a4 + a4a5) − a3a4a5am(1 − a2a6)
= (b2 − a2a3a4a5a6am) + a3am(1 − a5)(1 − a4) − a3a4a5am(1 − a2a6).

We now add (8), (10), and (5):
(1

b )(a2a3a4a5a6am − b2) + (b2 − a2a3a4a5a6am) + a3am(1 − a5)(1 − a4)
−a3a4a5am(1 − a2a6) + a4a3a5(1 − a2a6) = (1

b − 1)(a2a3a4a5a6am − b2)
+a3am(1 − a5)(1 − a4) + a3a4a5(1 − am)(1 − a2a6) ≥ a3am(1 − a5)(1 − a4)
= a3(1 − a4)(1 − a5)bc.

If c = cmin = b
a2a3a4a5a6

, we rewrite (10):

b2 + (a3−a3a5−a3a4)b2

a2a3a4a5a6

= b2

a2a3a4a5a6
(a2a3a4a5a6 + a3 − a3a5 − a3a4)

= a3b2

a2a3a4a5a6
(a2a4a5a6 + 1 − a5 − a4 + a4a5 − a4a5)

= a3b2

a2a3a4a5a6
(1 − a5)(1 − a4) − b2

a2a3a4a5a6
a3a4a5(1 − a2a6).

We add (10) and (5):
a3b2

a2a3a4a5a6
(1 − a5)(1 − a4) − b2

a2a3a4a5a6
a3a4a5(1 − a2a6) + a4a3a5(1 − a2a6)

= a3b2

a2a3a4a5a6
(1 − a5)(1 − a4) + (1 − b2

a2a3a4a5a6
)a3a4a5(1 − a2a6)

≥ a3b2

a2a3a4a5a6
(1 − a5)(1 − a4)

= a3bc(1 − a5)(1 − a4).
Thus, for c = cmin or cmax

(8) + (10) + (5) + (11) ≥ a3bc(1 − a5)(1 − a4) − (1 − a4)(1 − a2)(1 − a5)bc
= (1 − a4)(1 − a5)(a3 + a2 − 1)bc.

The sum (2)+(8)+(10)+(5)+(11) is greater than or equal to:

(1 − a4)a6(1 − a3)bc + (1 − a4)(1 − a5)(a3 + a2 − 1)bc
= −(1 − a4)bc(1 − a2 − a3 − a5 − a6 + a3a5 + a3a6 + a5a2)
= (1 − a4)bc[−(1 − a2)(1 − a3)(1 − a5)(1 − a6) + a2a3(1 − a5)
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+a2a6(1 − a3) + a5a6(1 − a2)(1 − a3)]
≥ −(1 − a4)(1 − a2)(1 − a3)(1 − a5)(1 − a6)bc.

Thus, DetÂ ≥ (1) + (2) + (8) + (10) + (5) + (11)
≥ (1 − a4)(1 − a2)(1 − a3)(1 − a5)(1 − a6) − (1 − a4)(1 − a2)(1 − a3)(1 − a5)(1 − a6)bc
= (1 − a4)(1 − a2)(1 − a3)(1 − a5)(1 − a6)(1 − bc) ≥ 0.

The following theorem is a consequence of Lemmas 3.3 through 3.6.
Theorem 3.7. A pattern whose digraph is a symmetric 6-cycle has weakly sign

symmetric P0-completion.
There are several immediate consequences to Theorem 3.7.
Corollary 3.8. Any pattern whose digraph is a symmetric 6-cycle has (weakly)

sign symmetric P -completion.
Proof. The result for weakly sign symmetric P -matrices follows from Theorems 3.7

and 2.1. The result for sign symmetric P -matrices follows from the result for weakly
sign symmetric P -matrices and Corollary 2.3.

Corollary 3.9. A pattern whose digraph is a symmetric n-cycle has (weakly)
sign symmetric P -completion if and only if n �= 4 and n �= 5.

Proof. A partial matrix, whose digraph of specified entries is a symmetric 2-cycle
or 3-cycle, is complete. Example 3.3 of [3] shows that there is a partial sign symmetric
P -matrix, whose digraph of specified entries is a symmetric 4-cycle, that cannot be
completed to a weakly sign symmetric P -matrix. Our Example 3.2 establishes the
same noncompletion result for n = 5. The proof of completion for n ≥ 6 is by
induction on n. The base case is provided by Corollary 3.8. For the inductive step
we let A be a (weakly) sign symmetric P -matrix specifying a symmetric n-cycle. We
may assume that the symmetric n-cycle is 1, 2, . . . , n, 1, and either a12 = a21 = a23 =
a32 = . . . = a1n = an1 = 0 or a12 �= 0 (by permutation similarity). In the former
case, setting all unspecified entries to 0 produces a positive diagonal matrix, which is
certainly a (weakly) sign symmetric P -matrix. In the latter case we may apply the
proof of the inductive step of Lemma 3.5 of [3] as noted in that paper.

Corollary 3.9 completely answers the question about the completability of the
symmetric n-cycle for sign symmetric and weakly sign symmetric P -matrices. The
former problem was described as difficult in [3]. Note that “partial sign symmet-
ric P -matrix, the graph of whose entries is an n-cycle” in [3] is equivalent to our
“partial sign symmetric P -matrix, whose digraph of specified entries is a symmetric
n-cycle.” Theorem 3.10 below completely answers the analogous question for weakly
sign symmetric P0-matrices.

Theorem 3.10. A pattern whose digraph is a symmetric n-cycle has weakly sign
symmetric P0-completion if and only if n �= 4 and n �= 5.

Proof. The cases n = 2, 3, 4, 5 are the same as in Corollary 3.9 and again the
proof for n ≥ 6 is by induction on n. Theorem 3.7 supplies the case n = 6. Assume
true for n− 1. Let A be an n×n partial weakly sign symmetric P0-matrix specifying
the symmetric n-cycle 1, 2, . . . , n, 1. By multiplication by a positive diagonal matrix
we may assume that each diagonal entry of A is either 1 or 0.
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Case 1: There exists an index i such that di = di+1 = 1 and at least one of ai,i+1

and ai+1,i is nonzero. Renumber so that d1 = d2 = 1 and a12 �= 0. Then A may be
completed to a weakly sign symmetric P0-matrix Â as in Lemma 3.5 of [3].

Case 2: The matrix does not satisfy the conditions of Case 1 and there exists an
index i such that di = di+1 = 1. Necessarily ai,i+1 = ai+1,i = 0. Renumber so that
d1 = d2 = 1 (and a12 = a21 = 0). Either an1 = 0 or a1n = 0, because if dn = 0,
then DetA({1, n}) = −an1a1n, and if dn = 1, an1 = 0 and a1n = 0, since Case 1
does not apply. The digraph of the pattern specified by A({2, . . . , n}) is block-clique,
so it can be completed to a weakly sign symmetric P0-matrix [3]. Set the remaining
entries to 0 to obtain a completion Â. This completion has either the first row of
zeros (if a1n = 0) or the first column of zeros (if an1 = 0), and thus is a nonnegative
block triangular matrix, both of whose diagonal blocks (d1 = 1 and the completion of
A({2, . . . , n})) are P0-matrices. Thus Â is a weakly sign symmetric P0-matrix (cf. [6,
3.3]).

Case 3: There does not exist an index i such that di = di+1 = 1. Then for each
i, DetA({i, i + 1}) = −ai,i+1ai+1,i, so ai,i+1 = 0 or ai+1,i = 0. This implies at least
one of the two n-cycle products is zero.

Subcase A: If both n-cycle products are zero, then use the zero completion Â0 of
A. From the nonzero-L-digraph of Â0 we see that DetÂ0 = 0 because there are no
cycles of length greater than one (cf. Lemmas 1.2 and 1.3 of [2]).

For the remaining subcases, one n-cycle product is nonzero. Without loss of
generality, the cycle product of 1, 2, . . . , n, 1 is nonzero. By use of a diagonal similarity
we may assume a12 = a23 = . . . = an−1,n = 1.

Subcase B: an1 is positive. Then A is a nonnegative partial P0-matrix and can
be completed to a nonnegative (hence weakly sign symmetric) matrix [2].

Subcase C: an1 is negative and n is even. Use the zero completion Â0 of A. The
only cycles in the nonzero L-digraph of Â0 are the n-cycle and perhaps some loops
(1-cycles). The signed product of the n-cycle is positive since n is even and an1 < 0.
Thus the determinant of any principal minor is nonnegative.

•1 ✁
✁1✕

�
�

�
�

✠1•2 ✑
✑✑

✸
1

•3 


�1

•4

❆
❆
1

•5

�
�

✠1

•✛
1•

n
❅

❅
�

�
�

�

✒an1

�an1

Fig. 3.1. Nonzero-L-digraph of the completion of A for Case 3D

Subcase D: an1 is negative and n is odd. Complete A to Â by choosing a31 = 1
and an4 = an1, and set all other unspecified entries to 0. The nonzero-L-digraph Ĝ of
Â contains the n-cycle 1, 2, . . . , n, 1, the 3-cycle 1, 2, 3, 1, the (n−3)-cycle 4, 5, . . . , n−
1, n, 4, and possibly some loops. See Figure 3.1. The signed cycle products for the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 10, pp. 257-271, November 2003



ELA

268 L.M. DeAlba, T.L. Hardy, L. Hogben, and A. Wangsness

n-cycle, 3-cycle and (n − 3)-cycle are an1, 1, and −an1 because n is odd so n − 3 is
even. There are exactly two permutation L-digraphs in Ĝ, one having arc set the
n-cycle, and one having arc set the 3-cycle and the (n− 3)-cycle. The cycle products
are equal and the signs are opposite, so DetÂ = 0. The nonzero L-digraph of any
principal submatrix that is not the whole matrix cannot contain the n-cycle and thus
has no negative signed products in its determinant. Hence any principal minor is
nonnegative and Â is a weakly sign symmetric P0-matrix.

4. Classification of digraphs of order ≤ 4 regarding (weakly) sign sym-
metric P -completion and weakly sign symmetric P0-completion. Any di-
graph referred to in this section is identified as in [5], where q is the number of edges
and n is the diagram number.

Lemma 4.1. All patterns for 2 × 2 matrices have (weakly) sign symmetric P -
and weakly sign symmetric P0-completion. A pattern for 3 × 3 matrices has (weakly)
sign symmetric P - and weakly sign symmetric P0-completion if and only if its digraph
does not contain a 3-cycle or is complete.

Proof. Any partial weakly sign symmetric P -(P0-)matrix specifying any one of
the order two digraphs or one of the order three digraphs q = 0; q = 1; q = 2, n =
1-4; q = 3, n = 1, 3-4; q = 4, n = 3-4 may be completed to a weakly sign symmetric
P -(P0-)matrix by replacing each unspecified entry with a zero. These digraphs have
sign symmetric P -completion by Lemma 2.2.

A partial (weakly) sign symmetric P -(P0-) matrix specifying q = 4, n = 1 may be
completed to a (weakly) sign symmetric P -(P0-) matrix because it is block-clique [3].
Digraph q = 6 is complete.

q = 3, n = 2 q = 4, n = 2 q = 5

•

• •

1

3 2

✁
✁
✁
✁❆

❆
❆
❆✁

✁
✁✕

✛

❆
❆
❆

•

• •

1

3 2

✁
✁
✁
✁❆

❆
❆
❆✁

✁
✁✕

❆
❆
❆✙

✯

•

• •

1

3 2

✛❘
�

✌ ✍


 1 1 x

y 1 1
−2 z 1





 1 1 x

y 1 1
−2 1

2 1





 1 1 − 1

2
1
2 1 1

−2 z 1




Fig. 4.1. Digraphs that do not have completion

The example matrices in Figure 4.1 clearly show that the digraphs q = 3, n = 2;
q = 4, n = 2; and q = 5 have neither weakly sign symmetric P -completion, sign
symmetric P -completion, nor weakly sign symmetric P0-completion.

For sign symmetric P -matrices, the classification of digraphs of order 3, and the
result in Lemma 4.2 also appear in [8].

Lemma 4.2. A 4 × 4 matrix satisfying the pattern with digraph q = 7, n = 2;
q = 4, n = 16; q = 5, n = 7; q = 6, n = 4, 7 has (weakly) sign symmetric P -
completion.
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Proof. Consider the digraph in Figure 4.2.

•

• •

•

4 3

1 2

✻

�

�

✐

✐
✍

✌

Fig. 4.2. q = 7, n = 2

Let A =




1 a12 x13 a14

a21 1 a23 x24

x31 x32 1 a34

a41 x42 a43 1


 be a partial weakly sign symmetric P -matrix

specifying the digraph q = 7, n = 2. Clearly the original minors, 1 − a12a21, 1 −
a14a41, 1− a34a43 are greater than zero. We consider two cases: (1) a12a23a34a41 ≤ 0
and (2) a12a23a34a41 > 0.

Case 1: a12a23a34a41 ≤ 0. Set x13 = a14a43, x24 = a21a14, and all other un-
specified entries equal to zero. Each of the proper principal minors is equal to
1, or an original minor, or the product of two original minors. The determinant
DetA = (1 − a12a21) (1 − a14a41) (1 − a34a43) + a12a21a14a41a34a43 − a12a23a34a41.

Case 2: a12a23a34a41 > 0. Set x13 = a14a43, x24 = a21a14 + a23a34, and all other
unspecified entries equal to zero. Each of the proper principal minors is equal to 1, or
an original minor, or the product of two original minors. The determinant DetA =
(1 − a12a21) (1 − a14a41) (1 − a34a43) + a12a21a14a41a34a43. Thus, this digraph has
weakly sign symmetric P -completion.

Any partial weakly sign symmetric P -matrix specifying the digraph q = 6, n = 4
may be extended to a partial weakly sign symmetric P -matrix specifying the digraph
q = 7, n = 2 by setting the unspecified (1,4)-entry equal to 0 (see Figure 4.3). The
same reasoning applies to the digraphs q = 4, n = 16; q = 5, n = 7; and q = 6,
n = 7. Thus, these digraphs also have weakly sign symmetric P -completion. Since
all unspecified twins are assigned zero, all of these digraphs have sign symmetric
P -completion by Lemma 2.2.

Lemma 4.3. A 4 × 4 matrix specifying the patterns with digraphs q = 4, n = 16;
q = 5, n = 7; q = 6, n = 4, 7; q = 7, n = 2; does not have weakly sign symmetric
P0-completion.

Proof. A matrix satisfying the pattern with digraph q = 4, n = 16 does not
have weakly sign symmetric P0-completion by Example 9.8 in [6]. The same partial
matrix with additional specified entries set to zero satisfying the pattern with one of
the other four digraphs does not have completion.

Theorem 4.4. (Classification of Patterns of 4 × 4 matrices). Let Q be a pattern
for 4×4 matrices that includes all diagonal positions. The pattern Q has (weakly) sign
symmetric P -completion if and only if its digraph is one of the following (numbered
as in [5], q is the number of edges, n is the diagram number).
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q = 6, n = 4 q = 4, n = 16 q = 5, n = 7 q = 6, n = 7

Fig. 4.3. Digraphs associated with q = 7, n = 2

q = 0;
q = 1;
q = 2 n = 1-5;
q = 3 n = 1-11, 13;
q = 4 n = 1-12, 14-19, 21-23, 25-27;
q = 5 n = 1-5, 7-10, 14-17, 21-24, 26-29, 31, 33-34, 36-37;
q = 6 n = 1-8, 13, 15, 17, 19, 23, 26-27, 32, 35, 38-40, 43, 46;
q = 7 n = 2, 4-5, 9, 14, 24, 29, 34, 36;
q = 8 n = 1, 10, 12, 18;
q = 9 n = 8, 11;
q = 12.

The pattern Q has weakly sign symmetric P0-completion if and only if in its
digraph the induced subdigraph of any 3-cycle or 4-cycle is a clique. Equivalently, Q’s
digraph is one of those with (weakly) sign symmetric P -completion and it is not one
of the following: q = 4, n = 16; q = 5, n = 7; q = 6, n = 4, 7; q = 7, n = 2.

Proof. We first consider (weakly) sign symmetric P -matrices.
Part 1. Digraphs that have (weakly) sign symmetric P -completion.
The patterns of the digraphs listed below have (weakly) sign symmetric P -

completion because every strongly connected nonseparable induced subgraph has
(weakly) sign symmetric P -completion [6]: q = 0; q = 1; q = 2, n = 1-5; q = 3,
n = 1-11, 13; q = 4, n = 1-12, 14-15, 17-19, 21-23, 25-27; q = 5, n = 1-5, 8-10, 14-17,
21-24, 26-29, 31, 33-34, 36-37; q = 6, n = 1-3, 5-6, 8, 13, 15, 17, 19, 23, 26-27, 32, 35,
38-40, 43, 46; q = 7, n = 4, 5, 9, 14, 24, 29, 34, 36; q = 8, n = 1, 10, 12, 18; q = 9,
n = 8, 11; q = 12.

The patterns of the digraphs q = 4, n = 16; q = 5, n = 7; q = 6, n = 4, 7; and
q = 7, n = 2 have (weakly) sign symmetric P -completion by Lemma 4.2.

Part 2. Digraphs that do not have (weakly) sign symmetric P completion.
The following digraphs do not have (weakly) sign symmetric P -completion be-

cause each of these digraphs contains one of the order three digraphs in Figure 4.1 as
an induced subdigraph: q = 3, n = 12; q = 4, n = 13, 20, 24; q = 5, n = 6, 11-13,
18-20, 25, 30, 32, 35, 38; q = 6, n = 9-12, 14, 16, 18, 20-22. 24-25, 28-31, 33-34, 36-37,
41-42, 44-45, 47-48; q = 7, n = 1, 3, 6, 7, 8, 10-13, 15-23, 25-28, 30-33, 35, 37-38;
q = 8, n = 3-9, 11, 13-17, 19-27; q = 9, n = 1-7, 9-10, 12-13; q = 10, n = 2-5; q = 11.

The digraph q = 10, n = 1 (i.e., the double triangle) does not have (weakly)
sign symmetric P -completion by the example given in Lemma 2.3 in [3]. The digraph
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q = 8, n = 2 (i.e., the symmetric cycle) does not have (weakly) sign symmetric
P -completion by Example 3.3 in [3].

Now consider weakly sign symmetric P0-matrices. The digraphs q = 4, n = 16;
q = 5, n = 7; q = 6, n = 4,7; q = 7, n = 2 do not have weakly sign symmetric
P0-completion by Lemma 4.3. Each of the other patterns can be classified by one of
the following facts: By Theorem 2.1, if a pattern does not have weakly sign symmetric
P -completion, it also does not have weakly sign symmetric P0-completion. Also, a
pattern has weakly sign symmetric P0-completion if each of the strongly connected
components of its digraph has weakly sign symmetric P0-completion [6].
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