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Abstract. The main result of this article allows formulas of analytic geometry to be elegantly
unified, by readily providing parametric as well as cartesian systems of equations. These systems
characterize affine subspaces in R

p passing through specified affine subspaces of lower dimension.
The problem solved is closely related to constrained principal component analysis. A few interest-
ing applications are pointed out, notably a measure of the relative loss of optimality due to the
constraints. The results pave the way for further research.
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1. Introduction. The purpose of this paper is to provide results in analytical
geometry that generalize and clarify the principle of constrained principal component
analysis. Various forms of constrained principal component analysis have already
been treated in the literature, notably in [8] and [9]. In [8], constraints are considered
for both variables and individuals. These authors give several references to earlier
applications of linear constraints in principal component analysis. The optimal sub-
space problem (see Theorem 3.1 below) is as follows: for a given n×p matrix Z, and a
given d-dimensional subspace D of R

p, find the subspace H = M(H) that minimizes
tr[(Z −ZPH)(Z ′ − PHZ

′)] subject to the condition that H contains the subspace D.
Some secondary results follow from the specific way in which the main result is

presented.

2. Tools and definitions. To present our results, we shall use the following
notations: for a matrix B, B+ will denote the Moore-Penrose inverse of B. Note that
B+ = (B′B)−1B′ if B has full column rank and B+ = B′(BB′)−1 if B has full row
rank. We define PB = BB+ and MB = I − BB+, where I is the identity matrix
of appropriate order. Thus PB is the matrix of the orthogonal projection onto the
column space of B, which we denote by M(B). We shall write r(B) for the rank
of B, tr(B) for its trace, [A|B] for the compound matrix formed by the blocks A
and B horizontally displayed. All projections occurring in this article are orthogonal,
so ‘projection’ will here always refer to ‘orthogonal projection’, with regard to the
standard scalar product in R

p. Finally, we shall use the notation E < R
p for a linear

subspace E of R
p.

Lemma 2.1. Define G = [G1|G2]. Then
(a) MGMG1 = MG1MG = MG = MGMG2 = MG2MG.
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(b) PGPG1 = PG1PG = PG1 and PGPG2 = PG2PG = PG2 .
(c) If G2G

+
2 G1 = 0, then MG1MG2 = MG, and r(G) = r(G1) + r(G2).

Proof. The proof of this lemma appears in [7].
Definition 2.2. Let E be a linear subspace in R

p, with 0 ≤ s ≤ p. We call affine
subspace of dimension s in R

p a subset H = {c+ y; y ∈ E} of R
p, where c is a vector

of R
p. It is convenient to simply write H = c+ E .
It should be clear that a linear subspace is also an affine subspace, and that the

affine subspaces of dimension 0 are points, those of dimension 1 are lines, etc. We shall
be interested later in (orthogonal) projection of vectors of R

p onto affine subspaces.
Let Z be a n× p matrix (e.g., a matrix of data in multivariate analysis). Denote

by z′i the rows of Z, so that Z =



z′1
z′2
...
z′n


. The zi, of dimension p × 1, are therefore

vectors of R
p. We shall often refer to p-vectors as ‘points’ in p-space.

The solution of the optimal subspace problem will be given in parametric form.
Lemma 2.3 will allow us to readily obtain the cartesian form of the solution.

Lemma 2.3. Let v denote a p×q matrix of rank q, 1 ≤ q ≤ p−1. Let w denote a
p×(p−q) semi-orthogonal matrix (i.e., w′w = Ip−q). Moreover, assume that w′v = 0.
Then

M(v) = {x ∈ R
p;w′x = 0} (i.e.,M(v) = ker(w′)).(2.1)

Proof. Lemma 2.3 can be proved using standard linear algebra results.
Formally, even the case q = 0 and q = p may be included. If q = 0, define v as the

null vector of dimension p× 1. If q = 0, w is an orthogonal matrix. If q = p, define w
as the null vector of dimension p× 1. Let c ∈ R

p. As a corollary of Lemma 2.3, and
with the same notations and assumptions, write H = c + M(v) for a q-dimensional
affine subspace of R

p, 0 ≤ q ≤ p. The set H passes through c ∈ R
p, and has direction

M(v). This is the parametric form of H. Lemma 2.3 tells us that

H = {x ∈ R
p;w′(x − c) = 0}.(2.2)

We call (2.2) the cartesian form of H.
It is useful to recall what is meant by inertia and dispersion. To this aim, let Z

denote a n× p matrix. Define

C = {zi ∈ R
p; z′i = ith row of Z, i = 1, . . . , n}.(2.3)

For a p× k matrix H and for c ∈ R
p, let ∆ = c+M(H) denote an affine subspace of

dimension r(H) in R
p. Let pH be the projection onto ∆ (notice the lower-case letter

used for p), that is

pH(z) = c+ PH(z − c)(2.4)

for z in R
p.
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Definition 2.4. The inertia of C with regard to ∆ is defined by

I(C,∆) =
1

n− 1

n∑
i=1

||zi − pH(zi)||2.(2.5)

If we omit dividing by n− 1 in (2.5), we speak of dispersion rather than of inertia.
Note that when r(H) = 0, I(C,∆) in (2.5) is the inertia of C with regard to a point.
When r(H) = p, pH in (2.4) is the identity, i.e., pH(z) = z for all z ∈ R

p.

3. The main results. We are now ready to give an important optimization
result of geometrical nature, (Theorem 3.1), of which constrained principal component
analysis is a direct consequence. Incidentally, note that a corollary of Theorem 3.1
(see the corollary below) allows the elegant solution of classical problems of analytical
geometry, such as finding the parametric and cartesian form of the k-dimensional
affine subspace of R

p passing through k+1 given points, or through specified lines or
affine subspaces of dimension smaller than k.

3.1. Optimal subspace. As specified in the introduction, the object of Theo-
rem 3.1 is to find the k-dimensional linear subspace H of R

p containing a given linear
subspace D of lower dimension, where H is such that it is ‘as close as possible’ to a
cloud C of points in p-space, i.e., where the inertia of C with regard to a k-dimensional
linear subspace of R

p containing D is minimal for H.
Theorem 3.1. Let D be a linear d-dimensional subspace of R

p, 0 ≤ d ≤ p. If
d ≥ 1, let D = [d1| . . . |dd] denote a p× d matrix of rank d (a full rank property that
eases the presentation but that can be relaxed), whose columns form a basis of D. If
d = 0, define D as the null vector of dimension p × 1. Let Z be the n × p matrix

z′1
...
z′n


 and, for MD = I − PD, define the matrix VD = MDZ

′ZMD, assumed to be

of rank r. Let s be a whole number such that 0 ≤ s ≤ r. If s ≥ 1, let λ1 ≥ . . . ≥ λs

denote the s largest eigenvalues of VD (with λs > λs+1), and let u1, . . . , us denote
orthogonal eigenvectors corresponding to them. Write U = [u1| . . . |us] for the matrix
collecting these vectors. If s = 0, define U as the null vector of dimension p × 1.
Write H = [U |D] for the matrix formed with the blocks U et D. Then the linear
(s + d)-dimensional subspace H of R

p containing D, and with respect to which the
inertia of the cloud C is minimal, is given by H = M(H). Moreover, C ⊂ H if and
only if s = r.

The condition λs > λs+1 insures unicity of H, and this even though some of the
s eigenvalues are multiple. For potential applications in data analysis, the positive
eigenvalues will generally be all distinct. This is notably the case (with probability
one) when the zi’s are realizations of a continuous p-variate distribution.

Besides, notice that the columns of H are eigenvectors corresponding to the s
largest positive eigenvalues, and to d zero eigenvalues of VD. Since VDD = 0, at least
d eigenvalues of VD are zero. The columns of U (corresponding to positive eigenvalues)
and the columns of D (corresponding to zero eigenvalues) are orthogonal, since VD

is symmetric, and since for symmetric matrices eigenvectors associated with distinct
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eigenvalues are orthogonal. Note also that the following properties (i) C ⊂ D, (ii)
VD = 0, and (iii) r = 0 are equivalent.

Let us give now the proof of Theorem 3.1.
Proof. Let H = [U |D]. Without loss of generality, we can assume that the

columns of the p× s matrix U are orthonormal and U ′D = 0. The problem is to find
such a p× s matrix U such that U minimizes tr[(Z − ZPH)(Z ′ − PHZ

′)] = tr[Z(I −
PH)Z ′], where Z is a given n × p matrix. Note that since U ′D = 0, PH = PD + PU

and PDPU = 0, i.e., MDPU = PU . Using these properties, we get

tr[Z(I − PH)Z ′] = tr[Z(MD − PU )Z ′] = tr[MDZ
′Z]− tr[PUZ

′Z].(3.1)

Thus we have to choose U to maximize tr[PUZ
′Z] subject to MDPU = PU . However,

PU = UU ′ (since U ′U = Is) and MDPU = PU is equivalent to MDU = U . Hence

tr[PUZ
′Z] = tr[U ′Z ′ZU ] = tr[U ′MDZ

′ZMDU ],(3.2)

which is to be maximized subject to U ′U = Is. It is a standard linear algebra result
that this maximum is the sum of the s largest eigenvalues of MDZ

′ZMD, and the
columns of the maximizing U are the corresponding eigenvectors. Note that since
s ≤ r = r(MDZ

′ZMD), such a U will also satisfy MDU = U .
To show that C ⊂ H if and only if s = r, note that C ⊂ H if and only if

Z ′ = PHZ
′, or equivalently, MDZ

′ = PUZ
′. Thus we have to show that s = r if and

only if MDZ
′ = PUZ

′.
Note that when r = s, the r columns of U are the orthonormal eigenvectors

corresponding to the r nonzero eigenvalues of VD, where r is also the rank of VD.
Thus s = r if and only if M(VD) = M(PU ), if and only if M(MDZ

′) = M(PU ),
(since M(VD) = M(MDZ

′)), if and only if MDZ
′ = PUMDZ

′, if and only if
MDZ

′ = PUZ
′ (since MDPU = PU ).

We can conclude “M(MDZ
′) = M(PU ) if and only if MDZ

′ = PUMDZ
′” since

we already know that M(PU ) ⊂ M(MDZ
′).

Theorem 3.1 can be generalized to the affine subspaces. The object of the corollary
thereafter is to find the k-dimensional affine subspace H of R

p containing a given affine
subspace D of lower dimension, where H is such that it is ‘as close as possible’ to
a cloud C = {zi ∈ R

p; i = 1, . . . , n}, i.e., where the inertia of C with regard to a
k-dimensional affine subspace of R

p containing D is minimal.
Corollary 3.2. Let D be a d-dimensional affine subspace of R

p, 0 ≤ d ≤ p,
and let d0 be any vector of D. If d ≥ 1, let D = [d1| . . . |dd] denote a p× d matrix of
rank d whose columns form a basis for the linear subspace D− d0. If d = 0, define D

as the null vector of dimension p × 1. Let Z be the n × p matrix Z =



z′1 − d′0

...
z′n − d′0


,

and, for MD = I−PD, define the matrix VD = MDZ
′ZMD, assumed to be of rank r.

Let s be a whole number such that 0 ≤ s ≤ r. If s ≥ 1, let λ1 ≥ . . . ≥ λs denote the
s largest eigenvalues of VD (with λs > λs+1), and let u1, . . . , us denote corresponding
orthogonal eigenvectors. Write U = [u1| . . . |us] for the matrix collecting these vectors.
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If s = 0, define U as the null vector of dimension p×1. Finally, define H = [U |D], the
matrix formed by the blocks U and D. Then the (s + d)-dimensional affine subspace
H of R

p containing D and with respect to which the inertia of the cloud C is minimal,
is given by H = d0 +M(H). Moreover, C ⊂ H if and only if s = r.

Proof. A simple line of arguments shows that the choice of d0 in D does not
matter. The rest of the proof is direct, if one follows the following three steps: (i)
perform a rigid translation by removing d0 from the zi’s and from D, in such a
way that the hypotheses of Theorem 3.1 are valid, (ii) apply Theorem 3.1 to find
M(H), and (iii) perform the inverse translation by adding d0 to M(H). The
matrix MD in the corollary has rank p − d. The eigenvalues of VD, apart from d
zeros, are λ1 ≥ . . . ≥ λp−d. Write η1 ≥ . . . ≥ ηp for the eigenvalues of Z ′Z, and
v1, . . . , vp, for corresponding eigenvectors. Then the Poincaré separation theorem
(see [5]) implies λj ≤ ηj , j = 1, . . . , p − d. Moreover, it may be readily shown that
λj = ηj , j = 1, . . . , p− d if D = [vp−d+1|vp−d+2| . . . |vp].

As a special case, if we set D = {z} in the corollary, we have d = 0, and the
optimal s-dimensional affine subspace H containing D is generated by the first s
principal axes of the (unconstrained) principal component analysis performed on the
sample covariance matrix (in fact, we may replace Z ′Z in the corollary by the sample
covariance matrix C = Z ′Z/(n − 1) without changing the eigenvectors; only the
eigenvalues would be divided by n− 1).

The corollary tells us that, as the method completes D to provide H, the optimal
subspace is always obtained by “adding” another orthogonal eigenvector. That is, u1

is orthogonal to the columns of the matrix D, u2 is orthogonal to the columns of D
and to u1, and so on.

We now give the usual decomposition formula for dispersion, in our framework
or space extension.

Decomposition of dispersion:

Lemma 3.3. Let Z, C, D and H be as in Theorem 3.1. Then one has the following
identity (decomposition of dispersion):

n∑
i=1

||zi − PDzi||2 =
n∑

i=1

||PHzi − PDPHzi||2 +
n∑

i=1

||zi − PHzi||2.(3.3)

Proof. Use similar arguments as in the proof of Theorem 3.1. If we divide each
term of (3.3) by n − 1, we have the formula of decomposition of inertia. The left
term of (3.3) is the dispersion of C with regard to D. The second term on the right
of (3.3) is the dispersion of C with regard to H. Let C∗ denote the cloud obtained
by projecting C onto H. The first term on the right of (3.3) is the dispersion of the
cloud C∗ with regard to D; it measures the part of the inertia of C with regard to D
due to the extension of D to H. Note that the identity (3.3) is valid whatever linear
subspace H containing D we take (i.e., H is not necessarily the optimal subspace of
Theorem 3.1).

Let C = {zi ∈ R
p; i = 1, . . . , n} denote a cloud of points and, for affine subspaces

D and H, (D ⊂ H), let pD and pH denote the orthogonal projectors onto D and
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H, respectively (for the exact definition of pH or pD, see (2.4)). Then the following
identity

n∑
i=1

||zi − pD(zi)||2 =
n∑

i=1

||pH(zi)− pD(pH(zi))||2 +
n∑

i=1

||zi − pH(zi)||2(3.4)

is a direct consequence of (3.3).

3.2. Application in analytic geometry. The corollary was not primarily in-
tended for analytic geometry. However, it is general enough to be an interesting tool
in this area. To illustrate its potential applications, suppose, for example, that we
are interested in finding the parametric (or the cartesian) form of a r-dimensional
affine subspace H (1 ≤ r ≤ p − 1) passing through d0 ∈ R

p and through the set of
points C = {z1, . . . , zr} ⊂ R

p (think of a line passing through two points (d0 and
z1) in R

p, or a plane passing through three points (d0, z1 and z2) in R
p). Let us

assume that r(Z) = r, where Z =



z′1 − d′0

...
z′r − d′0


; that is, d0, z1, . . . , zr generate indeed

an r-dimensional affine subspace. To find H, we set D = {d0} (i.e., VD = Z ′Z) in
the corollary. This implies that the affine subspace of dimension r passing (exactly)
through the r + 1 points d0, z1, . . . , zr is

H = d0 +M(U),(3.5)

where the columns of the p× r matrix U are orthonormal eigenvectors of Z ′Z associ-
ated with the r positive (some of them possibly multiple) eigenvalues of this matrix.
Let w be a p × (p − r) matrix, whose columns are orthonormal eigenvectors of Z ′Z
associated with the zero eigenvalue (of multiplicity p − r) of this matrix. Since for
a symmetric matrix eigenvectors associated with distinct eigenvalues are orthogonal,
we have w′U = 0. Lemma 2.3 and (2.2) yield the cartesian form of H:

H = {x ∈ R
p;w′(x− d0) = 0}.(3.6)

Let us illustrate this by two simple examples.
Example 3.4. Our first example concerns the plane analytic geometry. We

use (3.5) and (3.6) to give the explicit parametric (resp. cartesian) form of the line
passing through points P1 = (x1, y1)′ and P2 = (x2, y2)′, P1 �= P2. Setting d0 = P1

and Z = P ′
2 − d′0 yields, by spectral decomposition of Z ′Z,

U = ((x1 − x2)/(y1 − y2), 1)′ and w = ((y2 − y1)/(x1 − x2), 1)′. From (3.5), the
parametric form of the line is

H =
(
x1

y1

)
+ α

( x1−x2
y1−y2

1

)
, α ∈ R,(3.7)

whereas from (3.6), the cartesian form of the line is

H = {
(
x
y

)
∈ R

2;
y2 − y1
x1 − x2

(x− x1) + (y − y1) = 0}.(3.8)
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Example 3.5. Our second example concerns the solid analytic geometry) We
use (3.6) to give the cartesian form of the plane passing through points
P1 = (x1, y1, z1)′, P2 = (x2, y2, z2)′ and P3 = (x3, y3, z3)′. Setting d0 = P1 and

Z =
(
P ′

2 − d′0
P ′

3 − d′0

)
yields

w =


 (z3 − z1)(y2 − y1) − (z2 − z1)(y3 − y1)

(x3 − x1)(z2 − z1) − (z3 − z1)(x2 − x1)
(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)


 ,(3.9)

and the cartesian form of the plane is

H = {

 x

y
z


 ∈ R

3;w′


 x− x1

y − y1
z − z1


 = 0}.(3.10)

3.3. Application in statistics. Let z =
∑
zi/n be the mean of the zi’s (the

latter being as in the corollary). When z ∈ D is assumed, the corollary may be seen
as a sample version of a constrained principal component analysis. In this section, we
complete the picture by considering the question at the population level.

Although geometric by nature, the corollary has natural developments in mul-
tivariate statistics. Let X denote a p-variate random vector with mathematical ex-
pectation E(X) = µ and covariance matrix cov(X) = Ψ (i.e., existence of second
moments is assumed). Let D be an affine subspace of dimension d in R

p, 0 ≤ d ≤ p,
and let d0 be any vector of D. If d ≥ 1, let D = [d1| . . . |dd] denote a p× d matrix of
rank d whose columns form a basis for the linear subspace D− d0. If d = 0, define D
as the null vector of dimension p× 1. In the following, we assume that µ ∈ D. Define
the matrix

VD = MDΨMD.(3.11)

Assume that the rank of VD is r, and let s be an integer such that 0 ≤ s ≤ r. If s ≥ 1,
write λ1 ≥ . . . ≥ λs for the s largest eigenvalues of VD, assuming moreover λs > λs+1

(this will ensure that M(H) and PH below are unique), and write u1, . . . , us for
orthonormal eigenvectors associated with λ1 ≥ . . . ≥ λs. Collect these vectors in the
matrix U = [u1| . . . |us]. If s = 0, define U as the null vector of dimension p × 1.
Let H = [U |D] denote the matrix formed by the blocks U and D. For d0 ∈ D, the
projection of X onto the affine subspace H = d0 +M(H) is given by

Y = d0 + PH(X − d0).(3.12)

Importantly, note that Y does not depend on d0. As by assumption µ ∈ D, we can
define without loss of generality

Y = µ+ PH(X − µ).(3.13)
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To emphasize the fact that Y is the projection of X onto an affine subspace of dimen-
sion s+ d, we will write Y(s+d) instead of Y .

Definition 3.6. We call Y(s+d) the (s + d)-dimensional constrained principal
component approximation ofX . One has E(Y(s+d)) = µ, and Cov(Y(s+d)) = PHΨPH .
Special cases: 1. The p-dimensional constrained principal approximation of X is X
itself. 2. If D = {µ}, then d = 0, and the random vector

Y(s) = µ+ PU (X − µ)(3.14)

is called the s-dimensional principal component approximation of X , see [1].
We will now show the optimality of Y(s+d) in terms of the so-called mean squared

difference.
Definition 3.7. Let X and Y denote two jointly distributed, p-variate random

vectors. Then the mean squared difference between X and Y is defined by

MSD(X,Y ) = E(||X − Y ||2).(3.15)

Theorem 3.8. Let X denote a p-variate random vector with mathematical ex-
pectation E(X) = µ. Let D = µ + M(D) denote an affine subspace of dimension
d in R

p, with 0 ≤ d ≤ p. Suppose that cov(X) = Ψ exists, and define the matrix
VD = MDΨMD, that is assumed of rank r. Let s be an integer such that 0 ≤ s ≤ r,
and let the p-variate random vector Y denote the projection of X onto an affine
subspace of dimension s+ d containing D. Then Y(s+d) is optimal in the sense that

MSD(X,Y(s+d)) ≤ MSD(X,Y )(3.16)

for all Y .
Proof. Since Y is a projection of X onto an affine subspace H, say, and since

µ ∈ D ⊂ H, Y can be written Y = µ + PH(X − µ), where H = [Up×s|Dp×d] (recall
that D is a given matrix). Then MSD(X,Y ) = E(||X − Y ||2)
= E(||X − µ − PH(X − µ)||2) = E(||MH(X − µ)||2) = E[(X − µ)′MH(X − µ)] =
E[tr(X − µ)′MH(X − µ)] = tr(MHΨ). It is easy to show (using Theorem 3.1 that
MSD(X,Y ) is minimal for H = [U∗|D], where the columns u∗1, . . . , u∗s of U∗ are
orthonormal eigenvectors associated with the eigenvalues λ1 ≥ . . . ≥ λs of the matrix
VD = MDΨMD. This means that MSD(X,Y ) is minimal for Y = Y(s+d).

In the rest of this section, we make further assumptions for expositional con-
venience only (these assumptions can be easily lifted). Consider VD = MDΨMD.
First, assume that r(Ψ) = p. Therefore r(VD) ≤ p − d. Moreover, we assume that
r(VD) = p− d. Define

H = [U |D],(3.17)

where U is the p× (p− d) matrix whose columns u1, . . . , up−d are orthonormal eigen-
vectors associated with the positive eigenvalues λ1 ≥ . . . ≥ λp−d of VD, and D is
a (known) p × d matrix of rank d. Without loss of generality, we assume that the
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columns of D are orthonormal. Thus H is an orthogonal p × p matrix. We are now
ready for the following definition:

Definition 3.9. Let X denote a p-variate random vector with mathematical
expectation E(X) = µ and covariance matrix cov(X) = Ψ. We call the p jointly
distributed random variables

W =
[
WU

WD

]
= H ′(X − µ)(3.18)

the constrained linear principal components of X , where WU = U ′(X − µ) =
(w1, . . . , wp−d)′, and where WD = D′(X − µ) = (wp−d+1, . . . , wp)′ is the vector of
the constraints. The sample version of (3.18) is obtained by substituting the sample
mean vector and the sample covariance matrix for their theoretical counterparts. By
definition, the constraints will be retained in any analysis. The components that will
be discarded in a particular analysis are the last entries of WU , i.e., the constrained
principal components corresponding to small eigenvalues of VD. Note that the con-
strained principal component analysis generalizes the use of the so-called rotated
principal components (see [6]).

As (unconstrained) linear principal component analysis is optimal in terms of
variance maximization, introduction of a priori constraints – that can be very useful,
see examples below – will generally imply some loss of optimality. We now give a
measure for the loss of optimality induced by the constraints. The following lemma,
which may be proved by simple arguments, will help us to define such a measure.

Lemma 3.10. Let X denote a p-variate random vector with mathematical expec-
tation E(X) = µ and covariance matrix Ψ. Let the p-variate random vector Q denote
the projection of X onto an affine v-dimensional subspace V (0 ≤ v ≤ p) containing
µ. Then

MSD(X,µ) = MSD(Q,µ) + MSD(X,Q).(3.19)

Note that the match of (3.19) at the sample level is

I(CX , x) = I(C∗
X , x) + I(CX ,V),(3.20)

where CX is the cloud of points xi formed by the rows (x′i) of the n×pmatrix collecting
the values of X1, . . . , Xp on n individuals, x is the sample mean

∑n
i=1 xi/n, V is an

affine v-dimensional subspace of R
p containing x, and C∗

X is the cloud formed by the
points of CX projected onto V .

Recall that we have assumed here, for expositional convenience, that r(VD) =
p− d. Suppose that we keep s constrained linear principal components of X in a par-
ticular analysis, where 1 ≤ s ≤ p− d. Define H = [Up×s|Dp×d], where the columns of
U are orthonormal eigenvectors of VD associated with the s largest eigenvalues of this
matrix. On the other hand, define V = [v1| . . . |vs+d], where v1, . . . , vs+d are orthonor-
mal eigenvectors of Ψ associated with the eigenvalues η1 ≥ . . . ≥ ηs+d of Ψ. To ensure
unicity of PV , we assume moreover ηs+d > ηs+d+1. Let Y(s+d) = µ+PH(X−µ) denote
the (s+d)-dimensional constrained principal component approximation of X , and let
Y = µ+ PV (X − µ) be the (unconstrained) (s+ d)-dimensional principal component
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approximation of X . That is, Y(s+d) is the projection of X onto the affine subspace
H = µ+M(H), whereas Y is the projection of X onto V = µ+M(V ). Both H and
V have dimension s+ d. Consider the identity (3.19). It is well known, and it may be
readily shown, that Y is optimal in the sense that MSD(Y, µ) ≥ MSD(Q,µ) for all pro-
jection Q of X onto a (s+d)-dimensional affine subspace of R

p containing µ. Notably,
we see that MSD(Y, µ) ≥ MSD(Y(s+d), µ), and that MSD(Y, µ)−MSD(Y(s+d), µ) mea-
sures the amount of variance lost when constrained principal component analysis is
used instead of usual principal component analysis with s + d principal axes. We
define the relative loss of optimality due to the constraints as

L(s+d) =
MSD(Y, µ) −MSD(Y(s+d), µ)

MSD(Y, µ)
=

tr(PV Ψ)− tr(PHΨ)
tr(PV Ψ)

.(3.21)

A natural estimator L̂(s+d) is obtained by replacing Ψ by its sample counterpart
C, or by any other estimate of Ψ:

L̂(s+d) =
tr(PV C) − tr(PHC)

tr(PV C)
.(3.22)

An example where L̂(s+d) = 0 is the rotated principal components technique, see [2],
[3] and [4], a special case of constrained principal component analysis, in which WU

in (3.18) is invariant in the sense that it is the vector of usual principal components.
There is no loss of optimality (i.e., L̂(s+d) = 0 in (3.22) when rotation of factors is
performed, as noted by Rencher (1998, p. 360).

We do not propose here constrained principal component analysis as a monolithic
method, but as a useful exploratory tool that can be applied in a variety of domains.
For example, if some of the p-variate observations are known to belong to groups,
we may use the group information by forcing an axis to discriminate between the
groups (in that case D would be the first discriminant axis), and then perform the
constrained principal component analysis described above, to grasp as much variance
as possible in the remaining axes. Although we remain here mainly at the descriptive
level, we believe that a test of the hypothesis tr(PV − PH)Ψ = 0 may be developed
(see equation (3.21)). Low value of L̂(s+d) may mean that there is no significant
contradiction between the constraints and the data, i.e., that sample variation is large
enough to encompass the constraints. A related question it to test the hypothesis that
an eigenvector of Ψ has a particular value, H0 : vj = vj0, versus H1 : vj �= vj0. This
can be used to test the hypothesis that an eigenvector does not differ significantly
from some simplified form.

4. Conclusion. In this paper, an optimal subspace problem directly related to
constrained principal component analysis is solved. The result is interesting per se.
The approach - mainly geometrical and directed towards data analysis - yields a nat-
ural exploratory tool and allows to define a measure of the relative loss of optimality
following the introduction of constraints.
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