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Abstract. A real n-by-n idempotent matrix A with all entries having the same absolute value is
called absolutely flat. The possible ranks of such matrices are considered along with a characterization
of the triples: size, constant, and rank for which such a matrix exists. Possible inequivalent examples
of such matrices are also discussed.
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1. Introduction. We consider a problem, suggested, in part by [4] and specif-
ically mentioned to the other authors by Harel. The problem considered in [4] (see
also [2, 3, 5]) is about the isomorphic classification of the ranges of nicely bounded
projections in some classical Banach spaces. It has been solved in [4] in the special
case of projections of small norms and another special case is that of absolutely flat
idempotents. We also found this question of independent interest.

For which positive integers n, does there exist an n-by-n real, idempotent matrix
A of rank r, all of whose entries are a positive constant c in absolute value (absolutely
flat)? From the equation A2 = A, it readily follows that c must be 1/k for some
positive integer k ≤ n. Thus, the key parameters of our problem are n, k, r: for which
triples of positive integers is there a matrix A of desired type? Since kA = B is a ±1
matrix, an equivalent formulation concerns the existence of a ±1 matrix B such that
B2 = kB, and we reserve the letter B for such a ±1 matrix that comes from a given
A in sections 2 and 3 below.

Since the minimal polynomial of A must divide (and, in fact, equal in our case)
x2 − x, A is diagonalizable ([1, p. 145]) and all of its eigenvalues must be 0 or 1.
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Importantly, Tr[A] = rank A, as each is simply the count of the number of eigenvalues
equal to 1. We first derive two number theoretic necessary conditions that constrain
feasible triples n, k, r. Then, we show that for odd n, only r = 1 is possible and
that all triples n, k, 1 meeting the necessary conditions do occur. Finally, for even n,
all triples meeting the necessary conditions occur, completing a characterization of
feasible triples. We also discuss the existence of multiple matrices, distinct modulo
obvious symmetries of the problem, which are absolutely flat idempotents for the
same parameters n, k, r.

2. The Elementary Necessary Conditions. A signature matrix is a diagonal
matrix S with diagonal entries ±1. It is clear that similarity does not change the
property of idempotence. Further, permutation and signature similarity do not change
the set of absolute values of the entries of a matrix. Thus, permutation and signature
similarity do not change whether A is an absolutely flat idempotent, nor do they
change the parameters n, k, r if A is.

From the equality of rank and trace, an absolutely flat idempotent must have at
least one positive diagonal entry, and, therefore, after a permutation similarity, we
may assume a positive number as the (1,1) entry of A. Then, any absolutely flat
idempotent may be normalized, by signature similarity, so that all the entries in its
first column are positive. We generally assume this normalization. From A2 = A, it
then follows that the number of negative entries in each row is constant. Call this
number u ≥ 0. Similarly, letm ≥ 0 denote the number of negative entries on the main
diagonal of A (an absolutely flat idempotent of parameters n, k, r). The trace of A is
[(n−m)/k]− [m/k] = (n− 2m)/k, but since rank equals trace, we have n− 2m = kr
or

n = rk + 2m,(2.1)

the first of our necessary conditions. The second follows from B2 = kB, with B
in normalized form. The inner product of the first (any) row of B with the first
(normalized) column has n − u positive summands and u negative summands, with
the net sum being k. Thus, n− 2u = k or

n− k = 2u.(2.2)

Since m ≥ 0, it follows from (2.1) that

rk ≤ n,(2.3)

and it follows from (2.2) that

n and k have the same parity.(2.4)

It also follows from (2.1) that n is odd if and only if r and k are odd.

3. The Odd Case. Many triples with n odd and r > 1 (and necessarily odd)
satisfy the requirements (2.1) and (2.2). However, interestingly, absolutely flat idem-
potents never exist in such cases.
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Theorem 3.1. For an odd integer n, there is an absolutely flat idempotent A
with parameters n, k, r if and only if r = 1 and k ≤ n is odd. In this event, the matrix
A is unique up to signature/permutation similarity;

A =
1
k




1 · · · 1 −1 · · · −1
1 · · · 1 −1 · · · −1
...

. . .
...

...
. . .

...
1 · · · 1 −1 · · · −1
1 · · · 1 −1 · · · −1



,

in which there are m = u = (n− rk)/2 columns of -1’s.
Proof. If r = 1, and k ≤ n is odd, it is easily checked that the displayed matrix

A shows existence. Furthermore, in this event, any absolutely flat idempotent that is
normalized via (permutation and) signature similarity to have positive first column
and then by permutation similarity to have all positive entries in the first n − u
columns, will have all rows equal and appear as the displayed A. It follows that
m = u = (n− rk)/2 and that this is the number of negative columns.

If n is odd, we already know that k ≤ n is odd and r is odd. We show that r = 1
in two cases: k = 1; k > 1. Let (n, k, r) = (2l + 1, 2t + 1, 2s + 1). Consider B in
normalized form, so that B2 = kB, with B a ±1 matrix, and partition B as

B =
[
1 fT

e C

]
(3.1)

in which e is the 2l-by-1 vector of 1’s and f is a 2l-by-1 vector consisting of (l+ t) 1’s
followed by (l − t) −1’s. From B2 = kB, it follows that

fT e = 2t
fTC = 2tfT(3.2)
Ce = 2te
efT + C2 = (2t+ 1)C.

Multiplication of both sides of the last equation on the left by C and use of Ce = 2te
yields

0 = C3 − (2t+ 1)C2 + 2tefT

= C3 − (4t+ 1)C2 + 2t(2t+ 1)C.(3.3)

Since C is a ±1 matrix and is of even dimension, it follows that 2 | C2 (entry-wise)
and then, by a simple induction, that 2q | C2q

for each positive integer q. Thus, 2q |
Tr

[
C2q ]

for all positive integers q.
Now distinguish two possibilities: k = 1 (t = 0); and k > 1 (t > 0). In the former

case, (3.3) gives C3 = C2 and, thus, by induction, C2q

= C2. Therefore, 2q | C2 for
all positive integers q, which gives C2 = 0. But then C is nilpotent; Tr[C] = 0, and
Tr[B] = Tr[A] = rank A = r = 1, as was to be shown.
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Now, suppose t > 0 (k > 1). First, rank C = rank B, as the first column of B
is 1/2t times the sum of the last 2l columns of B (by the first and third equations
of (3.2)), and the equation, fTC = 2tfT , implies that fT can be written as a linear
combination of rows of C. From (3.3), C is diagonalizable with distinct eigenvalues
from {0, 2t, 2t+ 1}. Let a ≥ 0 be the number of eigenvalues of C equal to 2t, b ≥ 0
be the number equal to (2t+ 1); then there are 2l − a− b of them equal to 0. Since
rank C = rank B, we have

a+ b = 2s+ 1.

Also, r = Tr[B]/(2t+1), so that 2ta+(2t+1)b = Tr[C] = Tr[B]−1 = (2s+1)(2t+1)−1,
or 2ta + (2t + 1)b = (2s + 1)2t + 2s. These two equations have the unique solution
(a, b) = (1, 2s). We may now calculate Tr

[
C2q]

as

(2t)2
q

+ 2s(2t+ 1)2
q

.

Since 2q | C2q

, still, and thus 2q | Tr[C2q ]
for all positive integers q, we have s = 0,

or r = 1, as was to be shown. This concludes the proof.

4. The Even Case. When n is even, conditions (2.1) and (2.2) still govern
existence, but the overall situation is remarkably different from the odd case. Now,
there is existence whenever the conditions are met. Here we exhibit an absolutely flat
idempotent for each triple n, k, r meeting the conditions (2.1) and (2.2).

For a given positive integer k, define

P =
1
k

[
1 1
1 1

]
, M =

1
k

[
1 −1
1 −1

]
.(4.1)

Because of (2.2), k = 2t must be even, and we have

P 2 =
1
t
P, PM =

1
t
M, M2 = 0, MP = 0.(4.2)

Solutions may now be constructed using the P ’s and M ’s as blocks. For example, a
solution for (n, k, r) = (8,2,3) is



P M M M
M P M M
M M P M
P M M M


 .

Since n is even and, therefore, k is even, we assume our parameters are of the form
(n, k, r) = (2l, 2t, r); r need not be even. From (2.3), it follows that tr ≤ l. As proof
of the following theorem, we give a general strategy for constructing absolutely flat
idempotents with parameters 2l, 2t and r, tr ≤ l.

Theorem 4.1. Let n = 2l, k = 2t and r be positive integers such that tr ≤ l.
Then, there is an absolutely flat idempotent with parameters n, k, r. In particular,
whenever n is even, there is an absolutely flat idempotent whenever conditions (2.1)
and (2.2) are met.
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Proof. Let (n, k, r) = (2l, 2t, r). By the elementary necessary conditions, express
2l as 2tr + 2m for some m ∈ N. Let P and M be the matrices as in (4.1). Examine
now the block matrix,

A =




P · · · P
...

. . .
...

P · · · P
. . .

P · · · P
...

. . .
...

P · · · P
P · · · P M · · · M
...

. . .
...

...
. . .

...
P · · · P M · · · M




.(4.3)

The matrix A consists of r t-by-t blocks of P ’s along the main diagonal and an
m-by-t block of P ’s in the lower left-hand corner. All other blocks in A areM ’s. It is
then an elementary exercise in block matrix multiplication (using (4.2)) that A2 = A.
As the trace of A is r, it follows that the rank of A is r. This completes the proof.

Theorems 3.1 and 4.1 provide a complete characterization of the triples n, k, r for
which absolutely flat idempotents exist. We note that any positive integer k (n) may
occur, but for odd k (n), only rank 1 matrices exist. On the other hand, any rank
may occur. In either case, n need be sufficiently large.

5. Multiple Solutions. By appealing to the Jordan canonical form, any two
n-by-n idempotents of the same rank are similar. However, for our problem, restric-
tion to permutation and signature similarity is more natural; of course, permutation
and signature similarities send one solution for n, k, r to another for the same n, k, r.
Although it has not been important for our earlier results, transposition is another
natural operation sending one solution to another. It is natural to ask how many so-
lutions, distinct up to permutation, signature similarity, and transposition can occur.
When r = 1, it is easily worked out that there is only one (when there is one). The
form mentioned in Theorem 3.1 is canonical (even when n is even).

However, already for the parameters (8,2,2), there can be distinct solutions. For
example,

A1 =
1
2




1 1 1 1 1 −1 −1 −1
1 1 −1 −1 −1 1 1 1
1 1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 −1 −1
1 1 −1 −1 −1 1 1 1
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and

A2 =
1
2




1 1 1 −1 1 1 −1 −1
1 1 1 −1 −1 −1 1 1
1 1 1 −1 −1 −1 1 1
1 1 1 −1 −1 −1 1 1
1 1 1 −1 1 1 −1 −1
1 1 1 −1 −1 −1 1 1
1 1 1 −1 −1 −1 1 1
1 1 1 −1 −1 −1 1 1




are both absolutely flat (8,2,2) idempotents. To see that A1 is not permutationally or
signature similar to A2 (or its transpose), we mention an idea that we used to discover
some of the construction herein, but was not needed in the proofs thus far. We say
that two rows (columns) of an n-by-n ±1/k matrix are of the same type if they are
either identical or negatives of each other. It is an easy exercise that the number of
distinct row types (number of distinct column types) is unchanged by either signature
similarity or permutation similarity.

Additionally, we define the row (column) multiplicity of an absolutely flat idem-
potent matrix, A, to be the multiset consisting of the number of rows (columns) for
each row (column) type. It is again an easy exercise that permutation/signature sim-
ilarity does not change the row (column) multiplicity of an absolutely flat idempotent
matrix. In the matrix A1 the row (column) multiplicity is {6, 2} ({6, 2}), while in
A2 the row (column) multiplicity is {6, 2} ({4, 4}). Thus, A1 cannot be transformed
to A2 by any combination of permutation/signature similarities and/or transposition
(though they are similar).

Of course, the number of row types in a matrix is at least the rank. We note
that the construction technique of Theorem 4.1 always produces a solution with the
same number of row types as rank. The (8,2,3) example, A3, below demonstrates
that larger numbers of row types are possible. However, it may be shown that for
rank 2 absolutely flat idempotents, only 2 row and column types are possible.

A3 =
1
2




1 1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 −1 −1
1 1 1 1 1 −1 −1 −1
1 1 −1 −1 1 1 1 −1
1 1 −1 1 1 1 −1 −1
1 1 1 −1 1 −1 1 −1
1 1 1 1 1 −1 −1 −1




Lemma 5.1. A rank 2 absolutely flat matrix has precisely 2 row types and 2
column types.

Proof. We prove the result for row types as the case of columns is similar. Let A
be a rank 2 absolutely flat matrix. Performing permutation and signature similarity
we may assume that the first column of A consists only of positive entries, as this
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doesn’t change the number of row types. Since A has rank 2, there are at least 2
distinct row types. Let x and y be the two rows corresponding to these row types,
and let w be an arbitrary other row in A. Then,

w = ax+ by

for some a, b ∈ Q. Clearly, we must have a+ b = 1 because the initial entries of w, x,
and y are all the same. Since x and y are different rows, it follows from the absolutely
flat property that a− b = 1 or a− b = −1. In the first case, we have a = 1 and b = 0,
and in the second, it follows that a = 0 and b = 1. This completes the proof.

We now consider the problem of counting all different rank 2 absolutely flat
idempotent matrices. As we are interested in distinct solutions up to permutation
and signature similarity, we first put our matrix in a normalized form. Let A be a
rank 2 absolutely flat idempotent matrix with parameters (n, k, 2). As before, we can
perform a permutation and signature similarity to make the first column of A positive.
Let a (b) be the number of all positive (negative) columns of A. Through another
permutation similarity, we may assume that the first a columns of A are positive and
that the next b columns of A are negative. From Lemma 5.1, the remaining n− a− b
columns of A are of one type. Let v be one of these columns (necessarily containing
both a positive and a negative entry) and let c be the number of them in A. Notice
that the other d = n− a− b− c columns must be −v. Since c+ b = u and d+ b = u
(the number of negative entries in each row must be u), it follows that d = c. These
normalizations partition our matrix as

F =



Pa,a Ma,b Wa,c −Wa,c

Pb,a Mb,b Xb,c −Xb,c

Pc,a Mc,b Yc,c −Yc,c

Pc,a Mc,b Zc,c −Zc,c


 .(5.1)

Here, the Pi,j are positive matrices of sizes i-by-j; Mi,j are negative matrices of
sizes i-by-j; and Wi,j , Xi,j , Yi,j , and Zi,j are matrices of sizes i-by-j with exactly 1
row type. Through further permutation, it is clear that the columns of Wa,c, Xb,c,
Yc,c, and Zc,c can be assumed to begin with all positive entries and end with all
negative ones:




+ · · · +
...

. . .
...

+ · · · +
− · · · −
...

. . .
...

− · · · −



.(5.2)

Let ap (am) be the number of positive (negative) rows in Wa,c; bp (bm) be the number
of positive (negative) rows in Xb,c; c1p (c1m) be the number of positive (negative)
rows in Yc,c; and c2p (c2m) be the number of positive (negative) rows in Zc,c. The
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final matrix produced after this sequence of operations is called the standard form of
A.

We now derive necessary conditions on the parameters defined above for the
matrix as in (5.1) to be idempotent. Clearly, we must have ap+ am = a, bp+ bm = b,
c1p + c1m = c, c2p + c2m = c, a + b + 2c = n, and b + c = u. Examining the inner
product of the first row and the first column, we see that a−b = k, and looking at the
inner products of each row type with the second column type produces the equations,

ap − am − bp + bm + c1p − c1m − c2p + c2m = k(5.3)

and

ap − am − bp + bm − c1p + c1m + c2p − c2m = −k.(5.4)

Adding equations (5.3) and (5.4) gives us

0 = ap/2− am/2 + bm/2− bp/2
= ap − bp + (b − a)/2
= ap − bp − k/2,

and a similar computation with the subtraction of (5.3) and (5.4) produces the equa-
tion, c1p = c2p+k/2. Many of these necessary conditions are actually redundant, and
so we will only consider the system,

a− b = k
b+ c = u
ap = bp + k/2(5.5)
c1p = c2p + k/2.

In fact, we have the following
Theorem 5.2. A matrix in standard form in which a, b, c, ap, bp, c1p, c2p are all

nonnegative and satisfy (5.5) is an (n,k,2) idempotent.
Proof. Assume that A is in standard form with a, b, c, ap, bp, c1p, c2p ≥ 0 and (5.5)

satisfied. To prove idempotence, we need to check three inner products. The inner
product of the first row type and first column type is just a − b = k, and the inner
product of the first row type and the second column type is

ap − (a− ap)− bp + (b− bp) + (c2p + k/2)− (c− c2p − k/2)− c2p + (c− c2p)
= 2ap − 2bp − a+ b+ k
= k

as desired. A similar computation involving the second row type and the second
column type gives us

ap − (a− ap)− bp + (b− bp)− (c2p + k/2) + (c− c2p − k/2) + c2p − (c− c2p)
= 2ap − 2bp − a+ b− k
= −k.
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Finally, adding the equations 2b+2c = 2u and a− b = k gives us that a+ b+2c = n,
completing the proof.

In what follows, the multiplicities of an absolutely flat idempotent matrix will
be important. Let xA = ap + bp + c1p + c2p = 2bp + 2c2p + k and set yA = a + b.
Then, the row and column multiplicities of A in standard form are {xA, n − xA}
and {yA, n− yA}, respectively. The following lemma is a natural consequence of the
symmetries of the problem.

Lemma 5.3. Let A be a rank 2 absolutely flat idempotent in standard form with
row and column multiplicities of {xA, n−xA} and {yA, n− yA} as above. Then, A is
permutation/signature equivalent to a matrix B in standard form with xB = n− xA

and yB = yA. Similarly, A is permutation/signature equivalent to a matrix B in
standard form with yB = n− yA and xB = xA.

Proof. Let A be as in (5.1). After permuting the last 2c columns and the corre-
sponding last 2c rows, A becomes


Pa,a Ma,b −Wa,c Wa,c

Pb,a Mb,b −Xb,c Xb,c

Pc,a Mc,b −Zc,c Zc,c

Pc,a Mc,b −Yc,c Yc,c


 .

Through further permutation, the columns of −Wa,c, −Xb,c, −Zc,c, and −Yc,c can be
made to look like those in (5.2). Now, this final matrix, B, is in normal form with
xB = n− xA, and yB = yA as desired.

As for the second statement in the lemma, first perform a signature similarity on
A that makes each column of, 


Wa,c

Xb,c

Yc,c

Zc,c


 ,

either all positive or all negative, and then perform a permutation similarity to bring
our matrix back into standard form. It is clear that this new matrix, B, has yB =
n − yA. If xB = xA, then we are done. Otherwise, xB = n − xA, and we can
proceed as above to form an equivalent matrix, B′, with xB′ = n − xB = xA and
yB′ = yB = n− yA. This completes the proof of the lemma.

We are now in a position to give bounds for the number of rank 2 absolutely
flat idempotent matrices up to permutation/signature similarity and transposition.
A straightforward verification (using (2.1) and (2.2)) shows that

ap = k/2, am = 
n/4�
bp = 0, bm = 
m/2�
c1p = k/2, c1m = �m/2
c2p = 0, c2m = �n/4

satisfy (5.5) and, therefore, produce an (n, k, 2) absolutely flat idempotent matrix by
Theorem 5.2 (this is, in fact, the solution found in Theorem 4.1). In this case, the
row multiplicity is {k, n− k} and the column multiplicity is {2 
n/4� , 2 �n/4}.
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Let a, b, c, ap, bp, c1p, c2p be an arbitrary solution to (5.5). Set t = ap − k/2 = bp,
q = c1p − k/2 = c2p, and let l = 
n/4� − am. Since ap + am − bp − bm = k, it follows
that l = 
m/2� − bm. If we set p = �m/2 − c1m and y = �n/4 − c2m, then from
c1p + c1m = c2p + c2m we must have p = y. Finally, the equation b + c = u implies
that p = q+ t− l. It is easily seen that these conditions are also sufficient, and so we
have the following.

Theorem 5.4. All solutions to (5.5) in nonnegative integers are given by

ap = k/2 + t, am = 
n/4� − l
bp = t, bm = 
m/2� − l
c1p = k/2 + q, c1m = �m/2 − q − t+ l
c2p = q, c2m = �n/4 − q − t+ l

in which t, q ∈ N, l ∈ Z, and

q + t− �m/2 ≤ l ≤ 
m/2� .

In particular, when m = 0, we must have q = t = l = 0, giving us the immediate
Corollary 5.5. Up to permutation/signature similarity and transposition, there

is only one rank 2 absolutely flat idempotent matrix with n = 2k.
With a careful consideration of Theorem 5.4, we can produce bounds for the num-

ber of inequivalent (n, k, 2) absolutely flat idempotents. Notice that for the parameter-
ized solutions in Theorem 5.4, we have xA = 2t+2q+k and yA = k+2 
m/2�+2t−2l.
In particular, the conditions in Theorem 5.4 imply that xA = k+2i and yA = k+2j
for some i, j ∈ {0, . . . ,m}.

In fact, the converse is true. Namely, let i, j ∈ {0, . . . ,m}; then, we claim that
(5.5) has a solution, A, in which xA = k + 2i and yA = k + 2j. To see this, fix
i ∈ {0, . . . ,m}, and let l and t be such that 0 ≤ t ≤ i and i − �m/2 ≤ l ≤ 
m/2�.
Next, set q = i− t. Then, q, t, l gives rise to a solution of (5.5) by Theorem 5.4, and
we have xA = k + 2i. Moreover, it is clear that the value of t− l may be taken to be
any number from {− 
m/2� , . . . , �m/2}. This proves the claim.

Since we are looking for inequivalent solutions, we will only consider (by Lemma
5.3) i, j ∈ {0, . . . , �m/2}. As transposition (which switches the row and column
multiplicities) could make two solutions permutation/signature equivalent, it follows
from the discussion above that we have at least

∑�m/2�
j=0

∑�m/2�
i=j

1 =
(�m/2+ 2

2

)
(5.6)

inequivalent (n, k, 2) absolutely flat idempotents.
We now discuss bounding the number of solutions from above. Given i, j ∈

{0, . . . , �m/2} with i ≥ j (recall that transposition may be used to swap row and
column multiplicities), we will count the number of triples, (q,t,l), that give rise to
a rank 2 absolutely flat idempotent, A, with xA = k + 2i and yA = k + 2j. From
Theorem 5.4, it follows that t + q = i and 
m/2� + t − l = j in which t, q ∈ N and
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i − �m/2 ≤ l ≤ 
m/2�. When l = 
m/2�, we must have t = j and q = i − j, and
when l = 
m/2� − j, it follows that t = 0 and q = i. It is easy to see, therefore, that
there are j + 1 solutions to such a system given i ≥ j. Hence, the total number of
inequivalent solutions is bounded above by,

∑�m/2�
j=0

∑�m/2�
i=j

(j + 1) =
�m/2 (�m/2+ 1) (�m/2+ 2)

6
+

(�m/2+ 2
2

)
.

Combining this computation with (5.6) gives us the following.
Theorem 5.6. Let N be the number of inequivalent (n, k, 2) absolutely flat idem-

potent matrices. Then,
(�m/2+ 2

2

)
≤ N ≤ �m/2 (�m/2+ 1) (�m/2+ 2)

6
+

(�m/2+ 2
2

)
.

When m = 1, it is clear that N = 1, and thus we have
Corollary 5.7. Up to permutation/signature similarity and transposition, there

is only one rank 2 absolutely flat idempotent matrix with n = 2k + 2.
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