THE PATH POLYNOMIAL OF A COMPLETE GRAPH*

C. M. DA FONSECA ${ }^{\dagger}$

Abstract

Let $P_{k}(x)$ denote the polynomial of the path on k vertices. A complete description of the matrix that is the obtained by evaluating $P_{k}(x)$ at the adjacency matrix of the complete graph, along with computing the effect of evaluating $P_{k}(x)$ with Laplacian matrices of a path and of a circuit.

Key words. Graph, Adjacency matrix, Laplacian matrix, Characteristic polynomial.

AMS subject classifications. 05C38, 05C50.

1. Introduction and preliminaries. For a finite and undirected graph G without loops or multiple edges, with n vertices, let us define the polynomial of G, P_{G}, as the characteristic polynomial of its adjacency matrix, $A(G)$, i.e.,

$$
P_{G}(x)=\operatorname{det}\left(x I_{n}-A(G)\right)
$$

When the graph is a path with n vertices, we simply call P_{G} the path polynomial and denote it by P_{n}. Define A_{n} as the adjacency matrix of a path on n vertices.

For several interesting classes of graphs, $A\left(G_{i}\right)$ is a polynomial in $A(G)$, where G_{i} is the i th distance graph of $G([5])$. Actually, for distance-regular graphs, $A\left(G_{i}\right)$ is a polynomial in $A(G)$ of degree i, and this property characterizes these kind of graphs ([14]).

In [4], Beezer has asked when a polynomial of an adjacency matrix will be the adjacency matrix of another graph. Beezer gave a solution in the case that the original graph is a path.

Theorem 1.1 ([4]). Suppose that $p(x)$ is a polynomial of degree less than n. Then $p\left(A_{n}\right)$ is the adjacency matrix of graph if and only if $p(x)=P_{2 i+1}(x)$, for some i, with $0 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor-1$.

In the same paper, Beezer gave an elegant formula for $P_{k}\left(A_{n}\right)$ with $k=1, \ldots, n$, and Bapat and Lal, in [1], completely described the structure of $P_{k}\left(A_{n}\right)$, for all integers k. This result was also reached by Fonseca and Petronilho ([10]) in a noninductive way.

Theorem 1.2 ([1],[4],[10]). For $0 \leq k \leq n-1$, n being a positive integer,

$$
\left(P_{k}\left(A_{n}\right)\right)_{i j}= \begin{cases}1 & \text { if } i+j=k+2 r, \text { with } 1 \leq r \leq \min \{i, j, n-k\} \\ 0 & \text { otherwise } .\end{cases}
$$

In [12], Shi Ronghua obtained some generalizations of the ones achieved by Bapat and Lal. Later, in [10], Fonseca and Petronilho determined the matrix $P_{k}\left(C_{n}\right)$, where C_{n} is the adjacency matrix of a circuit on n vertices.

[^0]Consider the permutation $\sigma=(12 \ldots n)$.
Theorem 1.3 ([10]). For any nonnegative integer k,

$$
P_{k}\left(C_{n}\right)=\sum_{j=0}^{n-1} \sum_{r=0}^{n-1} \delta_{2 r, k+2+j-\dot{n}} P\left(\sigma^{j}\right)
$$

where δ is the Kronecker function, σ is the permutation $(12 \ldots n), P\left(\sigma^{j}\right)$ is the permutation matrix of σ^{j} and \dot{n} runs over the multiples of n.

According to Bapat and Lal (cf. [1]), a graph G is called path-positive of order m if $P_{k}(G) \geq 0$, for $k=1,2, \ldots, m$, and G is simply called path-positive if it is pathpositive of any order. In [3], Bapat and Lal have characterized all graphs that are path-positive. The following corollary is immediate from the theorem above.

Corollary 1.4. The circuit C_{n} is path-positive.
We define the complete graph K_{n}, to be the graph with n vertices in which each pair of vertices is adjacent. The adjacency matrix of a complete graph, which we identify also by K_{n}, is the $n \times n$ matrix

$$
K_{n}=\left[\begin{array}{cccccc}
0 & 1 & 1 & \cdots & 1 & 1 \tag{1.1}\\
1 & 0 & 1 & \cdots & 1 & 1 \\
1 & 1 & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 0 & 1 \\
1 & 1 & 1 & \cdots & 1 & 0
\end{array}\right]
$$

In this note, we evaluate $P_{k}\left(K_{n}\right)$.
2. The polynomial P_{k}. Let us consider the tridiagonal matrix A_{k} whose entries are given by

$$
\left(A_{k}\right)_{i j}= \begin{cases}1 & \text { if }|i-j|=1 \\ 0 & \text { otherwise }\end{cases}
$$

The expansion of the determinant

$$
\operatorname{det}\left(x I_{k}-A_{k}\right)=P_{k}(x)
$$

along the first row or column gives us the recurrence relation

$$
\begin{equation*}
P_{k}(x)=x P_{k-1}(x)-P_{k-2}(x), \tag{2.1}
\end{equation*}
$$

for any positive integer k, with the convention $P_{-1}(x)=0$ and $P_{0}(x)=1$.
It is well known that

$$
\begin{equation*}
P_{k}(x)=U_{k}\left(\frac{x}{2}\right), \quad x \in \mathbb{C}, \quad(k=0,1, \ldots) \tag{2.2}
\end{equation*}
$$

where $U_{k}(x)$ are the Chebyshev polynomials of the second kind.

ELA

From (2.2), it is straightforward to prove that

$$
\begin{equation*}
\frac{P_{k}(x)-P_{k}(y)}{x-y}=\sum_{\ell=0}^{k-1} P_{\ell}(x) P_{k-1-\ell}(y) \tag{2.3}
\end{equation*}
$$

Then, from (2.1) and (2.3), we may conclude the following lemma.
Lemma 2.1. For any positive integer k and square matrices A and B,

$$
P_{k}(A)-P_{k}(B)=\sum_{\ell=0}^{k-1} P_{\ell}(A)(A-B) P_{k-1-\ell}(B)
$$

As in Bapat and Lal [1], note that a connected graph is path-positive if it has a spanning subgraph which is path-positive. Thus we have this immediate corollary from Corollary 1.4 .

Corollary 2.2. The complete graph K_{n} is path-positive.
3. Evaluating P_{k} of a complete graph. If a matrix $A=\left(a_{i j}\right)$ satisfies the relation

$$
a_{i j}=a_{1 \sigma^{1-i}(j)}
$$

we say that A is a circulant matrix. Therefore, to define a circulant matrix A is equivalent to presenting an n-tuple, say $\left(a_{1}, \ldots, a_{n}\right)$. Then

$$
A=\sum_{i=0}^{n-1} a_{i} P\left(\sigma^{i}\right)
$$

and its eigenvalues are given by

$$
\begin{equation*}
\lambda_{h}=\sum_{\ell=0}^{n-1} \zeta^{h \ell} a_{\ell} \tag{3.1}
\end{equation*}
$$

where $\zeta=\exp \left(i \frac{2 \pi}{n}\right)$. Given a polynomial $p(x)$, the image of A is

$$
p(A)=p\left(\sum_{i=0}^{n-1} a_{i} P\left(\sigma^{i}\right)\right)=n^{-1} \sum_{j=0}^{n-1} \sum_{h=0}^{n-1} \zeta^{-h j} p\left(\sum_{\ell=0}^{n-1} \zeta^{h \ell} a_{\ell}\right) P\left(\sigma^{j}\right)
$$

Then,

$$
P_{k}\left(\sum_{i=0}^{n-1} a_{i} P\left(\sigma^{i}\right)\right)=n^{-1} \sum_{j=0}^{n-1} \sum_{h=0}^{n-1} \zeta^{-h j} P_{k}\left(\lambda_{h}\right) P\left(\sigma^{j}\right),
$$

where λ_{h} is defined as in (3.1).

ELA

The matrix K_{n}, defined in (1.1), is a circulant matrix and it can be written

$$
K_{n}=\sum_{i=1}^{n-1} P\left(\sigma^{i}\right)
$$

By (3.1), K_{n} has the eigenvalues $\lambda_{0}=n-1$ and $\lambda_{\ell}=-1$, for $\ell=1, \ldots, n-1$. Therefore,

$$
\begin{aligned}
P_{k}\left(K_{n}\right) & =P_{k}\left(\sum_{i=1}^{n-1} P\left(\sigma^{i}\right)\right) \\
& =n^{-1} \sum_{j=0}^{n-1} \sum_{h=0}^{n-1} \zeta^{-h j} P_{k}\left(\lambda_{h}\right) P\left(\sigma^{j}\right) \\
& =n^{-1} \sum_{j=0}^{n-1}\left(P_{k}(n-1)+P_{k}(-1) \sum_{h=1}^{n-1} \zeta^{-h j}\right) P\left(\sigma^{j}\right) \\
& =P_{k}(-1) P\left(\sigma^{0}\right)+n^{-1}\left(P_{k}(n-1)-P_{k}(-1)\right) \sum_{j=0}^{n-1} P\left(\sigma^{j}\right)
\end{aligned}
$$

Note that $P\left(\sigma^{0}\right)$ is the identity matrix.
We have thus proved the main result of this section:
Theorem 3.1. For any nonnegative integer k, the diagonal entries of $P_{k}\left(K_{n}\right)$ are the weighted average $\frac{1}{n} P_{k}(n-1)+\frac{n-1}{n} P_{k}(-1)$ and the off-diagonal entries are $\frac{1}{n} P_{k}(n-1)-\frac{1}{n} P_{k}(-1)$.

We can easily evaluate the different values of each term of the sum $P_{k}\left(K_{n}\right)$. According to (2.2),

$$
P_{k}(-1)=\left\{\begin{array}{rl}
-1 & \text { if } k \equiv 1 \bmod 3 \\
0 & \text { if } k \equiv 2 \bmod 3 \\
1 & \text { if } k \equiv 0 \bmod 3
\end{array} .\right.
$$

Another relation already known ([11, p.72]) for $P_{k}(x)$ is

$$
P_{k}(x)=\sum_{\ell=0}^{\lfloor k / 2\rfloor}(-1)^{\ell}\binom{k-\ell}{\ell} x^{k-2 \ell}
$$

where $\lfloor z\rfloor$ denotes the greatest integer less or equal to z. Therefore we have also

$$
\begin{aligned}
P_{k}(n-1)-P_{k}(-1) & =\sum_{\ell=0}^{\lfloor k / 2\rfloor}(-1)^{\ell}\binom{k-\ell}{\ell}\left((n-1)^{k-2 \ell}-(-1)^{k-2 \ell}\right) \\
& =n \sum_{\ell=0}^{\lfloor k / 2\rfloor} \sum_{j=1}^{k-2 \ell}(-1)^{k-j+\ell} \frac{(k-\ell)!}{\ell!j!(k-2 \ell-j)!} n^{j-1} .
\end{aligned}
$$

ELA

4. Evaluating P_{k} of some Laplacian matrices. Let G be a graph. Denote $D(G)$ the diagonal matrix of its vertex degrees and by $A(G)$ its adjacency matrix. Then

$$
L(G)=D(G)-A(G)
$$

is the Laplacian matrix of G.
In this section, expressions for $P_{k}\left(L\left(A_{n}\right)\right)$ and $P_{k}\left(L\left(C_{n}\right)\right)$, the path polynomials of the Laplacian matrices of a path and a circuit, respectively, with n vertices, are determined.

Let us consider the following recurrence relation:

$$
\begin{gathered}
\widetilde{P}_{0}(x)=1, \quad \widetilde{P}_{1}(x)=x+1, \\
\widetilde{P}_{k}(x)=(x+2) \widetilde{P}_{k-1}(x)-\widetilde{P}_{k-2}(x), \quad \text { for } 2 \leq k \leq n-1,
\end{gathered}
$$

and

$$
\widetilde{P}_{n}(x)=(x+1) \widetilde{P}_{n-1}(x)-\widetilde{P}_{n-2}(x)
$$

Therefore

$$
\widetilde{P}_{k}(x)=U_{k}\left(\frac{x}{2}+1\right)-U_{k-1}\left(\frac{x}{2}+1\right), \quad \text { for } 2 \leq k \leq n-1,
$$

and

$$
\widetilde{P}_{n}(x)=x U_{n-1}\left(\frac{x}{2}+1\right) .
$$

where $U_{k}(x)$ are the Chebyshev polynomials of the second kind.
Then the zeroes of $\widetilde{P}_{n}(x)$ are

$$
\lambda_{j}=2 \cos \frac{j \pi}{n}-2, \quad j=0, \ldots, n-1
$$

The recurrence relation above can be written in the following matricial way:

$$
x\left[\begin{array}{c}
\widetilde{P}_{0}(x) \\
\widetilde{P}_{1}(x) \\
\vdots \\
\widetilde{P}_{n-2}(x) \\
\widetilde{P}_{n-1}(x)
\end{array}\right]=\left[\begin{array}{ccccc}
-1 & 1 & & & 0 \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1 \\
0 & & & 1 & -1
\end{array}\right]\left[\begin{array}{c}
\widetilde{P}_{0}(x) \\
\widetilde{P}_{1}(x) \\
\vdots \\
\widetilde{P}_{n-2}(x) \\
\widetilde{P}_{n-1}(x)
\end{array}\right]+\widetilde{P}_{n}(x)\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] .
$$

Thus, for $j=0, \ldots, n-1$, the vector

$$
\left[\begin{array}{c}
\widetilde{P}_{0}\left(\lambda_{j}\right) \tag{4.1}\\
\widetilde{P}_{1}\left(\lambda_{j}\right) \\
\vdots \\
\widetilde{P}_{n-2}\left(\lambda_{j}\right) \\
\widetilde{P}_{n-1}\left(\lambda_{j}\right)
\end{array}\right]=\left(\cos \frac{j \pi}{2 n}\right)^{-1}\left[\begin{array}{c}
\cos \frac{j \pi}{2 n} \\
\cos 3 \frac{j \pi}{2 n} \\
\vdots \\
\cos (2 n-3) \frac{j \pi}{2 n} \\
\cos (2 n-1) \frac{j \pi}{2 n}
\end{array}\right]
$$

is an eigenvector associated to the eigenvalue λ_{j} of $-L\left(A_{n}\right)$.
Therefore the matrix $-L\left(A_{n}\right)$ is diagonalizable and, for $0 \leq k \leq n$, the (i, j) th entry of $P_{k}\left(L\left(A_{n}\right)\right)$ is given by

$$
\left(P_{k}\left(L\left(A_{n}\right)\right)\right)_{i j}=(-1)^{k} \sum_{\ell=0}^{n-1} \frac{\widetilde{P}_{i-1}\left(\lambda_{\ell}\right) P_{k}\left(\lambda_{\ell}\right) \widetilde{P}_{j-1}\left(\lambda_{\ell}\right)}{\sum_{s=1}^{n}\left(\widetilde{P}_{s-1}\left(\lambda_{\ell}\right)\right)^{2}}
$$

which is equal to

$$
\frac{(-1)^{k} \cos \left(\frac{k \pi}{2}\right)}{n}+\frac{(-1)^{k} 2}{n} \sum_{\ell=1}^{n-1} \cos (2 i-1) \frac{\ell \pi}{2 n} U_{k}\left(\cos \frac{\ell \pi}{n}-1\right) \cos (2 j-1) \frac{\ell \pi}{2 n}
$$

If we define

$$
\alpha_{m}^{p}=\sum_{\ell=1}^{n-1} \cos m \frac{\ell \pi}{n} \cos ^{p} \frac{\ell \pi}{n}
$$

then

$$
\alpha_{m}^{p}=\frac{1}{2}\left(\alpha_{m-1}^{p-1}+\alpha_{m+1}^{p-1}\right)
$$

and

$$
\begin{equation*}
\alpha_{m}^{p}=\frac{1}{2^{p}} \sum_{\ell=0}^{p}\binom{p}{\ell} \alpha_{m+2 \ell-p}^{0}, \tag{4.2}
\end{equation*}
$$

with

$$
\alpha_{m}^{0}=n \delta_{m, 2 \dot{n}}-\frac{1}{2}\left(1+(-1)^{m}\right),
$$

where \dot{n} represents a multiple of n.
Using the trigonometric transformation formula and the Taylor formula

$$
U_{k}\left(\cos \frac{\ell \pi}{n}-1\right)=\sum_{p=0}^{k} \frac{U_{k}^{(p)}(-1)}{p!} \cos ^{p} \frac{\ell \pi}{n}
$$

we can state the following proposition.
Theorem 4.1. For $0 \leq k \leq n$, n being a positive integer,

$$
\left(P_{k} L\left(A_{n}\right)\right)_{i j}=\frac{(-1)^{k} \cos \left(\frac{k \pi}{2}\right)}{n}+\frac{(-1)^{k} 2}{n} \sum_{p=0}^{k} \frac{U_{k}^{(p)}(-1)}{p!}\left(\alpha_{i-j}^{p}+\alpha_{i+j-1}^{p}\right),
$$

where α_{m}^{p} is defined as in (4.2).

Note that $U_{k}^{(p)}(-1)$ can be easily evaluated, since

$$
U_{k}(x)=\sum_{\ell=0}^{\lfloor k / 2\rfloor}(-1)^{\ell}\binom{k-\ell}{\ell}(2 x)^{k-2 \ell}
$$

and then

$$
U_{k}^{(p)}(-1)=\sum_{\ell=0}^{\lfloor k / 2\rfloor}(-1)^{k-\ell-p} 2^{k-2 \ell} \frac{(k-\ell)!}{\ell!(k-2 \ell-p)!}
$$

Now, we can find the matrix $P_{k}\left(L\left(C_{n}\right)\right)$ using the same techniques of the last section. $L\left(C_{n}\right)$ is the circulant matrix

$$
\left[\begin{array}{ccccc}
2 & -1 & & & -1 \\
-1 & 2 & -1 & \mathbf{0} & \\
& \ddots & \ddots & \ddots & \\
& \mathbf{0} & -1 & 2 & -1 \\
-1 & & & -1 & 2
\end{array}\right]
$$

Hence

$$
L\left(C_{n}\right)=2 P\left(\sigma^{0}\right)-P(\sigma)-P\left(\sigma^{n-1}\right)
$$

The eigenvalues of $L\left(C_{n}\right)$ are

$$
2-2 \cos \frac{2 \ell \pi}{n}
$$

for $\ell=0, \ldots, n-1$ and thus

$$
\begin{aligned}
P_{k} L\left(C_{n}\right) & =P_{k}\left(2 P\left(\sigma^{0}\right)-P(\sigma)-P\left(\sigma^{n-1}\right)\right) \\
& =n^{-1} \sum_{j=0}^{n-1} \sum_{\ell=0}^{n-1} e^{-i \frac{2 \ell j \pi}{n}} U_{k}\left(1-\cos \frac{2 \ell \pi}{n}\right) P\left(\sigma^{j}\right) \\
& =(-1)^{k} \sum_{j=0}^{n-1} \sum_{p=0}^{k} \sum_{\ell=0}^{p} \frac{U_{k}^{(p)}(-1)}{\ell!(p-\ell)!2^{p}} \delta_{j+2 \ell-p, \dot{n}} P\left(\sigma^{j}\right) .
\end{aligned}
$$

REFERENCES

[1] R.B. Bapat and A.K. Lal. Path-positive Graphs. Linear Algebra and Its Applications, 149:125149, 1991.
[2] R.B. Bapat and V.S. Sunder. On hypergroups of matrices. Linear and Multilinear Algebra, 29:125-140, 1991.
[3] R.B. Bapat and A.K. Lal. Path positivity and infinite Coxeter groups. Linear Algebra and Its Applications, 196:19-35, 1994.
[4] Robert A. Beezer. On the polynomial of a path. Linear Algebra and Its Applications, 63:221225, 1984.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 10, pp. 155-162, June 2003

ELA

[5] N.L. Biggs. Algebraic Graph Theory. Cambridge University Press, Cambridge, 1974.
[6] T.S. Chihara. An introduction to orthogonal polynomials. Gordon and Breach, New York, 1978.
[7] D.M. Cvetković, M. Doob and H. Sachs. Spectra of Graphs, Theory and Applications. Academic Press, New York, 1979.
[8] P.J. Davis. Circulant Matrices. John Wiley \& Sons, New York, 1979.
[9] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi. Higher Transcendental Functions. Vol. II. Robert E. Krieger Publishing Co., Melbourne, FL, 1981.
[10] C.M. da Fonseca and J. Petronilho. Path polynomials of a circuit: a constructive approach. Linear and Multilinear Algebra, 44:313-325, 1998.
[11] László Lovász. Combinatorial Problems and Exercises. North-Holland, Amsterdam, 1979.
[12] Shi Ronghua. Path polynomials of a graph. Linear Algebra and Its Applications, 31:181-187, 1996.
[13] Alan C. Wilde. Differential equations involving circulant matrices. Rocky Mountain Journal of Mathematics, 13:1-13, 1983.
[14] P.M. Weichsel. On distance-regularity in graphs. Journal of Combinatorial Theory Series B, 32:156-161, 1982.

[^0]: *Received by the editors on 15 March 2003. Accepted for publication on 02 May 2003. Handling Editor: Ravindar B. Bapat.
 ${ }^{\dagger}$ Departamento de Matemática, Universidade de Coimbra, 3001-454 COIMBRA, PORTUGAL (cmf@mat.uc.pt). Supported by CMUC - Centro de Matemática da Universidade de Coimbra.

