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THE PATH POLYNOMIAL OF A COMPLETE GRAPH∗

C. M. DA FONSECA†

Abstract. Let Pk(x) denote the polynomial of the path on k vertices. A complete description
of the matrix that is the obtained by evaluating Pk(x) at the adjacency matrix of the complete
graph, along with computing the effect of evaluating Pk(x) with Laplacian matrices of a path and
of a circuit.
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1. Introduction and preliminaries. For a finite and undirected graph G with-
out loops or multiple edges, with n vertices, let us define the polynomial of G, PG, as
the characteristic polynomial of its adjacency matrix, A(G), i.e.,

PG(x) = det (xIn − A(G)) .

When the graph is a path with n vertices, we simply call PG the path polynomial and
denote it by Pn. Define An as the adjacency matrix of a path on n vertices.

For several interesting classes of graphs, A(Gi) is a polynomial in A(G), where Gi

is the ith distance graph of G ([5]). Actually, for distance-regular graphs, A(Gi) is a
polynomial in A(G) of degree i, and this property characterizes these kind of graphs
([14]).

In [4], Beezer has asked when a polynomial of an adjacency matrix will be the
adjacency matrix of another graph. Beezer gave a solution in the case that the original
graph is a path.

Theorem 1.1 ([4]). Suppose that p(x) is a polynomial of degree less than n.
Then p(An) is the adjacency matrix of graph if and only if p(x) = P2i+1(x), for some
i, with 0 ≤ i ≤ �n

2 � − 1.
In the same paper, Beezer gave an elegant formula for Pk (An) with k = 1, . . . , n,

and Bapat and Lal, in [1], completely described the structure of Pk (An), for all
integers k. This result was also reached by Fonseca and Petronilho ([10]) in a non-
inductive way.

Theorem 1.2 ([1],[4],[10]). For 0 ≤ k ≤ n − 1, n being a positive integer,

(Pk (An))ij =
{

1 if i + j = k + 2r , with 1 ≤ r ≤ min {i, j, n − k}
0 otherwise.

In [12], Shi Ronghua obtained some generalizations of the ones achieved by Bapat
and Lal. Later, in [10], Fonseca and Petronilho determined the matrix Pk (Cn), where
Cn is the adjacency matrix of a circuit on n vertices.

∗Received by the editors on 15 March 2003. Accepted for publication on 02 May 2003. Handling
Editor: Ravindar B. Bapat.
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Consider the permutation σ = (12 . . . n).
Theorem 1.3 ([10]). For any nonnegative integer k,

Pk (Cn) =
n−1∑
j=0

n−1∑
r=0

δ2r,k+2+j−ṅP
(
σj

)
,

where δ is the Kronecker function, σ is the permutation (12 . . . n), P
(
σj

)
is the per-

mutation matrix of σj and ṅ runs over the multiples of n.
According to Bapat and Lal (cf. [1]), a graph G is called path-positive of order

m if Pk (G) ≥ 0, for k = 1, 2, . . . , m, and G is simply called path-positive if it is path-
positive of any order. In [3], Bapat and Lal have characterized all graphs that are
path-positive. The following corollary is immediate from the theorem above.

Corollary 1.4. The circuit Cn is path-positive.
We define the complete graph Kn, to be the graph with n vertices in which each

pair of vertices is adjacent. The adjacency matrix of a complete graph, which we
identify also by Kn, is the n × n matrix

Kn =



0 1 1 · · · 1 1
1 0 1 · · · 1 1
1 1 0 · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · 0 1
1 1 1 · · · 1 0


.(1.1)

In this note, we evaluate Pk (Kn).

2. The polynomial Pk. Let us consider the tridiagonal matrix Ak whose entries
are given by

(Ak)ij =
{

1 if |i − j| = 1
0 otherwise.

The expansion of the determinant

det (xIk − Ak) = Pk(x)

along the first row or column gives us the recurrence relation

Pk(x) = xPk−1(x) − Pk−2(x),(2.1)

for any positive integer k, with the convention P−1(x) = 0 and P0(x) = 1.
It is well known that

Pk(x) = Uk

(x

2

)
, x ∈ C, (k = 0, 1, . . .) ,(2.2)

where Uk (x) are the Chebyshev polynomials of the second kind.
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From (2.2), it is straightforward to prove that

Pk(x) − Pk(y)
x − y

=
k−1∑
�=0

P�(x) Pk−1−�(y).(2.3)

Then, from (2.1) and (2.3), we may conclude the following lemma.
Lemma 2.1. For any positive integer k and square matrices A and B,

Pk(A) − Pk(B) =
k−1∑
�=0

P�(A) (A − B) Pk−1−�(B).

As in Bapat and Lal [1], note that a connected graph is path-positive if it has
a spanning subgraph which is path-positive. Thus we have this immediate corollary
from Corollary 1.4 .

Corollary 2.2. The complete graph Kn is path-positive.

3. Evaluating Pk of a complete graph. If a matrix A = (aij) satisfies the
relation

aij = a1σ1−i(j)

we say that A is a circulant matrix. Therefore, to define a circulant matrix A is
equivalent to presenting an n−tuple, say (a1, . . . , an). Then

A =
n−1∑
i=0

aiP
(
σi

)
,

and its eigenvalues are given by

λh =
n−1∑
�=0

ζh�a�,(3.1)

where ζ = exp
(
i 2π

n

)
. Given a polynomial p(x), the image of A is

p(A) = p

(
n−1∑
i=0

aiP
(
σi

))
= n−1

n−1∑
j=0

n−1∑
h=0

ζ−hjp

(
n−1∑
�=0

ζh�a�

)
P

(
σj

)
.

Then,

Pk

(
n−1∑
i=0

aiP
(
σi

))
= n−1

n−1∑
j=0

n−1∑
h=0

ζ−hjPk (λh) P
(
σj

)
,

where λh is defined as in (3.1).
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The matrix Kn, defined in (1.1), is a circulant matrix and it can be written

Kn =
n−1∑
i=1

P
(
σi

)
.

By (3.1), Kn has the eigenvalues λ0 = n − 1 and λ� = −1, for � = 1, . . . , n − 1.
Therefore,

Pk (Kn) = Pk

(
n−1∑
i=1

P
(
σi

))

= n−1
n−1∑
j=0

n−1∑
h=0

ζ−hjPk (λh) P
(
σj

)
= n−1

n−1∑
j=0

(
Pk (n − 1) + Pk (−1)

n−1∑
h=1

ζ−hj

)
P

(
σj

)
= Pk (−1) P

(
σ0

)
+ n−1 (Pk (n − 1) − Pk (−1))

n−1∑
j=0

P
(
σj

)
.

Note that P
(
σ0

)
is the identity matrix.

We have thus proved the main result of this section:
Theorem 3.1. For any nonnegative integer k, the diagonal entries of Pk (Kn)

are the weighted average 1
nPk(n − 1) + n−1

n Pk(−1) and the off-diagonal entries are
1
nPk(n − 1) − 1

nPk(−1).
We can easily evaluate the different values of each term of the sum Pk (Kn).

According to (2.2),

Pk (−1) =


−1 if k ≡ 1 mod 3

0 if k ≡ 2 mod 3
1 if k ≡ 0 mod 3

.

Another relation already known ([11, p.72]) for Pk(x) is

Pk(x) =
�k/2�∑
�=0

(−1)�

(
k − �

�

)
xk−2�,

where �z� denotes the greatest integer less or equal to z. Therefore we have also

Pk (n − 1) − Pk (−1) =
�k/2�∑
�=0

(−1)�

(
k − �

�

) (
(n − 1)k−2� − (−1)k−2�

)
= n

�k/2�∑
�=0

k−2�∑
j=1

(−1)k−j+� (k − �)!
�!j!(k − 2� − j)!

nj−1.
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4. Evaluating Pk of some Laplacian matrices. Let G be a graph. Denote
D(G) the diagonal matrix of its vertex degrees and by A(G) its adjacency matrix.
Then

L(G) = D(G) − A(G)

is the Laplacian matrix of G.
In this section, expressions for Pk(L(An)) and Pk(L(Cn)), the path polynomials

of the Laplacian matrices of a path and a circuit, respectively, with n vertices, are
determined.

Let us consider the following recurrence relation:

P̃0(x) = 1, P̃1(x) = x + 1,

P̃k(x) = (x + 2)P̃k−1(x) − P̃k−2(x), for 2 ≤ k ≤ n − 1,

and

P̃n(x) = (x + 1)P̃n−1(x) − P̃n−2(x).

Therefore

P̃k(x) = Uk

(x

2
+ 1

)
− Uk−1

(x

2
+ 1

)
, for 2 ≤ k ≤ n − 1,

and

P̃n(x) = xUn−1

(x

2
+ 1

)
.

where Uk (x) are the Chebyshev polynomials of the second kind.
Then the zeroes of P̃n(x) are

λj = 2 cos
jπ

n
− 2, j = 0, . . . , n − 1.

The recurrence relation above can be written in the following matricial way:

x


P̃0(x)
P̃1(x)

...
P̃n−2(x)
P̃n−1(x)

 =


−1 1 0
1 −2 1

. . . . . . . . .
1 −2 1

0 1 −1




P̃0(x)
P̃1(x)

...
P̃n−2(x)
P̃n−1(x)

 + P̃n(x)


0
0
...
0
1

 .

Thus, for j = 0, . . . , n − 1, the vector
P̃0(λj)
P̃1(λj)

...
P̃n−2(λj)
P̃n−1(λj)

 =
(

cos
jπ

2n

)−1


cos jπ

2n

cos 3 jπ
2n

...
cos(2n − 3) jπ

2n

cos(2n − 1) jπ
2n

(4.1)
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is an eigenvector associated to the eigenvalue λj of −L(An).
Therefore the matrix −L(An) is diagonalizable and, for 0 ≤ k ≤ n, the (i, j)th

entry of Pk (L(An)) is given by

(Pk (L(An)))ij = (−1)k
n−1∑
�=0

P̃i−1 (λ�) Pk (λ�) P̃j−1 (λ�)∑n
s=1

(
P̃s−1 (λ�)

)2

which is equal to

(−1)k cos
(

kπ
2

)
n

+
(−1)k2

n

n−1∑
�=1

cos(2i − 1)
�π

2n
Uk

(
cos

�π

n
− 1

)
cos(2j − 1)

�π

2n
.

If we define

αp
m =

n−1∑
�=1

cos m
�π

n
cosp �π

n
,

then

αp
m =

1
2

(
αp−1

m−1 + αp−1
m+1

)
and

αp
m =

1
2p

p∑
�=0

(
p
�

)
α0

m+2�−p,(4.2)

with

α0
m = nδm,2ṅ − 1

2
(1 + (−1)m),

where ṅ represents a multiple of n.
Using the trigonometric transformation formula and the Taylor formula

Uk

(
cos

�π

n
− 1

)
=

k∑
p=0

U
(p)
k (−1)

p!
cosp �π

n
,

we can state the following proposition.
Theorem 4.1. For 0 ≤ k ≤ n, n being a positive integer,

(PkL(An))ij =
(−1)k cos

(
kπ
2

)
n

+
(−1)k2

n

k∑
p=0

U
(p)
k (−1)

p!
(
αp

i−j + αp
i+j−1

)
,

where αp
m is defined as in (4.2).
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Note that U
(p)
k (−1) can be easily evaluated, since

Uk(x) =
�k/2�∑
�=0

(−1)�

(
k − �

�

)
(2x)k−2�,

and then

U
(p)
k (−1) =

�k/2�∑
�=0

(−1)k−�−p2k−2� (k − �)!
�!(k − 2� − p)!

.

Now, we can find the matrix Pk(L(Cn)) using the same techniques of the last
section. L(Cn) is the circulant matrix

2 −1 −1
−1 2 −1 0

. . . . . . . . .
0 −1 2 −1

−1 −1 2

 .

Hence

L(Cn) = 2P
(
σ0

) − P (σ) − P
(
σn−1

)
.

The eigenvalues of L(Cn) are

2 − 2 cos
2�π

n
,

for � = 0, . . . , n − 1 and thus

PkL(Cn) = Pk

(
2P

(
σ0

) − P (σ) − P
(
σn−1

))
= n−1

n−1∑
j=0

n−1∑
�=0

e−i 2�jπ
n Uk

(
1 − cos

2�π

n

)
P

(
σj

)
= (−1)k

n−1∑
j=0

k∑
p=0

p∑
�=0

U
(p)
k (−1)

�!(p − �)!2p
δj+2�−p,ṅP

(
σj

)
.
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