
Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 35, pp. 482-496, October 2019.

AN EIGENVALUE APPROACH FOR ESTIMATING THE GENERALIZED CROSS

VALIDATION FUNCTION FOR CORRELATED MATRICES∗
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Abstract. This works proposes a fast estimate for the generalized cross-validation function when the design matrix of an

experiment has correlated columns. The eigenvalue structure of this matrix is used to derive probability bounds satisfied by

an appropriate index of proximity, which provides a simple and accurate estimate for the numerator of the generalized cross-

validation function. The denominator of the function is evaluated by an analytical formula. Several simulation tests performed

in statistical models having correlated design matrix with intercept confirm the reliability of the proposed probabilistic bounds

and indicate the applicability of the proposed estimate for these models.
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1. Introduction. In several applications arising from the field of Statistics, there appears the linear

regression model y = X ·b, where X = [1,x1,x2, . . . ,xd] ∈ Rn×(d+1) is the design matrix. The first column

of the design matrix is 1n = [1, 1, . . . , 1]T , i.e., the model includes the intercept, which corresponds to the

mean effect. The j-th column of the design matrix is denoted by xj = [x1j , x2j , . . . , xnj ]
T and represents

the factor j of the experiment. Vector b ∈ Rd+1 represents the regression parameter of the model and it is

to be estimated. The vector y ∈ Rn is the response vector. The error, which contaminates the model, is

assumed to be independent identically distributed multivariate normal of dimension n, with zero mean and

with a variance matrix Σ = σ2
errIn.

The complicated structure of the design matrix and the appearing correlations among its entries influence

the solution of the model. The ordinary least square regression estimator of b is likely to produce an

inaccurate solution. Therefore, penalization is employed in order to achieve better prediction; that is, one

needs to obtain minimizers of the model

(1.1) min
β∈Rd

{‖y −Xβ‖2 + λ‖β‖2},

where λ ∈ R is the tuning or regularization parameter.

The specification of an appropriate value for λ is an important issue. Several approaches were developed

to handle it [6]. It was proved [3] that the minimizer of the generalized cross-validation (GCV) function

provides a good value for λ, and thereafter this method is followed in a vast majority of applications.

However, this computation is very expensive, being of order O(n3). Thus, with a view to overcome this

disadvantage, there were proposed methods [1, 10] attaining the minimization of an estimate of the GCV
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instead of its exact formula. In this way, the complexity is reduced to O(n2). In the present work, we improve

a recently proposed extrapolation GCV estimate [8, 9] by analyzing the eigenvalue structure of the involved

matrix. For a matrix with highly correlated columns, it is proved that the index of proximity, which arises

in the extrapolation procedure, is close to one with high probability. This allows us to obtain an optimum

extrapolation estimate for the numerator of the GCV function whereas the denominator can be expressed

by an analytical formula.

The paper is organized as follows. Section 2 describes the procedure to derive an optimum extrapolation

GCV estimate. In Section 3, we outline an efficient method of estimating the index of proximity [7, 8]. Section

4 is devoted to the study of the index of proximity for linear regression statistical models with intercept and

highly correlated covariates. In particular, we estimate the probability that the index of proximity is close to

one. Calculations in Section 5 lead to an analytical formula for the denominator of the GCV function, which

is subsequently incorporated in an elegant and easily applicable formula estimating the whole GCV function.

In order to verify the estimates numerically, we performed computer aided simulations; their results are given

in Section 6 and further discussed in Section 7.

Throughout the paper, we use the symbol In to represent the identity matrix of order n and Jn to

represent the square matrix of order n such that all of its entries are equal to 1. The Euclidean norm of a

vector x ∈ Rn is denoted by ‖x‖, the i-th entry of the vector x is written as xi. The trace of a matrix A

is denoted Tr(A), the superscript T stands for the transpose of a matrix or a vector. The inner product of

vectors x, y is denoted (x,y).

2. Estimation of the generalised cross validation function via extrapolation. The most com-

mon method for choosing the tuning parameter λ in the linear regression model is the generalized cross-

validation (GCV), introduced by Craven and Wahba [3]. The GCV function V (λ) is given as

(2.2) V (λ) =
‖ (In −Aλ)y‖2

(Tr(In −Aλ))2
,

where Aλ = X(XTX + λId)
−1XT is the n × n influence matrix. The value λ that minimizes the GCV

function V (λ) turns out to be a good approximation of the tuning parameter in (1.1) [3, 4].

A drawback of this approach consists in the computational cost: Exact evaluation of the GCV function

needs O(n3) operations. It is therefore desirable to search for efficient estimates of the GCV function that

can be used instead of computing it exactly. Mitrouli and Roupa [9] proposed a method that allows to

estimate the GCV function with quadratic complexity. The approach takes advantage of a reformulation of

(2.2) by Reichel et al. [10], which reads

(2.3) V (λ) =
yTB−2y

(Tr(B−1))2
,

where B = XXT +λIn ∈ Rn×n. The quadratic form yTB−2y appearing in (2.3) is then extrapolated in the

way described in Proposition 2.3 bellow. To formulate the result, we need two definitions.

Definition 2.1. Let X be a design matrix having n rows. For any integer k and a vector x ∈ Rn, the

moment sk(x) of the matrix XXT with respect to the vector x is defined as

(2.4) sk(x) =
(
x, (XXT )kx

)
= xT (XXT )kx.
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For a given x ∈ Rn, we also define quantities c0(x), c1(x) and c2(x) as follows:

c0(x) = s0(x),

c1(x) = s1(x) + λs0(x),(2.5)

c2(x) = s2(x) + 2λs1(x) + λ2s0(x).

Definition 2.2. The index of proximity with respect to a given vector x ∈ Rn is defined as

(2.6) ρ(x) =
c0(x)c2(x)

(c1(x))2
,

where c0(x), c1(x) and c2(x) are introduced in Definition 2.1.

The index of proximity is a crucial notion. It is closely related to the applicability of extrapolation

estimates.

Proposition 2.3. (Optimum Extrapolation Estimate (OEE) [9]) Let y ∈ Rn be a given vector. If ρ(y)

is close to one, then an optimum extrapolation estimate for the bilinear form yTB−2y is given by

(2.7) OEE =
(ρ(y)c0(y))3

(c1(y))2
.

Although the assumption that the index of proximity is close to one may seem restrictive, it turns out

to be satisfied very often. For example, it was shown heuristically that the index of proximity is around

one for matrices arising from discrete ill-posed problems with error contaminated data [2]. Analytical proofs

were given for linear regression models in case when the covariates have the same variance and correlation

[7, 8]. In this paper, we will analyze the index of proximity for the linear regression model with intercept

and highly correlated covariates.

3. The index of proximity. In this section, we will find a bound on the index of proximity for a given

X ∈ Rn×d with respect to a general vector y ∈ Rn. Then we will specify the result for a linear regression

model, where y = Xβ + ε.

Proposition 3.1. We have

(3.8) ρ(y) =
‖XXTy‖2‖y‖2 + f(λ,y)

‖XTy‖4 + f(λ,y)
,

where f(λ,y) = 2λ‖XTy‖2‖y‖2 + λ2‖y‖4.

Proof. The statement follows directly from Definition 2.2 and relations (2.4) and (2.5):

ρ(y) =
s0(y)(s2(y) + 2λs1(y) + λ2s0(y))

(s1(y) + λs0(y))2
=
s2(y)s0(y) + 2λs1(y)s0(y) + λ2s20(y)

s21(y) + 2λs1(y)s0(y) + λ2s20(y)

=
‖XXTy‖2‖y‖2 + 2λ‖XTy‖2‖y‖2 + λ2‖y‖4

‖XTy‖4 + 2λ‖XTy‖2‖y‖2 + λ2‖y‖4
.

Removing f(λ,y) from (3.8), we obtain bounds on ρ(y) that are independent of λ:
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Proposition 3.2. It holds

(3.9) 1 ≤ ρ(y) ≤ ‖XX
Ty‖2‖y‖2

‖XTy‖4
.

Proof. The Cauchy-Schwarz inequality gives

‖XXTy‖2‖y‖2 ≥ |(XXTy,y)|2 = (XTy, XTy)2 = ‖XTy‖4.

Since moreover f(λ,y) ≥ 0, we have ‖XXTy‖2‖y‖2 + f(λ,y) ≥ ‖XTy‖4 + f(λ,y); hence, ρ ≥ 1 by (3.8).

Regarding the upper bound, we have

ρ(y) =
‖XXTy‖2‖y‖2

‖XTy‖4
−
(
‖XXTy‖2‖y‖2 − ‖XTy‖4

)
f(λ,y)

‖XTy‖4 · (‖XTy‖4 + f(λ,y))
≤ ‖XX

Ty‖2‖y‖2

‖XTy‖4
.

Let us now present a method to analyze the upper bound in (3.9) for the linear regression model, where

y = Xβ + ε. The method [7, 8] is based on the singular value decomposition [5] of X,

(3.10) X = USV T ,

where U ∈ Rn×n and V ∈ Rd×d are orthogonal matrices and S ∈ Rn×d is a rectangular diagonal matrix

having the singular values of X on its main diagonal in (3.11). Substituting (3.10) into the estimate

(3.11) ρ(Xβ + ε) ≤ ‖XX
T (Xβ + ε)‖2 · ‖Xβ + ε‖2

‖XT (Xβ + ε)‖4
,

we get

(3.12) ρ ≤ ‖USS
T (SV Tβ + UT ε)‖2 · ‖USV Tβ + ε‖2

‖V ST (SV Tβ + UT ε)‖4
=
‖SST (SV Tβ + UT ε)‖2 · ‖SV Tβ + UT ε‖2

‖STSV Tβ + STUT ε‖4
.

(For the sake of brevity, from now on we will not write the argument of ρ explicitly.) Since ε ∼ N (0, σIn),

its unitary transformation satisfies UT ε ∼ N (0, σIn). This allows us to denote e = UT ε ∼ N (0, σIn) and

rewrite (3.12) in the following form, which is independent of U :

ρ ≤ ‖SS
T (SV Tβ + e)‖2 · ‖SV Tβ + e‖2

‖STSV Tβ + STe‖4
.

Furthermore, let us denote the vector V Tβ by z. Hence,

(3.13) ρ ≤ ‖SS
T (Sz + e)‖2 · ‖Sz + e‖2

‖STSz + STe‖4
.

It follows from the singular value decomposition of X that the diagonal terms of S coincide with the square

roots of the eigenvalues of XTX, while the off-diagonal terms of S vanish. This allows us to rewrite (3.13)

as

(3.14) ρ ≤

(
d∑
j=1

λ2j (
√
λjzj + ej)

2

)
·

(
d∑
j=1

(
√
λjzj + ej)

2 +
n∑

j=d+1

e2j

)
(

d∑
j=1

λj(
√
λjzj + ej)2

)2 ,
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where λj (j = 1, . . . , d) are the eigenvalues of XTX.

Numerical experiments show that the index of proximity usually attains values close to 1. In view of

this fact, it is convenient to rewrite the right hand side of formula (3.14) in the following manner [8].

Theorem 3.3. Let X ∈ Rn×d, β ∈ Rd and y = Xβ + ε ∈ Rn, where ε ∼ N (0, 1). Let λ1, . . . , λd be

the eigenvalues of XTX, (v1, . . . ,vd) be an orthonormal basis of Rd given by the associated eigenvectors of

XTX, and z ∈ Rd be the coordinates of the vector β in this basis. Then the index of proximity satisfies

(3.15) ρ ≤ 1 +

d∑
j=1

d∑
k=j+1

(λj − λk)2(
√
λjzj + ej)

2(
√
λkzk + ek)2(

d∑
j=1

λj(
√
λjzj + ej)2

)2 +

d∑
j=1

λ2j (
√
λjzj + ej)

2

(
d∑
j=1

λj(
√
λjzj + ej)2

)2 ·
n∑

j=d+1

e2j .

4. Linear regression model with intercept. Consider the model

(4.16) y = Xβ + ε,

where X =
[
1 x1 x2 · · · xd

]
n×d+1

, the vector εn×1 is normally distributed as N (0, In) and β is a

randomly chosen (d + 1) × 1 vector on a sphere of radius R. Let the covariates xi, i = 1, . . . , d, be jointly

Gaussian marginally distributed as N (0, σ2
i ) random variables with correlation structure r = cor(xi,xj), if

i 6= j, for a given r. We assume that the covariates are highly correlated, i.e., r = 1− δ for δ � 1.

Theorem 4.1. Let a > 0. If
d∑
j=1

σ2
j ≥ n

2(n−1) , then the index of proximity satisfies

ρ ≤ 1 + a+O(δ)

with probability at least

(4.17)
2

π
arccot

[(
1− n

(n− 1)
∑d
j=1 σ

2
j

)√
2n

a(n− 1)
∑d
j=1 σ

2
j

]
·

(
1−

√
4d

πaR2
∑d
j=1 σ

2
j

)
.

Proof. The information matrix is

XTX =


n 0 0 · · · 0

0 (n− 1)σ2
1 r12(n− 1)σ1σ2 · · · r1d(n− 1)σ1σd

0 r21(n− 1)σ2σ1 (n− 1)σ2
2 · · · r2d(n− 1)σ2σd

...
...

...
. . .

...

0 rd1(n− 1)σdσ1 rd2(n− 1)σdσ2 · · · (n− 1)σ2
d

 .

We assume 1− rij = O(δ) as δ → 0; hence,

XTX =


n 0 0 · · · 0

0 (n− 1)σ2
1 (n− 1)σ1σ2 · · · (n− 1)σ1σd

0 (n− 1)σ2σ1 (n− 1)σ2
2 · · · (n− 1)σ2σd

...
...

...
. . .

...

0 (n− 1)σdσ1 (n− 1)σdσ2 · · · (n− 1)σ2
d

−O(δ) = A−O(δ).
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Matrix A has a simple eigenvalue n (with associated eigenvector [1, 0, 0, . . . , 0]T ), a simple eigenvalue λ1 =

(n − 1)
d∑
j=1

σ2
j (with associated eigenvector [0, σ1, σ2, . . . , σd]

T ), and an eigenvalue 0 of multiplicity d + 1 −

rank(A) = d+ 1− 2 = d− 1.

The eigenvalue λ0 = n is common for both A and XTX; the other eigenvalues of XTX are given as

perturbations of the eigenvalues of A, i.e.,

(4.18) λ1 = (n− 1)

d∑
j=1

σ2
j +O(δ), λ2 = O(δ), . . . , λd = O(δ).

Plugging the eigenvalues (4.18) of XTX into formula (3.15), we get an upper bound on ρ as follows:

ρ ≤ 1 +
(λ0 − λ1)2

(√
λ0z0 + e0

)2 (√
λ1z1 + e1

)2[
λ0
(√
λ0z0 + e0

)2
+ λ1(

√
λ1z1 + e1)2

]2 +

λ20
(√
λ0z0 + e0

)2 d∑
k=2

e2k + λ21(
√
λ1z1 + e1)2

d∑
k=2

e2k[
λ0
(√
λ0z0 + e0

)2
+ λ1(

√
λ1z1 + e1)2

]2
+

λ20
(√
λ0z0 + e0

)2
+ λ21(

√
λ1z1 + e1)2[

λ0
(√
λ0z0 + e0

)2
+ λ1(

√
λ1z1 + e1)2

]2 n∑
k=d+1

e2k +O(δ)

= 1 +
(λ0 − λ1)2

(√
λ0z0 + e0

)2
(
√
λ1z1 + e1)2[

λ0
(√
λ0z0 + e0

)2
+ λ1(

√
λ1z1 + e1)2

]2 +
λ20
(√
λ0z0 + e0

)2
+ λ21(

√
λ1z1 + e1)2[

λ0
(√
λ0z0 + e0

)2
+ λ1(

√
λ1z1 + e1)2

]2 n∑
k=2

e2k +O(δ)

= 1 +K1 +K2 +O(δ).

At first we examine K2.

K2 =
λ20
(√
λ0z0 + e0

)2
+ λ21(

√
λ1z1 + e1)2

λ20
(√
λ0z0 + e0

)4
+ 2λ0λ1

(√
λ0z0 + e0

)2
(
√
λ1z1 + e1)2 + λ21(

√
λ1z1 + e1)4

n∑
k=2

e2k

≤
λ20
(√
λ0z0 + e0

)2
+ λ21(

√
λ1z1 + e1)2

2λ0λ1
(√
λ0z0 + e0

)2
(
√
λ1z1 + e1)2 + λ21(

√
λ1z1 + e1)4

n∑
k=2

e2k.

The assumption
d∑
j=1

σ2
j ≥ n

2(n−1) implies 2λ1 ≥ λ0, which allows to estimate 2λ0λ1 in the denominator by

λ20; i.e.,

(4.19) K2 ≤
λ20
(√
λ0z0 + e0

)2
+ λ21(

√
λ1z1 + e1)2

(
√
λ1z1 + e1)2

(
λ20
(√
λ0z0 + e0

)2
+ λ21(

√
λ1z1 + e1)2

) n∑
k=2

e2k =

n∑
k=2

e2k

(
√
λ1z1 + e1)2

.

Let us proceed to K1.

K1 ≤
(λ0 − λ1)2

(√
λ0z0 + e0

)2
(
√
λ1z1 + e1)2

λ21(
√
λ1z1 + e1)4

=
(λ0 − λ1)2

(√
λ0z0 + e0

)2
λ21(
√
λ1z1 + e1)2

≤ (λ0 − λ1)2λ0z
2
0

λ21(
√
λ1z1 + e1)2

+
(λ0 − λ1)22

√
λ0z0e0

λ21(
√
λ1z1 + e1)2

+
(λ0 − λ1)2e20

λ21(
√
λ1z1 + e1)2

.

(4.20)
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We use once again the assumption
d∑
j=1

σ2
j ≥ n

2(n−1) (i.e., 2λ1 ≥ λ0) to estimate |λ0 − λ1| ≤ λ1 in the last

summand of (4.20). We neglect the middle summand in (4.20), which is small – O( 1
n ) – and, besides,

vanishes on average due to e0 ∼ N (0, 1). So,

(4.21) K1 .
(λ0 − λ1)2λ0z

2
0

λ21(
√
λ1z1 + e1)2

+
e20

(
√
λ1z1 + e1)2

.

In view of (4.19) and (4.21), we obtain

ρ . 1 +
(λ0 − λ1)2λ0z

2
0

λ21(
√
λ1z1 + e1)2

+

e20 +
n∑
k=2

e2k(√
λ1z1 + e1

)2 .
Since ej ∼ N (0, 1), we have e20 +

n∑
k=2

e2k ≈ n; hence,

(4.22) ρ . 1 +
(λ0 − λ1)2λ0z

2
0

λ21(
√
λ1z1 + e1)2

+
n

(
√
λ1z1 + e1)2

.

In order to have ρ small, the quantity
(√
λ1z1 + e1

)2
must be greater than n. This is possible only for

√
λ1z1

being greater than roughly
√
n; i.e.,

√
λ1z1 must largely outweight the error term e1. Consequently, it is

necessary that
(√
λ1z1 + e1

)2 ≈ λ1z21 , which allows us to simplify the estimate (4.22) to

(4.23) ρ . 1 +
(λ0 − λ1)2λ0z

2
0

λ21λ1z
2
1

+
n

λ1z21
+O(δ) = 1 +

(
1− λ0

λ1

)2
λ0z

2
0

λ1z21
+

n

λ1z21
+O(δ).

Now let us estimate the probability of ρ ≤ 1 + a+O(δ). A sufficient condition is(
1− λ0

λ1

)2
λ0z

2
0

λ1z21
≤ a

2
and

n

λ1z21
≤ a

2
,

which can be rewritten as

(4.24)

∣∣∣∣z1z0
∣∣∣∣ ≥ ∣∣∣∣1− λ0

λ1

∣∣∣∣
√

2λ0
aλ1

and

(4.25)
|z1|
R
≥
√

2n

aR2λ1
.

Since z1
R is one coordinate of a unit vector in Rd+1, we can infer1 that |z1|R <

√
2n

aR2λ1
occurs with probability

at most
√

2d
π c for c =

√
2n

aR2λ1
. In other words, (4.25) is violated with probability at most

√
4nd

πaR2λ1
. Thus,

(4.25) is satisfied with probability at least

(4.26) 1−
√

4nd

πaR2λ1
.

1Lemma. ([8]) Let c ∈ (0, 1) and d ≥ 3 be an integer. The probability that a given coordinate of a random unit vector in

Rd satisfies |x| < c is bounded from above by the value
√

2(d−1)
π

c.
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The probability of satisfying (4.24) is equal to the probability that a randomly chosen vector [z0, z1] =

[Z sin ζ, Z cos ζ] satisfies

| cot ζ| ≥
∣∣∣∣1− λ0

λ1

∣∣∣∣
√

2λ0
aλ1

,

which is equal to

(4.27)
2

π
arccot

(∣∣∣∣1− λ0
λ1

∣∣∣∣
√

2λ0
aλ1

)
.

Now we observe that the condition (4.24) requires that z1 is (in some sense) large compared to z0. Since

(4.25) required z1 to be large as well, we conclude that {(4.24) subject to (4.25)} is satisfied with higher

probability than (4.24). Therefore, the probability that both (4.24) and (4.25) are satisfied at the same time

is greater than the product of probabilities of both inequalities being satisfied independently. Consequently,

ρ ≤ 1 + a + O(δ) occurs with probability greater or equal to the product of expressions (4.26) and (4.27).

Using explicit values λ0 = n, λ1 = (n− 1)
d∑
j=1

σ2
j , we arrive at the sought lower bound on the probability,

2

π
arccot

[(
1− n

(n− 1)
∑d
j=1 σ

2
j

)√
2n

a(n− 1)
∑d
j=1 σ

2
j

]
·

(
1−

√
4d

πaR2
∑d
j=1 σ

2
j

)
.

Remark 4.2. A similar result can be derived for a model with error εn×1 being normally distributed

as N (0, σerrIn) for any given σerr > 0, instead of N (0, In). In this generalized case, formula (4.17) acquires

the form

2

π
arccot

[(
1− n

(n− 1)
∑d
j=1 σ

2
j

)√
2n

a(n− 1)
∑d
j=1 σ

2
j

]
·

(
1−

√
4dσ2

err

πaR2
∑d
j=1 σ

2
j

)
.

5. An estimate for the GCV function. Based on the results of the previous sections, we can

formulate an estimate for the GCV function of formula (2.3) for regression models y = Xβ + ε, with a

highly correlated design matrix X.

5.1. Estimation of the numerator. Since the numerator is a bilinear form for which ρ(y) is usually

close to one, the formula (2.7) from Proposition 2.3 can be applied for its estimation.

5.2. Estimation of the denominator. The value of Tr(B−1) is equal to the sum of the eigenvalues

of B−1, where B = XXT + λIn. Let us start from finding the eigenvalues of XXT . The singular value

decomposition X = USV T gives

(5.28) XXT = USSTUT and XTX = V STSV T .
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The first equation in (5.28) implies that the eigenvalues of XXT coincide with the eigenvalues of SST .

Moreover, since S is a diagonal rectangular matrix of order n × (d + 1) for n ≥ d + 1, the first d + 1

eigenvalues of SST coincide with the eigenvalues of STS, while the remaining n− d eigenvalues of SST are

equal to 0. Now we use the second equation in (5.28) to infer that the eigenvalues of STS coincide with the

eigenvalues of XTX. These eigenvalues were found in the proof of Theorem 4.1; see (4.18). To sum up, the

eigenvalues of XXT are

(5.29)

λ0 = n, λ1 = (n− 1)

d∑
j=1

σ2
j +O(δ), λ2 = O(δ), . . . , λd = O(δ) as δ → 0, λd+1 = · · · = λn = 0.

Since B = XXT + λIn, the eigenvalues of B take the form λj + λ, where λj (j = 0, 1, . . . , n) are given by

(5.29). The eigenvalues of B−1 are reciprocals of the eigenvalues of B. Therefore, the trace of B−1 is

(5.30) Tr(B−1) =
1

λ0 + λ
+

1

λ1 + λ
+

1

λ2 + λ
+ · · ·+ 1

λd + λ
+
n− d
λ

,

Combining (5.30) with (5.29), we obtain

Tr(B−1) =
1

n+ λ
+

1

(n− 1)
d∑
j=1

σ2
j +O(δ) + λ

+
1

O(δ) + λ
+ · · ·+ 1

O(δ) + λ
+
n− d
λ

=
n− 1

λ
+

1

(n− 1)
d∑
j=1

σ2
j + λ

+
1

n+ λ
+O(δ) as δ → 0.

(5.31)

Thus, in view of (2.3), Proposition 2.3 and (5.31), an estimate for the GCV function is given by

(5.32) Ṽ (λ) =
(ρ(y)c0(y))3

(c1(y))2
· 1(

n−1
λ + 1

(n−1)
∑d

j=1 σ
2
j+λ

+ 1
n+λ

)2 .
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6. Simulations. In order to verify the estimates derived in Section 4, numerical simulations were

carried out. We considered several examples of the model

y = Xβ + ε,

where the covariates xi (i = 1, . . . , d) in the design matrix X =
[
1 x1 x2 · · · xd

]
n×(d+1)

are jointly

Gaussian marginally distributed random variables satisfying xi ∼ N (0, σ2
i ) with correlation

r = cor(xi,xj) =
xi
Txj

‖xi‖‖xj‖
≈ 1 for all i, j = 1, . . . , d, i 6= j.

For each considered example, we generated 10000 datasets, each of them representing n observations, i.e.,

we took β as a randomly chosen d× 1 vector having norm R and ε as a random n× 1 vector being normally

distributed as N (0, 1). Since the parameter R stands for the norm of a d-dimensional vector with random

entries, for our simulation study we examined the case R = d and a few other values close to d in order to

illustrate the trend.

The results of the simulation are presented in the tables below. Each table corresponds to some design

matrix X of given parameters. The tables show the probability of ρ ≤ 1 + a for various values of a and

R = ‖β‖. For each combination of a and R, the theoretical approximate lower bound on the probability, as

given by formula (4.17), is written in the upper row, while the lower row shows how many times the bound

ρ ≤ 1 + a was satisfied during the simulation.

a

0.1 0.2 0.3 0.4 0.5

R

10
0.3117 0.4252 0.4941 0.5423 0.5786

4173/10000 5489/10000 6338/10000 6825/10000 7291/10000

11
0.3178 0.4308 0.4993 0.5471 0.5831

4308/10000 5651/10000 6353/10000 7029/10000 7372/10000

12
0.3229 0.4340 0.5035 0.5511 0.5869

4327/10000 5766/10000 6384/10000 7243/10000 7610/10000

a

0.1 0.2 0.3 0.4 0.5

R

10
0.3764 0.4914 0.5583 0.6037 0.6373

4755/10000 5947/10000 6699/10000 7155/10000 7511/10000

11
0.3890 0.4954 0.5619 0.6071 0.6405

4827/10000 6087/10000 6713/10000 7194/10000 7614/10000

12
0.3846 0.4987 0.5649 0.6099 0.6431

4839/10000 6153/10000 6793/10000 7243/10000 7610/10000

Table 1

Probability of ρ ≤ 1 + a in the model with parameters d = 10, n = 100, r = 0.999 and [σ1, . . . , σ10] =

[0.5, 0.5, 0.5, 0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0] (top) and [σ1, . . . , σ10] = [0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.2]

(bottom).



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 35, pp. 482-496, October 2019.

Christos Koukouvinos, Khalide Jbilou, Marilena Mitrouli, and Ondřej Turek 492

Comparing various r. Tables 2 and 3 illustrate in more detail the behaviour of the index of proximity

in dependence on the correlation r.

a

0.1 0.2 0.3 0.4 0.5

R

10

0.3121 0.4257 0.4946 0.5428 0.5790

3227/10000 4786/10000 5567/10000 6281/10000 6704/10000 r = 0.9703

3380/10000 4903/10000 5847/10000 6431/10000 6826/10000 r = 0.9765

4018/10000 5538/10000 6314/10000 6860/10000 7312/10000 r = 0.999

11

0.3182 0.4312 0.4997 0.5476 0.5835

3251/10000 4848/10000 5634/10000 6268/10000 6847/10000 r = 0.9703

3434/10000 4967/10000 5826/10000 6385/10000 6893/10000 r = 0.9765

4225/10000 5668/10000 6354/10000 6946/10000 7355/10000 r = 0.999

12

0.3233 0.4359 0.5040 0.5516 0.5873

3298/10000 4848/10000 5803/10000 6470/10000 6826/10000 r = 0.9703

3298/10000 5060/10000 5846/10000 6391/10000 6937/10000 r = 0.9765

4337/10000 5726/10000 6506/10000 6999/10000 7469/10000 r = 0.999

Table 2

Probability of ρ ≤ 1 + a in the model with parameters d = 10, n = 200 and [σ1, . . . , σ10] =

[0.5, 0.5, 0.5, 0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]. The theoretical upper bound, given by formula (4.17), is compared with

the results of numerical simulations carried out for the correlation r = 0.9703, r = 0.9765 and r = 0.999.

a

0.1 0.2 0.3 0.4 0.5

R

10

0.3770 0.4920 0.5588 0.6042 0.6378

3643/10000 5083/10000 5891/10000 6448/10000 6808/10000 r = 0.9703

3774/10000 5209/10000 6077/10000 6590/10000 6921/10000 r = 0.9765

4746/10000 5951/10000 6700/10000 7119/10000 7489/10000 r = 0.999

11

0.3814 0.4960 0.5625 0.6076 0.6410

3613/10000 5168/10000 5978/10000 6455/10000 6890/10000 r = 0.9703

3852/10000 5286/10000 6116/10000 6578/10000 6940/10000 r = 0.9765

4811/10000 6137/10000 6743/10000 7206/10000 7528/10000 r = 0.999

12

0.3852 0.4993 0.5655 0.6104 0.6436

3817/10000 5139/10000 5957/10000 6496/10000 6811/10000 r = 0.9703

3975/10000 5273/10000 6159/10000 6653/10000 7029/10000 r = 0.9765

4938/10000 6151/10000 6840/10000 7234/10000 7585/10000 r = 0.999

Table 3

Probability of ρ ≤ 1 + a in the model with parameters d = 10, n = 200, [σ1, . . . , σ10] =

[0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.2] and r = 0.9703, r = 0.9765 and r = 0.999. The table is similar to Ta-

ble 2, the only difference consists in larger values of σj .

Comparing various σ. The following tables illustrate the behaviour of the index of proximity in

dependence on the variance σ. Table 4 is devoted to a model with 10 to 12 parameters and 200 observations,

Table 5 to a model with 6 to 8 parameters and 100 observations.
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a

0.1 0.2 0.3 0.4 0.5

R

10
0.3733 0.4883 0.5552 0.6008 0.6346

4567/10000 5982/10000 6648/10000 7110/10000 7555/10000

11
0.3778 0.4923 0.5589 0.6043 0.6378

4713/10000 6106/10000 6802/10000 7141/10000 7477/10000

12
0.3816 0.4957 0.5620 0.6071 0.6405

4842/10000 6088/10000 6761/10000 7276/10000 7498/10000

a

0.1 0.2 0.3 0.4 0.5

R

10
0.4314 0.5458 0.6097 0.6522 0.6831

5185/10000 6420/10000 6970/10000 7398/10000 7730/10000

11
0.4349 0.5488 0.6124 0.6547 0.6855

5230/10000 6574/10000 7086/10000 7511/10000 7772/10000

12
0.4378 0.5514 0.6147 0.6568 0.6875

5428/10000 6516/10000 7132/10000 7527/10000 7767/10000

Table 4

Probability of ρ ≤ 1 + a in the model with parameters d = 10, n = 200, r = 0.999 and σ1 = · · · = σ10 = 1.0 (top) and

σ1 = · · · = σ10 = 1.2 (bottom).

a

0.1 0.2 0.3 0.4 0.5

R

6
0.2725 0.3876 0.4584 0.5084 0.5462

3594/10000 5154/10000 5954/10000 6612/10000 6999/10000

7
0.2863 0.4002 0.4701 0.5193 0.5566

3866/10000 5433/10000 6231/10000 6859/10000 7246/10000

8
0.2967 0.4096 0.4789 0.5275 0.5643

4111/10000 5456/10000 6347/10000 6910/10000 7374/10000

a

0.1 0.2 0.3 0.4 0.5

R

6
0.3319 0.4484 0.5176 0.5653 0.6009

4160/10000 5656/10000 6422/10000 6820/10000 7273/10000

7
0.3425 0.4579 0.5263 0.5734 0.6085

4431/10000 5668/10000 6484/10000 7021/10000 7327/10000

8
0.3504 0.4650 0.5328 0.5795 0.6142

4498/10000 5890/10000 6577/10000 7104/10000 7429/10000

Table 5

Probability of ρ ≤ 1 + a in the model with parameters d = 6, n = 100, r = 0.999 and σ1 = · · · = σ6 = 1.0 (top) and

σ1 = · · · = σ6 = 1.2 (bottom).
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Large d. The remaining tables are devoted to models with a large number of parameters. We considered

models with 50 parameters (Table 6) and 100 parameters (Table 7).

a

0.1 0.2 0.3 0.4 0.5

R

50
0.4334 0.5454 0.6086 0.6509 0.6817

5453/10000 6521/10000 7143/10000 7500/10000 7801/10000

51
0.4337 0.5457 0.6089 0.6511 0.6820

5400/10000 6560/10000 7177/10000 7491/10000 7797/10000

52
0.4341 0.5460 0.6092 0.6514 0.6822

5406/10000 6525/10000 7204/10000 7515/10000 7802/10000

a

0.1 0.2 0.3 0.4 0.5

R

50
0.6400 0.7316 0.7765 0.8045 0.8240

7148/10000 7892/10000 8287/10000 8521/10000 8646/10000

51
0.6402 0.7317 0.7766 0.8046 0.8241

7214/10000 7942/10000 8364/10000 8491/10000 8680/10000

52
0.6403 0.7318 0.7767 0.8046 0.8242

7120/10000 7941/10000 8294/10000 8559/10000 8663/10000

a

0.1 0.2 0.3 0.4 0.5

R

50
0.6898 0.7718 0.8110 0.8351 0.8518

7483/10000 8198/10000 8506/10000 8752/10000 8894/10000

51
0.6899 0.7719 0.8111 0.8352 0.8519

7500/10000 8163/10000 8494/10000 8711/10000 8846/10000

52
0.6900 0.7702 0.8111 0.8352 0.8519

7536/10000 8177/10000 8523/10000 8721/10000 8869/10000

Table 6

Probability of ρ ≤ 1 + a in the model with parameters d = 50, n = 1000, r = 0.999. The standard deviation is supposed

to have the same value for all the covariates, namely σ = 0.5 (top), σ = 1.0 (middle) and σ = 1.2 (bottom).
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a

0.1 0.2 0.3 0.4 0.5

R = 100
0.5404 0.6459 0.7011 0.7365 0.7616

6263/10000 7248/10000 7738/10000 7973/10000 8209/10000

a

0.1 0.2 0.3 0.4 0.5

R = 100
0.7320 0.8045 0.8389 0.8597 0.8741

7768/10000 8436/10000 8756/10000 8889/10000 9053/10000

a

0.1 0.2 0.3 0.4 0.5

R = 100
0.7724 0.8355 0.8647 0.8824 0.8946

8089/10000 8622/10000 8857/10000 8995/10000 9168/10000

Table 7

Probability of ρ ≤ 1 + a in the model with parameters d = 100, n = 2000, r = 0.999. The standard deviation is the same

for all covariates, having value σ = 0.5 (top), σ = 1.0 (middle) and σ = 1.2 (bottom).

7. Conclusions. In the present paper, we proposed an elegant formula for a GCV estimate for models

with highly correlated design matrices. Theoretical probability bounds concerning the numerator of the

estimate were proved and tested through various simulation experiments. The denominator of the estimate

was expressed explicitly by means of an analytical formula, which was derived by exploiting the eigenvalue

structure of the matrix. The theoretical results together with the numerical simulations allow us to draw

several conclusions, which are summarized below.

• As a first rough observation, we can say that the index of proximity indeed tends to be close to 1.

We considered various experimental settings, and in all of them we obtained ρ ≤ 1.5 with probability

exceeding 50%.

• The situation is particularly favourable when d (the number of parameters in the model) is high.

Numerical results in Tables 6 and 7 show that the probability of ρ ≤ 1.3 exceeds 70%− 80%. This

behaviour is obvious also from the analytical estimate (4.17).

• The estimate (4.17) depends not only on d, but also on R. Note, however, that R = ‖β‖ itself is

related to d, because β is a (generally arbitrary) vector having d entries. Therefore, even though

‖β‖ can take in general any value, it is natural to expect it to depend roughly linearly on d. As

a consequence, if d grows to infinity, we have R → ∞ as well, and – by the estimate (4.17) – the

probability of ρ ≤ 1 + a approaches 100% for any a > 0.

• An important role is played by the variance. Roughly speaking, the larger σj , the larger probability

of ρ being close to 1. This trend, which is indicated by formula (4.17), is visible in each of Tables

1–7. Note also that if the sum of variances grows to infinity, then (4.17) implies that the probability

of ρ ≤ 1 + a tends to 100% for any a > 0.

• On the other hand, the number of observations has only a little effect. To see it numerically, compare

Table 1 with Tables 2 and 3 (see the rows corresponding to r = 0.999). The models considered in

the tables differ only in n; the other parameters of the models (i.e., d, σj , r) take the same values.

In spite of a big difference in n (Table 1 concerns n = 100, while Tables 2 and 3 concern n = 200)
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the probability of ρ ≤ 1 + a remains nearly unchanged. This is not surprising; such a behaviour is

obviously expectable in view of formula (4.17).

We wish to emphasize mainly the fact that the probability of ρ ≤ 1 + a grows with growing d. When

the number of parameters (d) in the model is expected to be large, the number of observations (n) needs

to be large as well (due to the natural assumption n ≥ d), which makes the search for the exact solution

computationally hard. In such a situation, however, we have ρ ≈ 1 with high probability, and therefore

the minimization of the inexpensive GCV estimate (5.32) can be applied for the selection of the tuning

parameter λ in penalized regression models.
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