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AN EIGENVALUE APPROACH FOR ESTIMATING THE GENERALIZED CROSS
VALIDATION FUNCTION FOR CORRELATED MATRICES*
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Abstract. This works proposes a fast estimate for the generalized cross-validation function when the design matrix of an
experiment has correlated columns. The eigenvalue structure of this matrix is used to derive probability bounds satisfied by
an appropriate index of proximity, which provides a simple and accurate estimate for the numerator of the generalized cross-
validation function. The denominator of the function is evaluated by an analytical formula. Several simulation tests performed
in statistical models having correlated design matrix with intercept confirm the reliability of the proposed probabilistic bounds
and indicate the applicability of the proposed estimate for these models.
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1. Introduction. In several applications arising from the field of Statistics, there appears the linear

regression model y = X - b, where X = [1, 21, @2, ..., xq] € R"*(@+1) is the design matrix. The first column
of the design matrix is 1,, = [1,1,...,1]7, i.e., the model includes the intercept, which corresponds to the
mean effect. The j-th column of the design matrix is denoted by x; = [z1;,Z2;,. .. ,xnj]T and represents

the factor j of the experiment. Vector b € R?*! represents the regression parameter of the model and it is
to be estimated. The vector y € R™ is the response vector. The error, which contaminates the model, is
assumed to be independent identically distributed multivariate normal of dimension n, with zero mean and

with a variance matrix ¥ = 02 1,,.

The complicated structure of the design matrix and the appearing correlations among its entries influence
the solution of the model. The ordinary least square regression estimator of b is likely to produce an
inaccurate solution. Therefore, penalization is employed in order to achieve better prediction; that is, one
needs to obtain minimizers of the model

: 2 2
(L.1) Bﬂé{l{}i{Hy—XﬁH +AlIBIFY

where A € R is the tuning or regularization parameter.

The specification of an appropriate value for A is an important issue. Several approaches were developed
to handle it [6]. It was proved [3] that the minimizer of the generalized cross-validation (GCV) function
provides a good value for A, and thereafter this method is followed in a vast majority of applications.
However, this computation is very expensive, being of order O(n?). Thus, with a view to overcome this
disadvantage, there were proposed methods [1, 10] attaining the minimization of an estimate of the GCV
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instead of its exact formula. In this way, the complexity is reduced to O(n?). In the present work, we improve
a recently proposed extrapolation GCV estimate [8, 9] by analyzing the eigenvalue structure of the involved
matrix. For a matrix with highly correlated columns, it is proved that the index of proximity, which arises
in the extrapolation procedure, is close to one with high probability. This allows us to obtain an optimum
extrapolation estimate for the numerator of the GCV function whereas the denominator can be expressed
by an analytical formula.

The paper is organized as follows. Section 2 describes the procedure to derive an optimum extrapolation
GCV estimate. In Section 3, we outline an efficient method of estimating the index of proximity [7, 8]. Section
4 is devoted to the study of the index of proximity for linear regression statistical models with intercept and
highly correlated covariates. In particular, we estimate the probability that the index of proximity is close to
one. Calculations in Section 5 lead to an analytical formula for the denominator of the GCV function, which
is subsequently incorporated in an elegant and easily applicable formula estimating the whole GCV function.
In order to verify the estimates numerically, we performed computer aided simulations; their results are given
in Section 6 and further discussed in Section 7.

Throughout the paper, we use the symbol I, to represent the identity matrix of order n and J, to
represent the square matrix of order n such that all of its entries are equal to 1. The Euclidean norm of a
vector € R™ is denoted by ||x||, the i-th entry of the vector @ is written as x;. The trace of a matrix A
is denoted Tr(A), the superscript 7 stands for the transpose of a matrix or a vector. The inner product of
vectors &, y is denoted (x,y).

2. Estimation of the generalised cross validation function via extrapolation. The most com-
mon method for choosing the tuning parameter A in the linear regression model is the generalized cross-
validation (GCV), introduced by Craven and Wahba [3]. The GCV function V() is given as

. 2
ot

where Ay = X(XTX + M3)7'X7T is the n x n influence matrix. The value A that minimizes the GCV
function V' (X) turns out to be a good approximation of the tuning parameter in (1.1) [3, 4].

A drawback of this approach consists in the computational cost: Exact evaluation of the GCV function
needs O(n?) operations. It is therefore desirable to search for efficient estimates of the GCV function that
can be used instead of computing it exactly. Mitrouli and Roupa [9] proposed a method that allows to
estimate the GCV function with quadratic complexity. The approach takes advantage of a reformulation of

(2.2) by Reichel et al. [10], which reads

T -2
_ Yy By
(23) V()\) - ( I'(B_l))27

where B = X X7 + \I,, € R™". The quadratic form y? B=2y appearing in (2.3) is then extrapolated in the
way described in Proposition 2.3 bellow. To formulate the result, we need two definitions.

DEFINITION 2.1. Let X be a design matrix having n rows. For any integer k and a vector x € R", the
moment s(x) of the matrix X X7 with respect to the vector z is defined as

(2.4) sip(x) = (z,(XXT)rz) = 2" (XXT)ka.
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For a given € R", we also define quantities co(x), ¢1(x) and ca(x) as follows:

co(®) = so(x),
(2.5) c1(x) = s1(x) + Asp(x),
ca() = sa(x) + 281 () + N5 (x).

DEFINITION 2.2. The index of proximity with respect to a given vector @ € R™ is defined as

)

_ co(@)ca(x)

where co(x), c¢1(x) and co(x) are introduced in Definition 2.1.

The index of proximity is a crucial notion. It is closely related to the applicability of extrapolation
estimates.

PROPOSITION 2.3. (Optimum Extrapolation Estimate (OEE) [9]) Let y € R™ be a given vector. If p(y)
is close to one, then an optimum extrapolation estimate for the bilinear form yT B2y is given by

_ (p(y)eo(y))?
(2.7) OEE = O

Although the assumption that the index of proximity is close to one may seem restrictive, it turns out
to be satisfied very often. For example, it was shown heuristically that the index of proximity is around
one for matrices arising from discrete ill-posed problems with error contaminated data [2]. Analytical proofs
were given for linear regression models in case when the covariates have the same variance and correlation
[7, 8]. In this paper, we will analyze the index of proximity for the linear regression model with intercept
and highly correlated covariates.

3. The index of proximity. In this section, we will find a bound on the index of proximity for a given
X € R™*? with respect to a general vector y € R™. Then we will specify the result for a linear regression
model, where y = X3 + €.

ProrosiTION 3.1. We have

[XXTy|2yl” + f(\ )
IXTyll*+ f(Ay)

(3.8) p(y) =

where f(A,y) = 2XIXTy?[ly* + X*[ly]*.
Proof. The statement follows directly from Definition 2.2 and relations (2.4) and (2.5):

so(y)(s2(y) +2Xs1(y) + Ns0(y)) _ s2(y)so(y) + 2Xs1(y)so(y) + As3(y)
(s1(y) + Aso(y))? s1(y) + 2As1(y)so(y) + A*s5(y)
XXyl llyll* + 2 X Tyl yl* + X[yl

= . D
[XTyl[* + 2 X Ty[?[y]* + A2[|yl*

ply) =

Removing f(A,y) from (3.8), we obtain bounds on p(y) that are independent of A:
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PROPOSITION 3.2. It holds

XX y*[lyl*

(3.9) 1<p(y) < [XTy|4

Proof. The Cauchy-Schwarz inequality gives

IXXTyIPllyll? > (XX Ty, )2 = (XTy, XTy)? = | XTy".
Since moreover f(A,y) > 0, we have [ XXTy[2y[2 + F(Ay) > | XTyl* + F(A,y); hence, p > 1 by (3.8).

Regarding the upper bound, we have

(y) = XXyl yl? (XX TylPlyl® = 1X7yl") fAy) _ XXy )2yl
[ XTyl* [XTyllt- (X Tyt + f(Ny) X Tyl

Let us now present a method to analyze the upper bound in (3.9) for the linear regression model, where
y = XB + €. The method [7, 8] is based on the singular value decomposition [5] of X,

(3.10) X =Usv7T,

where U € R™*"™ and V € R%? are orthogonal matrices and S € R"*¢ is a rectangular diagonal matrix
having the singular values of X on its main diagonal in (3.11). Substituting (3.10) into the estimate

|XXT(XB +e)|” - | XB + e
[XT(XB+e)* ’

(3.11) p(XB+e) <

we get

|USST(SVTB +UTe)|> - [USV"B +€® _ ISST(SV"B+UTe)|>- SV B + UTe|”

12 <
(812) < [VST(SVTB+ UTe)[ ISTSVTA + STUT€||*

(For the sake of brevity, from now on we will not write the argument of p explicitly.) Since € ~ N (0,01,,),
its unitary transformation satisfies UTe ~ N(0,01,). This allows us to denote e = UTe ~ N(0,01,,) and
rewrite (3.12) in the following form, which is independent of U:

_ISST(SVIB+e)|? - |SVTB+ el
p= |STSVTB + STe]* '

Furthermore, let us denote the vector V73 by z. Hence,

< |SST(Sz+e)|?- Sz + e|?
p= [STSz + STe|* '

(3.13)

It follows from the singular value decomposition of X that the diagonal terms of S coincide with the square
roots of the eigenvalues of X7 X, while the off-diagonal terms of S vanish. This allows us to rewrite (3.13)
as

(i ey +ej>2> - (im’m fert S )

j=d+1

(3.14) p <

)

(Zdjl Ai(V gz + 6;’)2)
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where \; (j =1,...,d) are the eigenvalues of X7 X.

Numerical experiments show that the index of proximity usually attains values close to 1. In view of
this fact, it is convenient to rewrite the right hand side of formula (3.14) in the following manner [8].

THEOREM 3.3. Let X € R"*4 B c R? and y = XB + € € R”, where € ~ N(0,1). Let \i,...,\q be
the eigenvalues of XTX, (v1,...,vq) be an orthonormal basis of R given by the associated eigenvectors of
XTX, and z € R? be the coordinates of the vector B in this basis. Then the index of prozimity satisfies

d d d
; k_Z 1(%‘ = A2 (VA2 + )2 (V A2k + er)? le A (VA2 +ej)? n
(3.15) p<14 27 T J; ;> €

2
(Zd: )\j(\/Yij +€j)2> <Z Aj(\/)Tij +ej)2> j=d+1
j=1 =

4. Linear regression model with intercept. Consider the model
(4.16) y=XB+e,

where X = [ 1 3 x -+ x4 }nxdﬂ, the vector €,x1 is normally distributed as N'(0,1,,) and 3 is a
randomly chosen (d + 1) x 1 vector on a sphere of radius R. Let the covariates ;, ¢ = 1,...,d, be jointly
Gaussian marginally distributed as N'(0,07) random variables with correlation structure r = cor(z;, x;), if
i # 7, for a given r. We assume that the covariates are highly correlated, i.e., r =1 —§ for § < 1.

d
THEOREM 4.1. Leta > 0. If > UJZ > 2(nn—1)’ then the index of proximity satisfies
j=1
p<1l4+a+0O(9)

with probability at least

, . 5 4d
(4.17) ;arccot l(l - 1) Zj’:l 0;) \/a(n -1) ijl o'? ] . (1 - W) .

Proof. The information matrix is

n 0 0 0

0 (n—1)o? rio(n — Dojoy -+ ra(n—1)o104
XTX — 0 7’21(TL— 1)0’20’1 (’ﬂ— 1)0% ng(n— 1)0’20d

0 rq(n—1)ogo1 rae(n—1)ogoe - (n—1)o3

We assume 1 —r;; = O(6) as § — 0; hence,

n 0 0 0
0 (n—1)0} (n—1oo2 -+ (n—1)o104
xTx = |0 (n=1)ozo1  (n—1)g3 - (n—1)o20a| — O@) = A— O(6).

0 (n—1)oqo1 (n—1)ogo2 --- (n—1)o2
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Matrix A has a simple eigenvalue n (with associated eigenvector [1,0,0,...,0]T), a simple eigenvalue A\; =

d
(n—1)> JJZ» (with associated eigenvector [0,01,09,...,04]7), and an eigenvalue 0 of multiplicity d + 1 —

Jj=1

rank(A)=d+1-2=d—- 1.
The eigenvalue Ao = n is common for both A and X7 X the other eigenvalues of X7 X are given as
perturbations of the eigenvalues of A, i.e.,
d
(4.18) AM=n-1)>07+00), d=00), ..., A=0().
j=1

Plugging the eigenvalues (4.18) of X7 X into formula (3.15), we get an upper bound on p as follows:

d d
A2 (Ve 2 2 4 N2( /N 2 2
(Ao — M)? (Vo2 +60)2 (VA2 +€1)2 . § (V2oz0 + eo) kX::2 e + A\ (VAiz1 +e1) k; €k

p< 1+ :

2
[)\0 (\/%ZO + 60)2 + Al(\/le + 61)2:| [)\0 (\/EZO + 60)2 + Al(\/x21 + 61)2}
2 (Vhozo+e0)’ + (Vs +e)? &
0 (ﬁzo 60)2 1(\/721 61) . Z ei I 0(5)
[)\0 (VAozo +e0)” + A (VA2 + 61)2} k=d+1
2 2 n
" (Mo — A1)? (\/Ezo + eo) (VA121 + e1)? n Ao (\/)Tozo + 60) + M (VA2 +e1)? ; ¢2 1+ 0(5)

2
{)\0 (VAoz0 + 60)2 + M (VAiz + 61)2} [)\0 (Vo020 + 60)2 + M (VArz + e1)2} k=2
=1+ K; +K2+O((5)

=1

At first we examine Ko.

/T o+ T ~
M2 (VAozo + €0) + 2X00A1 (VAozo + €0)” (VA1z1 + €1)? + A (VA2 + e1)t 1=
R 1 B g R
T 220N (mzo + 60)2 (VA1z1 +e1)?2 + XN (V21 +e1)t 1 k
d
The assumption Z sz > S=T) implies 2A\; > Ao, which allows to estimate 2AgA; in the denominator by
A3; ie., =
23 (V3ozo + )’ + M (VArz +e)? =~ 5 k§2 ‘i
(4.19) Ky < el ==

(V121 + €1)? (Aﬁ (mzo + 60)2 + A (VA2 + 61)2> k=2 (V121 + 61)2'
Let us proceed to Kj.

K < (Ao — A1)? (VAo20 + 60)2 (VAizi+e)® (Ao —X)? (VAozo0 + 60)2
L < -
)\%(\/ )\12:1 + 61)4 /\%(\/ )\121 —+ 61)2
(Mo — A%z (Mo — A1)%2v 02060 (Mo — M1)%eg

< .
T MWz +er)? A2 (V121 + e1)? N (VA1z1 +ep)?

(4.20)
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d
We use once again the assumption O'JQ» > 2(nn—1) (i-e., 2A1 > Xp) to estimate |Ag — A1| < A1 in the last
j=1

summand of (4.20). We neglect the middle summand in (4.20), which is small — O(2) — and, besides,
vanishes on average due to ey ~ N (0,1). So,

(Ao — A1)? X0z e?

4.21 K < + 0 .
(4.21) ! N(VAiz1+e)?  (VAizr+er)?

In view of (4.19) and (4.21), we obtain

n
e + €2
p<1—|— ()\0—)\1)2)\028 + 0 kz::2 k ]
~ A2 (V121 + €1)? («/)\121+61)2

n
Since e; ~ N(0,1), we have €3 + > €2 ~ n; hence,
k=2

()\0 — )\1)2/\028 n
4.22 <1+ + .
(422) PR Nt a)? | (Vo ter)?

In order to have p small, the quantity (\/)\1 z1 + 61)2 must be greater than n. This is possible only for v/A1 21
being greater than roughly /n; i.e., v/A12z1 must largely outweight the error term e;. Consequently, it is
necessary that (\/)\121 + 61) ~ A1 22, which allows us to simplify the estimate (4.22) to

()\0 — )\1)2A028 n AO 2 )\QZ(Q) n
4.23 <1 O@)=1+(1-22 L o0).
(4.23) PRt TN T (0) =1+ M) a2 taat (9)

Now let us estimate the probability of p <1+ a+ O(d). A sufficient condition is

which can be rewritten as

Z1 )\0 QAO
4.24 —| > |1—-— —
( ) 20| ’ A aM
and
|21] 2n
4.25 — .
( ) R — aR?)\;

2n

z1 <Rz, occurs with probability

Since %} is one coordinate of a unit vector in R*! we can infer! that % <

at most y/24c for ¢ = ,/ %2”/\1. In other words, (4.25) is violated with probability at most 7ra4£2d)\1 . Thus,
(4.25) is satisfied with probability at least

dnd

4.2 11— ——+—.
( 6) 7T(1R2)\1

'LEMMA. ([8]) Let ¢ € (0,1) and d > 3 be an integer. The probability that a given coordinate of a random unit vector in
R? satisfies |z| < ¢ is bounded from above by the value 4/ @c.
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The probability of satisfying (4.24) is equal to the probability that a randomly chosen vector [zg,z1] =
[Z sin ¢, Z cos (] satisfies

Ao 2o
t¢] > |1 — 22, /228
‘CO C' — ‘ )\1 a,)\l K
which is equal to
2 Aol /12X
4.27 — t|1l——|1/— .
( ) 71_alrcco (‘ N a/\1>

Now we observe that the condition (4.24) requires that z; is (in some sense) large compared to zg. Since
(4.25) required z; to be large as well, we conclude that {(4.24) subject to (4.25)} is satisfied with higher
probability than (4.24). Therefore, the probability that both (4.24) and (4.25) are satisfied at the same time
is greater than the product of probabilities of both inequalities being satisfied independently. Consequently,
p <14 a+ O(5) occurs with probability greater or equal to the product of expressions (4.26) and (4.27).

d
Using explicit values Ag =n, Ay = (n—1) > O'JQ», we arrive at the sought lower bound on the probability,
j=1

L n 2n 1 4d 0
(n—1) Z?Zl 0]2 a(n—1) ijl 0]2 maR? Zj:1 0.72- .

REMARK 4.2. A similar result can be derived for a model with error €,x; being normally distributed

2
—arccot
s

as N(0, 0 I,) for any given ooy > 0, instead of N'(0,1,,). In this generalized case, formula (4.17) acquires

the form
2 n 2n 4d0623rr
—arccot || 1 — 7 5 3 5| 1-— i 3 |-
™ (n—1)>_,0; a(n—1)>75_, 03 TaR?y 7 o]

5. An estimate for the GCV function. Based on the results of the previous sections, we can
formulate an estimate for the GCV function of formula (2.3) for regression models y = X3 + €, with a

highly correlated design matrix X.

5.1. Estimation of the numerator. Since the numerator is a bilinear form for which p(y) is usually
close to one, the formula (2.7) from Proposition 2.3 can be applied for its estimation.

5.2. Estimation of the denominator. The value of Tr(B~!) is equal to the sum of the eigenvalues
of B!, where B = XXT + AI,. Let us start from finding the eigenvalues of XX7. The singular value
decomposition X = USVT gives

(5.28) XXT=yssTu? and XTX=vSTsvT.
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The first equation in (5.28) implies that the eigenvalues of X X7 coincide with the eigenvalues of SS7.
Moreover, since S is a diagonal rectangular matrix of order n x (d + 1) for n > d + 1, the first d + 1
eigenvalues of SST coincide with the eigenvalues of S”'S, while the remaining n — d eigenvalues of SST are
equal to 0. Now we use the second equation in (5.28) to infer that the eigenvalues of ST'S coincide with the
eigenvalues of X7 X. These eigenvalues were found in the proof of Theorem 4.1; see (4.18). To sum up, the
eigenvalues of X X7 are

(5.29)

d
N=n, A=0-1 02+0@), A=000), ..., \g=0@) as 60, Agzi=-=A, =0.
j=1

Since B = XXT + \I,,, the eigenvalues of B take the form Aj + A, where \; (j =0,1,...,n) are given by
(5.29). The eigenvalues of B~! are reciprocals of the eigenvalues of B. Therefore, the trace of B~! is

1 1 1 1 n—d

5.30 Tr(B™!) = e ——  ——
(5.30) r(B™) SV WA Wi W vy W S WTED WL W

Combining (5.30) with (5.29), we obtain

1 1 1 1 n—d
Tr(B™Y) = + + +- 4 +
+ A d O@) + A Ol)+ A A
" (n—1)zla§+0(6)+A (0) ©®)
=
(5.31) n—1 1 1
= + + +0(5) as 6§ —0.
A d n+A
(n—1) > o7 +A

Thus, in view of (2.3), Proposition 2.3 and (5.31), an estimate for the GCV function is given by

- (p(y)eo(y)® 1
>:32) R Y0 R 1 LY
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6. Simulations. In order to verify the estimates derived in Section 4, numerical simulations were
carried out. We considered several examples of the model

y=XB+e,

where the covariates @; (i = 1,...,d) in the design matrix X = [ 1 x; x T4 ]nx(dJrl) are jointly

Gaussian marginally distributed random variables satisfying x; ~ N (0,02) with correlation

r = cor(x;, x;) = ~1 forall i,j=1,...,d, i #j.

For each considered example, we generated 10000 datasets, each of them representing n observations, i.e.,
we took 3 as a randomly chosen d x 1 vector having norm R and € as a random n X 1 vector being normally
distributed as N(0,1). Since the parameter R stands for the norm of a d-dimensional vector with random
entries, for our simulation study we examined the case R = d and a few other values close to d in order to
illustrate the trend.

The results of the simulation are presented in the tables below. Each table corresponds to some design
matrix X of given parameters. The tables show the probability of p < 1 4 a for various values of a and
R = ||B]|. For each combination of a and R, the theoretical approximate lower bound on the probability, as
given by formula (4.17), is written in the upper row, while the lower row shows how many times the bound
p <1+ a was satisfied during the simulation.

a
0.1 0.2 0.3 0.4 0.5
10 0.3117 0.4252 0.4941 0.5423 0.5786
4173/10000 | 5489/10000 | 6338/10000 | 6825/10000 | 7291/10000
1 0.3178 0.4308 0.4993 0.5471 0.5831
4308/10000 | 5651/10000 | 6353/10000 | 7029/10000 | 7372/10000
12 0.3229 0.4340 0.5035 0.5511 0.5869
4327/10000 | 5766/10000 | 6384/10000 | 7243/10000 | 7610/10000
a
0.1 0.2 0.3 0.4 0.5
10 0.3764 0.4914 0.5583 0.6037 0.6373
4755/10000 | 5947/10000 | 6699/10000 | 7155/10000 | 7511/10000
1 0.3890 0.4954 0.5619 0.6071 0.6405
4827/10000 | 6087/10000 | 6713/10000 | 7194/10000 | 7614/10000
12 0.3846 0.4987 0.5649 0.6099 0.6431
4839/10000 | 6153/10000 | 6793/10000 | 7243/10000 | 7610/10000
TABLE 1
Probability of p < 1 4 a in the model with parameters d = 10, n = 100, r = 0.999 and [o1,...,010] =

[0.5, 0.5, 0.5, 0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0] (top) and [o1,..

(bottom).

.,o10] = [0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.2]
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Comparing various r. Tables 2 and 3 illustrate in more detail the behaviour of the index of proximity
in dependence on the correlation r.

a
0.1 0.2 0.3 0.4 0.5
0.3121 0.4257 0.4946 0.5428 0.5790
10 3227/10000 | 4786/10000 | 5567/10000 | 6281/10000 | 6704/10000 | r = 0.9703
3380/10000 | 4903/10000 | 5847/10000 | 6431/10000 | 6826/10000 | r = 0.9765
4018/10000 | 5538/10000 | 6314/10000 | 6860/10000 | 7312/10000 | r = 0.999
0.3182 0.4312 0.4997 0.5476 0.5835
rl1 3251/10000 | 4848/10000 | 5634/10000 | 6268/10000 | 6847/10000 | r = 0.9703
3434/10000 | 4967/10000 | 5826,/10000 | 6385/10000 | 6893/10000 | r = 0.9765
4225/10000 | 5668/10000 | 6354/10000 | 6946,/10000 | 7355/10000 | r = 0.999
0.3233 0.4359 0.5040 0.5516 0.5873
12 3298/10000 | 4848/10000 | 5803/10000 | 6470/10000 | 6826/10000 | » = 0.9703
3298/10000 | 5060/10000 | 5846,/10000 | 6391/10000 | 6937/10000 | r = 0.9765
4337/10000 | 5726/10000 | 6506/10000 | 6999,/10000 | 7469/10000 | r = 0.999
TABLE 2
Probability of p < 1 4+ a in the model with parameters d = n = 200 and [o1,..

[0.5, 0.5, 0.5, 0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0].
the results of numerical simulations carried out for the correlation r = 0.9703, r = 0.9765 and r = 0.999.

.,010]

The theoretical upper bound, given by formula (4.17), is compared with

a

0.1 0.2 0.3 0.4 0.5
0.3770 0.4920 0.5588 0.6042 0.6378
10 3643/10000 | 5083/10000 | 5891/10000 | 6448/10000 | 6808/10000 | » = 0.9703
3774/10000 | 5209/10000 | 6077/10000 | 6590/10000 | 6921/10000 | » = 0.9765
4746/10000 | 5951/10000 | 6700/10000 | 7119/10000 | 7489/10000 | r = 0.999
0.3814 0.4960 0.5625 0.6076 0.6410
rl1 3613/10000 | 5168/10000 | 5978/10000 | 6455/10000 | 6890/10000 | r = 0.9703
3852/10000 | 5286,/10000 | 6116/10000 | 6578/10000 | 6940/10000 | » = 0.9765
4811/10000 | 6137/10000 | 6743/10000 | 7206/10000 | 7528/10000 | r = 0.999
0.3852 0.4993 0.5655 0.6104 0.6436
12 3817/10000 | 5139/10000 | 5957/10000 | 6496/10000 | 6811/10000 | r = 0.9703
3975/10000 | 5273/10000 | 6159/10000 | 6653/10000 | 7029/10000 | r = 0.9765
4938/10000 | 6151/10000 | 6840/10000 | 7234/10000 | 7585/10000 | r = 0.999
TABLE 3
Probability of p < 1 + a in the model with parameters d = 10, n = 200, |[o1,..

[0.8, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.2] and r = 0.9703, r = 0.9765 and r = 0.999.

ble 2, the only difference consists in larger values of 0.

.,010]
The table is similar to Ta-

Comparing various o. The following tables illustrate the behaviour of the index of proximity in
dependence on the variance o. Table 4 is devoted to a model with 10 to 12 parameters and 200 observations,
Table 5 to a model with 6 to 8 parameters and 100 observations.
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a
0.1 0.2 0.3 0.4 0.5
10 0.3733 0.4883 0.5552 0.6008 0.6346
4567/10000 | 5982/10000 | 6648/10000 | 7110/10000 | 7555/10000
rl1 0.3778 0.4923 0.5589 0.6043 0.6378
4713/10000 | 6106/10000 | 6802/10000 | 7141/10000 | 7477/10000
12 0.3816 0.4957 0.5620 0.6071 0.6405
4842/10000 | 6088/10000 | 6761/10000 | 7276/10000 | 7498/10000
a
0.1 0.2 0.3 0.4 0.5
10 0.4314 0.5458 0.6097 0.6522 0.6831
5185/10000 | 6420/10000 | 6970/10000 | 7398/10000 | 7730/10000
rl1 0.4349 0.5488 0.6124 0.6547 0.6855
5230/10000 | 6574/10000 | 7086,/10000 | 7511/10000 | 7772/10000
19 0.4378 0.5514 0.6147 0.6568 0.6875
5428/10000 | 6516/10000 | 7132/10000 | 7527/10000 | 7767/10000
TABLE 4
Probability of p < 1+ a in the model with parameters d = 10, n = 200, r = 0.999 and o1 = --- = o190 = 1.0 (top) and
o1 =---=o010 = 1.2 (bottom).
a
0.1 0.2 0.3 0.4 0.5
6 0.2725 0.3876 0.4584 0.5084 0.5462
3594/10000 | 5154/10000 | 5954/10000 | 6612/10000 | 6999/10000
rl7 0.2863 0.4002 0.4701 0.5193 0.5566
3866,/10000 | 5433/10000 | 6231/10000 | 6859,/10000 | 7246/10000
8 0.2967 0.4096 0.4789 0.5275 0.5643
4111/10000 | 5456/10000 | 6347/10000 | 6910/10000 | 7374/10000
a
0.1 0.2 0.3 0.4 0.5
6 0.3319 0.4484 0.5176 0.5653 0.6009
4160/10000 | 5656/10000 | 6422/10000 | 6820/10000 | 7273/10000
R 0.3425 0.4579 0.5263 0.5734 0.6085
7 4431/10000 | 5668/10000 | 6484/10000 | 7021/10000 | 7327/10000
3 0.3504 0.4650 0.5328 0.5795 0.6142
4498/10000 | 5890/10000 | 6577/10000 | 7104/10000 | 7429/10000
TABLE 5

o1 =+ =0¢g = 1.2 (bottom).

Probability of p < 1+ a in the model with parameters d = 6, n = 100, r = 0.999 and 01 = --- = g6 = 1.0 (top) and
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Large d. The remaining tables are devoted to models with a large number of parameters. We considered

models with 50 parameters (Table 6) and 100 parameters (Table 7).

a
0.1 0.2 0.3 0.4 0.5
50 0.4334 0.5454 0.6086 0.6509 0.6817
5453/10000 | 6521/10000 | 7143/10000 | 7500/10000 | 7801/10000
|51 0.4337 0.5457 0.6089 0.6511 0.6820
5400/10000 | 6560/10000 | 7177/10000 | 7491/10000 | 7797/10000
59 0.4341 0.5460 0.6092 0.6514 0.6822
5406,/10000 | 6525/10000 | 7204/10000 | 7515/10000 | 7802/10000
a
0.1 0.2 0.3 0.4 0.5
50 0.6400 0.7316 0.7765 0.8045 0.8240
7148/10000 | 7892/10000 | 8287,/10000 | 8521/10000 | 8646/10000
r s 0.6402 0.7317 0.7766 0.8046 0.8241
7214/10000 | 7942/10000 | 8364,/10000 | 8491/10000 | 8680,/10000
59 0.6403 0.7318 0.7767 0.8046 0.8242
7120/10000 | 7941/10000 | 8294/10000 | 8559/10000 | 8663/10000
a
0.1 0.2 0.3 0.4 0.5
50 0.6898 0.7718 0.8110 0.8351 0.8518
7483/10000 | 8198/10000 | 8506,/10000 | 8752/10000 | 8894/10000
sl 0.6899 0.7719 0.8111 0.8352 0.8519
7500/10000 | 8163/10000 | 8494/10000 | 8711/10000 | 8846/10000
59 0.6900 0.7702 0.8111 0.8352 0.8519
7536/10000 | 8177/10000 | 8523/10000 | 8721/10000 | 8869,/10000
TABLE 6

Probability of p < 1+ a in the model with parameters d = 50, n = 1000, r = 0.999. The standard deviation is supposed
to have the same value for all the covariates, namely o = 0.5 (top), o = 1.0 (middle) and o = 1.2 (bottom).
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a
0.1 0.2 0.3 0.4 0.5
R —100 0.5404 0.6459 0.7011 0.7365 0.7616
6263/10000 | 7248/10000 | 7738/10000 | 7973/10000 | 8209/10000
a
0.1 0.2 0.3 0.4 0.5
R =100 0.7320 0.8045 0.8389 0.8597 0.8741
7768/10000 | 8436/10000 | 8756/10000 | 8889/10000 | 9053/10000
a
0.1 0.2 0.3 0.4 0.5
R —100 0.7724 0.8355 0.8647 0.8824 0.8946
8089/10000 | 8622/10000 | 8857/10000 | 8995/10000 | 9168/10000

TABLE 7
Probability of p < 1+ a in the model with parameters d = 100, n = 2000, r = 0.999. The standard deviation is the same
for all covariates, having value o = 0.5 (top), o = 1.0 (middle) and o = 1.2 (bottom).

7. Conclusions. In the present paper, we proposed an elegant formula for a GCV estimate for models
with highly correlated design matrices. Theoretical probability bounds concerning the numerator of the
estimate were proved and tested through various simulation experiments. The denominator of the estimate
was expressed explicitly by means of an analytical formula, which was derived by exploiting the eigenvalue
structure of the matrix. The theoretical results together with the numerical simulations allow us to draw
several conclusions, which are summarized below.

e As a first rough observation, we can say that the index of proximity indeed tends to be close to 1.
We considered various experimental settings, and in all of them we obtained p < 1.5 with probability
exceeding 50%.

e The situation is particularly favourable when d (the number of parameters in the model) is high.
Numerical results in Tables 6 and 7 show that the probability of p < 1.3 exceeds 70% — 80%. This
behaviour is obvious also from the analytical estimate (4.17).

e The estimate (4.17) depends not only on d, but also on R. Note, however, that R = ||3]| itself is
related to d, because 3 is a (generally arbitrary) vector having d entries. Therefore, even though
I8l can take in general any value, it is natural to expect it to depend roughly linearly on d. As
a consequence, if d grows to infinity, we have R — oo as well, and — by the estimate (4.17) — the
probability of p < 1+ a approaches 100% for any a > 0.

e An important role is played by the variance. Roughly speaking, the larger o;, the larger probability
of p being close to 1. This trend, which is indicated by formula (4.17), is visible in each of Tables
1-7. Note also that if the sum of variances grows to infinity, then (4.17) implies that the probability
of p <1+ a tends to 100% for any a > 0.

e On the other hand, the number of observations has only a little effect. To see it numerically, compare
Table 1 with Tables 2 and 3 (see the rows corresponding to » = 0.999). The models considered in
the tables differ only in n; the other parameters of the models (i.e., d, o;, r) take the same values.
In spite of a big difference in n (Table 1 concerns n = 100, while Tables 2 and 3 concern n = 200)
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the probability of p < 1 4 a remains nearly unchanged. This is not surprising; such a behaviour is
obviously expectable in view of formula (4.17).

We wish to emphasize mainly the fact that the probability of p < 14 a grows with growing d. When
the number of parameters (d) in the model is expected to be large, the number of observations (n) needs
to be large as well (due to the natural assumption n > d), which makes the search for the exact solution
computationally hard. In such a situation, however, we have p =~ 1 with high probability, and therefore
the minimization of the inexpensive GCV estimate (5.32) can be applied for the selection of the tuning
parameter A in penalized regression models.
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