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THE Aα-SPECTRUM OF GRAPH PRODUCT∗

SHUCHAO LI† AND SHUJING WANG†

Abstract. Let A(G) and D(G) denote the adjacency matrix and the diagonal matrix of vertex degrees of G, respectively.

Define

Aα(G) = αD(G) + (1− α)A(G)

for any real α ∈ [0, 1]. The collection of eigenvalues of Aα(G) together with multiplicities is called the Aα-spectrum of G. Let

G�H, G[H], G×H and G⊕H be the Cartesian product, lexicographic product, directed product and strong product of graphs

G and H, respectively. In this paper, a complete characterization of the Aα-spectrum of G�H for arbitrary graphs G and

H, and G[H] for arbitrary graph G and regular graph H is given. Furthermore, Aα-spectrum of the generalized lexicographic

product G[H1, H2, . . . , Hn] for n-vertex graph G and regular graphs Hi’s is considered. At last, the spectral radii of Aα(G×H)

and Aα(G⊕H) for arbitrary graph G and regular graph H are given.
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1. Introduction. In this paper, we are concerned with simple finite undirected graphs. Let G be a

simple graph with vertex set V (G) and edge set E(G). Let D(G) be the diagonal matrix of vertex degrees

of G and A(G) be the adjacency matrix of G. The Laplacian matrix and the signless Laplacian matrix of G

are defined as L(G) = D(G) − A(G) and Q(G) = D(G) + A(G), respectively. In [9], Nikiforov proposes to

study the convex combinations Aα(G) of A(G) and D(G) defined by

Aα(G) := αD(G) + (1− α)A(G), 0 ≤ α ≤ 1.

Note that A0(G) = A(G) and A1/2(G) = 1/2Q(G) and A1(G) = D(G), Aα(G) runs from A(G) to D(G)

with essentially Q(G) in the middle of the way, and it was claimed in [9, 10] that the matrices Aα(G) can

underpin a unified theory of A(G) and Q(G). In [10], several results about the Aα(G)-matrices of trees are

given. In [9] and [12], the authors search for the positive semidefiniteness of Aα(G). For more properties of

Aα(G), we refer the readers to [2, 6, 7, 8, 9, 10, 11, 12].

Let M be an n × n real symmetric matrix. Denote the eigenvalues of M by λ1(M) ≥ λ2(M) ≥
· · · ≥ λn(M). The collection of eigenvalues of M together with multiplicities is called the spectrum of M ,

denoted by Spec(M). In particular, λ1(M) is called the spectral radius of M and λn(M) is called the least

eigenvalues of M .

In this paper, the identity matrix of appropriate order is denoted by I, Im and Jm×n denote the identity

matrix of order m and the all one m × n matrix, respectively. Furthermore, we write jm for the column

m-vector of ones and 0 for the all zeros matrix of the appropriate notations. We use [n] to denote the set of

{1, 2, . . . , n}.
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Let G�H, G[H], G×H and G⊕H be the Cartesian product, lexicographic product, directed product

and strong product of graphs G and H, respectively. This paper is organized as follows. In the next section,

we recall some basic definitions of those graph products. In Section 3, we give a complete characterization

of the Aα-spectrum of G�H for arbitrary graph G and arbitrary graph H. In Sections 4, we give the

characterization of Aα-spectrum of G[H] for arbitrary graph G and regular graph H. In Section 5, we

consider Aα-spectrum of the generalized lexicographic product G[H1, H2, . . . ,Hn] for n-vertex graph G and

regular graphs Hi’s. In the last section, we give the spectral radii of Aα(G×H) and Aα(G⊕H) for arbitrary

graph G and regular graph H.

2. Preliminaries. In this section, we will given some basic definitions.

The Cartesian product, direct product, the strong product and the lexicographic product are defined as

follows, also see [1, 3, 4, 5, 13, 14].

The Cartesian product G�H of two graphs G and H, is the graph with vertex set V (G) × V (H), in

which two vertices (u, v) and (u′, v′) are adjacent if and only if u = u′ and vv′ ∈ E(H), or v = v′ and

uu′ ∈ E(G).

The direct product G×H of two graphs G and H, is the graph with vertex set V (G)× V (H), in which

two vertices (u, v) and (u′, v′) are adjacent if and only if uu′ ∈ E(G) and vv′ ∈ E(H).

The strong product G⊕H of two graphs G and H, is the graph with vertex set V (G)× V (H) and edge

set E(G�H) ∪ E(G×H).

The lexicographic product G[H] (also called the composition ) of graphs G and H, is the graph with

vertex set V (G[H]) = V (G) × V (H), in which two vertices (u, v), (u′, v′) are adjacent if uu′ ∈ E(G), or if

u = u′ and vv′ ∈ E(H).

The lexicographic product was generalized in [14] as follows: Consider a graph G whose vertex set is

{v1, v2, . . . , vn} and graphs Hi, i = 1, 2, . . . , n, with vertex sets V (Hi)s two by two disjoints. The generalized

composition G[H1, H2, . . . ,Hn] is the graph such that

V (G[H1, H2, . . . ,Hn]) =

n⋃
i=1

V (Hi)

and

E(G[H1, H2, . . . ,Hn]) =

n⋃
i=1

E(Hi) ∪
⋃

vivj∈E(G)

E(Hi ∨Hj),

where Gi ∨Gj denotes the join of the graphs Gi and Gj . It is obvious that G[H, . . . ,H] is exactly the graph

G[H].

3. The spectrum of Aα(G�H). In this section, we will characterize the spectrum of Aα(G�H) for

arbitrary graphs G of order n and H of order m. Let A ⊗ B denote the Kronecker product [12] of two

matrix A = (aij) and B = (bi,j), i.e., A ⊗ B = (aijB). Some basic properties of the Kronecker product

are (A⊗ B)T = AT ⊗ BT and (A⊗ B)(C ⊗D) = (AC)⊗ (BD). Moreover, if both A and B are invertible

matrices, then (A ⊗ B)−1 = A−1 ⊗ B−1; if both A and B are orthogonal matrices, then A ⊗ B is also an

orthogonal matrix.
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It is well known that

A(G�H) = A(G)⊗ Im + In ⊗A(H)

and

dG�H((vi, uj)) = dG(vi) + dH(uj),

i.e.,

D(G�H) = D(G)⊗ Im + In ⊗D(H).

Thus, we have that

(3.1) Aα(G�H) = Aα(G)⊗ Im + In ⊗Aα(H).

Theorem 3.1. Let G and H be any graph with order n and m. If Spec(Aα(G)) = {λ1(Aα(G)), . . . ,

λn(Aα(G))} and Spec(Aα(H)) = {λ1(Aα(H)), . . . , λm(Aα(H))}, then

Spec(Aα(G�H)) =

n⋃
i=1

m⋃
j=1

{λi(Aα(G)) + λj(Aα(H))}.

Proof. Let

X = [X1 X2 · · · Xn]

be an orthogonal matrix whose columns are eigenvectors corresponding to the eigenvalue λ1(Aα(G)),

λ2(Aα(G)), . . . , λn(Aα(G)). Let

Y = [Y1 Y2 · · · Ym]

be an orthogonal matrix whose columns are eigenvectors corresponding to the eigenvalue λ1(Aα(H)),

λ2(Aα(H)), . . . , λm(Aα(H)). Then

(3.2) XTAα(G)X =


λ1(Aα(G))

λ2(Aα(G))
. . .

λn(Aα(G))


and

(3.3) Y TAα(H)Y =


λ1(Aα(H))

λ2(Aα(H))
. . .

λm(Aα(H))

 .
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Note that X ⊗ Y is an orthogonal matrix, and

(X ⊗ Y )TAα(G�H)(X ⊗ Y ) = (X ⊗ Y )TAα(G)⊗ Im + In ⊗Aα(H)(X ⊗ Y )

= (XTAα(G)X)⊗ (Y TY ) + (XTX)⊗ (Y TAα(H)Y )

=


λ1(Aα(G))

λ2(Aα(G))
. . .

λn(Aα(G))

⊗ Im

+ In ⊗


λ1(Aα(H))

λ2(Aα(H))
. . .

λm(Aα(H))

 .

Thus, we have our conclusion.

4. The spectrum of Aα(G[H]). In this section, we will characterize the spectrum of Aα(G[H]) for

arbitrary graph G and regular graph H.

Recall that Aα(G) = αD(G) + (1 − α)A(G). Then, we can see that for p-regular graph G, Aα(G) =

pαI + (1− α)A(G). Hence, the following lemma is obvious:

Lemma 4.1. Let H be a p-regular graph with V (H) = {u1, u2, . . . , um}. If p ≥ λ2(H) ≥ · · · ≥ λm(H)

are the spectrum of A(H), then

Spec(Aα(H)) = {p, αp+ (1− α)λ2(H), . . . , αp+ (1− α)λm(H)}.

Furthermore, if Y = [jm Y2 · · · Ym] is an orthogonal matrix whose columns jm, Y2, . . . , Ym are eigenvectors

corresponding to the eigenvalues p, λ2(H), . . . , λm(H), respectively, then Y is also an orthogonal matrix whose

columns are eigenvectors corresponding to the eigenvalues p, αp + (1 − α)λ2(H), . . . , αp + (1 − α)λm(H) of

Aα(H), respectively.

Theorem 4.2. Let G be a connected graph with V (G) = {v1, v2, . . . , vn}, H be a p-regular graph with

V (H) = {u1, u2, . . . , um}, respectively. If p ≥ λ2(H) ≥ · · · ≥ λm(H) are the spectrum of A(H), then

Spec(Aα(G[H])) =
⋃{

αp+ (1− α)λj(H) + αmdG(vi)
}
∪ Spec(C),

where C = pIn +Aα(G).

Proof. Let A(G) = (aij)n×n be the adjacency matrix of G and dG(vi) be the degree of vi of G for

i = 1, 2, . . . , n. It is obvious that

A(G[H]) =


A(H) a12Jm×m · · · a1nJm×m

a21Jm×m A(H) · · · a2nJm×m
...

...
. . .

...

an1Jm×m an2Jm×m · · · A(H)

 = In ⊗A(H) +A(G)⊗ Jm×m
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and

D(G[H]) =


(p+ dG(v1)m)Im 0 · · · 0

0 (p+ dG(v2)m)Im · · · 0
...

...
. . .

...

0 0 · · · (p+ dG(vn)m)Im


= In ⊗D(H) +mD(G)⊗ Im.

Then we have that

Aα(G[H]) = α
(
In ⊗D(H) +mD(G)⊗ Im

)
+ (1− α)

(
In ⊗A(H) +A(G)⊗ Jm×m

)
= In ⊗Aα(H) + αmD(G)⊗ Im + (1− α)A(G)⊗ Jm×m.

For i = 1, 2, . . . , n and j = 2, 3, . . . ,m, we first prove that αp+ (1−α)λj(H) +αmdG(vi) is an eigenvalue of

Aα(G[H]).

Let Y = [jm Y2 · · · Ym] be an orthogonal matrix whose columns jm, Y2, · · · , Ym are eigenvectors

corresponding to the eigenvalues p, λ2(H), . . . , λm(H), respectively. By Lemma 4.1, for j = 2, 3, . . . ,m,

Aα(H)Yj =
(
αp+ (1− α)λj(H)

)
Yj and jTmYj = 0. Let ei = (0, 0, . . . , 1︸ ︷︷ ︸

i

, . . . , 0)T for i = 1, 2, . . . , n. We have

that

Aα(G[H])(ei ⊗ Yj) =
(
In ⊗Aα(H) + αmD(G)⊗ Im + (1− α)A(G)⊗ Jm×m

)
(ei ⊗ Yj)

= ei ⊗Aα(H)Yj + αmD(G)ei ⊗ Yj + (1− α)A(G)ei ⊗ (Jm×mYj)

=
(
αp+ (1− α)λj(H)

)
(ei ⊗ Yj) + αmdG(vi)(ei ⊗ Yj) + 0

=
(
αp+ (1− α)λj(H) + αmdG(vi)

)
(ei ⊗ Yj).

Hence, ei ⊗ Yj is an eigenvector of Aα(G[H]) corresponding to αp+ (1− α)λj(H) + αmdG(vi).

For i = 1, 2, . . . , n, let Xi be the eigenvector of Aα(G) corresponding to λi(Aα(G)). Then

Aα(G[H])(Xi ⊗ jm) =
(
In ⊗Aα(H) + αmD(G)⊗ Im + (1− α)A(G)⊗ Jm×m

)
(Xi ⊗ jm)

= Xi ⊗
(
Aα(H)jm

)
+ αmD(G)Xi ⊗ jm + (1− α)A(G)Xi ⊗

(
Jm×mjm

)
= p(Xi ⊗ jm) + αmD(G)Xi ⊗ jm +m(1− α)A(G)Xi ⊗ jm
= p(Xi ⊗ jm) +mAα(G)Xi ⊗ jm
=
(
p+mλi(Aα(G))

)
(Xi ⊗ jm).

Hence, Xi ⊗ jm is an eigenvector of Aα(G[H]) corresponding to p+mλi(Aα(G).

Note that (ei1 ⊗Yj1)T (ei2 ⊗Yj2) = 0 if (i1, j1) 6= (i2, j2), and (ei1 ⊗Yj)T (ei2 ⊗ jm) = 0 for any i1, i2 ∈ [n]

and j ∈ [m] \ {1}, i.e., all these eigenvectors are orthogonal, hence we have our conclusion.

5. The spectrum of Aα(G[H1, H2, . . . ,Hn]).

Theorem 5.1. Let G be a connected graph with V (G) = {v1, v2, . . . , vn} and for i = 1, 2, . . . , n, let Hi

be a pi-regular graph with order mi, respectively. Let A(G) = (aij) be the adjacency matrix of G and for

i = 1, 2, . . . , n, si =
∑
j∈NG(vi)

mj. If pi ≥ λ2(Hi) ≥ · · · ≥ λmi(Hi) are the spectrum of A(Hi), then

Spec(Aα(G[H1, H2, . . . ,Hn])) =

n⋃
i=1

mi⋃
j=2

{
α(pi + si) + (1− α)λj(Hi)

}
∪ Spec(C),
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where

C =


p1 + αs1 (1− α)a12

√
m1m2 · · · (1− α)a1n

√
m1mn

(1− α)a21
√
m2m1 p2 + αs2 · · · (1− α)a2n

√
m2mn

...
...

. . .
...

(1− α)an1
√
mnm1 (1− α)an2

√
mnm2 · · · pn + αsn

 .

Proof. It is obvious that

A(G[H1, H2, . . . ,Hn]) =


A(H1) a12Jm1×m2 · · · a1nJm1×mn

a21Jm2×m1
A(H2) · · · a2nJm2×mn

...
...

. . .
...

an1Jmn×m1 an2Jmn×m2 · · · A(Hn)


and

D(G[H1, H2, . . . ,Hn]) =


(p1 + s1)Im1

0 · · · 0

0 (p2 + s2)Im2 · · · 0
...

...
. . .

...

0 0 · · · (pn + sn)Imn

 .

Then we have that

Aα(G[H1, H2, . . . ,Hn]) = αD(G[H1, H2, . . . ,Hn]) + (1− α)A(G[H1, H2, . . . ,Hn])

=


Aα(H1) + αs1Im1

(1− α)a12Jm1×m2
· · · (1− α)a1nJm1×mn

(1− α)a21Jm2×m1
Aα(H2) + αs2Im2

· · · (1− α)a2nJm2×mn

...
...

. . .
...

(1− α)an1Jmn×m1
(1− α)an2Jmn×m2

· · · Aα(Hn) + αsnImn

 .

For i = 1, 2, . . . , n and j = 2, 3, . . . ,m, we first prove that α(pi + si) + (1 − α)λj(H) is an eigenvalue of

Aα(G[H1, H2, . . . ,Hn]).

Let Yi = [jmi
Yi2 · · · Yimi

] be an orthogonal matrix whose columns jmi
, Yi2, . . . , Yimi

are eigenvectors

corresponding to the eigenvalues pi, λ2(Hi), . . . , λmi
(Hi), respectively. By Lemma 4.1, for j = 2, 3, . . . ,mi,

Aα(Hi)Yij =
(
αpi + (1 − α)λj(Hi)

)
Yij and jTmi

Yij = 0. Let Y ′ij = (01×m1
,01×m2

, . . . , Y Tij , . . . ,01×mn
)T .

Note that

Jmj×mi
Yij = 0mj×1

and

(Aα(Hi) + αsiImi
)Yij =

(
α(pi + si) + (1− α)λj(Hi)

)
Yij .

So, we have that

Aα(G[H1, . . . ,Hn])Y ′ij =
(
α(pi + si) + (1− α)λj(Hi)

)
Y ′ij .

Hence, Y ′ij is an eigenvector of Aα(G[H1, . . . ,Hn]) corresponding to α(pi + si) + (1− α)λj(Hi).
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Let X = [X1 · · · Xn] be an orthogonal matrix whose column Xi = (xi1, . . . , xin)T is an eigenvector

corresponding to the eigenvalue λi(C). Then CXi = λi(C)Xi and XT
i Xj = 0 for i 6= j. Let

X ′i = (
xi1√
m1

, . . . ,
xi1√
m1︸ ︷︷ ︸

m1

,
xi2√
m2

, . . . ,
xi2√
m2︸ ︷︷ ︸

m2

. . . ,
xin√
mn

, . . . ,
xin√
mn︸ ︷︷ ︸

mn

)T

= (
xi1√
m1

jTm1
,
xi2√
m2

jTm2
, . . . ,

xin√
mn

jTmn
)T .

As

(Aα(Hr) + αsrImr
)
xir√
mr

jmr
= (pr + αsr)

xir√
mr

jmr
,

and for t ∈ [n] \ {r},
Jmr×mt

xit√
mt

jmt
=
√
mrmt

xit√
mr

jmr
.

We have that

Aα(G[H1, . . . ,Hn])X ′i =


1√
m1

(
(p1 + αs1)xi1 +

∑
t∈[n]\{1}(1− α)a1t

√
m1mtxit

)
jm1

1√
m2

(
(p2 + αs2)xi2 +

∑
t∈[n]\{2}(1− α)a2t

√
m2mtxit

)
jm2

...
1√
mn

(
(pn + αsn)xin +

∑
t∈[n]\{n}(1− α)ant

√
mnmtxit

)
jmn



=


λi

xi1√
m1
jm1

λi
xi2√
m2
jm2

...

λi
xin√
mn

jmn

 = λi(C)X ′i.

Hence, X ′i is an eigenvector of Aα(G[H1, H2, . . . ,Hn]) corresponding to λi(C).

Note that (Y ′i1j1)TY ′i2j2 = 0 for (i1, j1) 6= (i2, j2) and (Y ′i1j1)TX ′i = 0 for any i, i1 ∈ [n] and j1 ∈ [mi1 ]\{1},
i.e., all these eigenvectors are orthogonal, thus we have our conclusion.

6. The spectral radii of Aα(G×H) and Aα(G⊕H). In this section, we will characterize the spectra

radii of Aα(G×H) and Aα(G⊕H) for arbitrary graph G and regular graph H. It is obvious that

A(G×H) = A(G)⊗A(H)

and

A(G⊕H) = A(G�H) +A(G×H) = A(G)⊗ Im + In ⊗A(H) +A(G)⊗A(H).

As

dG×H((vi, uj)) = dG(vi)× dH(uj)

and

dG⊕H((vi, uj)) = dG(vi) + dH(uj) + dG(vi)× dH(uj),

we can see that

D(G⊗H) = D(G)⊗D(H)
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and

D(G⊕H) = D(G)⊗ Im + In ⊗D(H) +D(G)⊗D(H).

Thus, we have that

(6.4) Aα(G×H) = αD(G)⊗D(H) + (1− α)A(G)⊗A(H)

and

(6.5) Aα(G⊕H) = Aα(G)⊗ Im + In ⊗Aα(H) + αD(G)⊗D(H) + (1− α)A(G)⊗A(H).

Recall that for p regular graph of order m, jm is an eigenvector of G corresponding to the spectral radius

p.

Theorem 6.1. Let G be a connected graph with V (G) = {v1, v2, . . . , vn}, H be a p-regular graph with

V (H) = {u1, u2, . . . , um}, respectively. Let λ1(Aα(G)) be the spectral radius of Aα(G). Then,

λ1(Aα(G×H)) = pλ1(Aα(G)), λ1(Aα(G⊕H)) = pλ1(Aα(G)) + λ1(Aα(G)) + p.

Proof. Let X1 = (x1, x2, . . . , xn)T be the Perron vector of Aα(G), i.e., xi > 0, XT
1 X1 = 1 and

Aα(G)X1 = λ1(Aα(G))X1. By (6.4), we have that

Aα(G×H)(X1 ⊗ jm) = (αD(G)⊗D(H) + (1− α)A(G)⊗A(H))(X1 ⊗ jm)

= (αD(G)X1)⊗ (D(H)jm) + ((1− α)A(G)X1)⊗ (A(H)jm)

= (αpD(G)X1)⊗ (jm) + (p(1− α)A(G)X1)⊗ (jm)

= (pAα(G)X1)⊗ jm
= pλ1(Aα(G)X1))X1 ⊗ jm.

Thus, we have that pλ1(Aα(G)) is an eigenvalue of Aα(G × H). Note that every entries of X1 ⊗ jm are

positive, and hence, by the Perron-Frobenius theorem, we know that

λ1(Aα(G×H)) = pλ1(Aα(G)).

Similarly, we can see that X1 ⊗ jm is also an eigenvector of Aα(G ⊕ H) corresponding to pλ1(Aα(G)) +

λ1(Aα(G)) + p, and thus,

λ1(Aα(G⊕H)) = pλ1(Aα(G)) + λ1(Aα(G)) + p

as desired.

Note that the graphs G×H ∼= H×G and G⊕H ∼= H⊕G, the following corollary is obvious by Theorem

6.1.

Corollary 6.2. Let H be a connected graph with V (H) = {u1, u2, . . . , um},G be a p- regular graph with

V (G) = {v1, v2, . . . , vn}, respectively. Let λ1(Aα(H)) be the spectral radius of Aα(H). Then,

λ1(Aα(G×H)) = pλ1(Aα(H)), λ1(Aα(G⊕H)) = pλ1(Aα(H)) + λ1(Aα(H)) + p.
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