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THE A,-SPECTRUM OF GRAPH PRODUCT*

SHUCHAO LIt AND SHUJING WANGT

Abstract. Let A(G) and D(G) denote the adjacency matrix and the diagonal matrix of vertex degrees of G, respectively.

Define
Aa(G) = aD(G) + (1 — a)A(G)

for any real a € [0,1]. The collection of eigenvalues of Aq(G) together with multiplicities is called the A,-spectrum of G. Let
GUH, G[H], G x H and G@® H be the Cartesian product, lexicographic product, directed product and strong product of graphs
G and H, respectively. In this paper, a complete characterization of the Ay-spectrum of GOH for arbitrary graphs G and
H, and G[H] for arbitrary graph G and regular graph H is given. Furthermore, A,-spectrum of the generalized lexicographic
product G[H1, Ha, ..., Hy] for n-vertex graph G and regular graphs H;’s is considered. At last, the spectral radii of A (G x H)
and Aq (G @ H) for arbitrary graph G and regular graph H are given.
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1. Introduction. In this paper, we are concerned with simple finite undirected graphs. Let G be a
simple graph with vertex set V(G) and edge set E(G). Let D(G) be the diagonal matrix of vertex degrees
of G and A(G) be the adjacency matrix of G. The Laplacian matrix and the signless Laplacian matrix of G
are defined as L(G) = D(G) — A(G) and Q(G) = D(G) + A(Q), respectively. In [9], Nikiforov proposes to
study the convex combinations A,(G) of A(G) and D(G) defined by

AL (G):=aD(G)+ (1 - )A(G), 0<a<l1.

Note that Ag(G) = A(G) and A /5(G) = 1/2Q(G) and A;(G) = D(G), Ao(G) runs from A(G) to D(G)
with essentially Q(G) in the middle of the way, and it was claimed in [9, 10] that the matrices A,(G) can
underpin a unified theory of A(G) and Q(G). In [10], several results about the A, (G)-matrices of trees are
given. In [9] and [12], the authors search for the positive semidefiniteness of A,(G). For more properties of
AL (G), we refer the readers to [2, 6, 7, 8, 9, 10, 11, 12].

Let M be an n x n real symmetric matrix. Denote the eigenvalues of M by A\ (M) > (M) >
o+ > Ap(M). The collection of eigenvalues of M together with multiplicities is called the spectrum of M,
denoted by Spec(M). In particular, A\; (M) is called the spectral radius of M and A, (M) is called the least
eigenvalues of M.

In this paper, the identity matrix of appropriate order is denoted by I, I,;, and J,, x, denote the identity
matrix of order m and the all one m X n matrix, respectively. Furthermore, we write j,, for the column
m-vector of ones and 0 for the all zeros matrix of the appropriate notations. We use [n] to denote the set of

{1,2,...,n}.
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Let GOH, G[H], G x H and G & H be the Cartesian product, lexicographic product, directed product
and strong product of graphs G and H, respectively. This paper is organized as follows. In the next section,
we recall some basic definitions of those graph products. In Section 3, we give a complete characterization
of the Ag-spectrum of GOIH for arbitrary graph G and arbitrary graph H. In Sections 4, we give the
characterization of A,-spectrum of G[H] for arbitrary graph G and regular graph H. In Section 5, we
consider A,-spectrum of the generalized lexicographic product G[Hy, Ha, ..., H,] for n-vertex graph G and
regular graphs H;’s. In the last section, we give the spectral radii of A, (G x H) and A, (G® H) for arbitrary
graph G and regular graph H.

2. Preliminaries. In this section, we will given some basic definitions.

The Cartesian product, direct product, the strong product and the lexicographic product are defined as
follows, also see [1, 3, 4, 5, 13, 14].

The Cartesian product GOH of two graphs G and H, is the graph with vertex set V(G) x V(H), in
which two vertices (u,v) and (u/,v") are adjacent if and only if v = «' and vv’ € E(H), or v = v' and
uu’ € E(G).

The direct product G x H of two graphs G and H, is the graph with vertex set V(G) x V(H), in which
two vertices (u,v) and (u/,v") are adjacent if and only if wu’ € E(G) and vv' € E(H).

The strong product G & H of two graphs G and H, is the graph with vertex set V(G) x V(H) and edge
set E(GOH) U E(G x H).

The lexicographic product G[H] (also called the composition ) of graphs G and H, is the graph with
vertex set V(G[H]) = V(G) x V(H), in which two vertices (u,v), (uv/,v") are adjacent if uu’ € E(G), or if
u=1v" and vv’' € E(H).

The lexicographic product was generalized in [14] as follows: Consider a graph G whose vertex set is
{v1,v2,...,v,} and graphs H;, i = 1,2,...,n, with vertex sets V(H;)s two by two disjoints. The generalized
composition G[Hy, Ha, ..., H,] is the graph such that

V(G[Hy, Hy, ..., Hy)) = | J V(H,)

and

E(GHy, Hy, ..., H,)) = JEH)U |J E(HVH)),
i=1 v;v; EE(G)

where G; V G denotes the join of the graphs G; and G;. It is obvious that G[H, ..., H] is exactly the graph
G[H].

3. The spectrum of A,(GOH). In this section, we will characterize the spectrum of A,(GOH) for
arbitrary graphs G of order n and H of order m. Let A ® B denote the Kronecker product [12] of two
matrix A = (a;;) and B = (b; ;), i.e., A® B = (a;;B). Some basic properties of the Kronecker product
are (A® B)T = AT @ BT and (A® B)(C ® D) = (AC) ® (BD). Moreover, if both A and B are invertible
matrices, then (A® B)™! = A=! ® B~1; if both A and B are orthogonal matrices, then A ® B is also an
orthogonal matrix.
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It is well known that

A(GOH) = A(G) ® Ly + I, ® A(H)
and
deon((vi,ug)) = da(vi) + du (uj),

ie.,

D(GOH) =D(G) ® I, + I, ® D(H).
Thus, we have that
(3.1) A (GOH) = A (G) @1, + I, ® Ay (H).

THEOREM 3.1. Let G and H be any graph with order n and m. If Spec(Ay(G)) = {M(4u(GQ)),. ..,
M(Aa(G))} and Spec(Aa(H)) = {M(Aa(H)), ..., \n(Aa(H))}, then

n m

Spec(Aa(GOH)) = | [JAu(Aa(G)) + Aj(4Aa(H))}-

i=1j=1

Proof. Let

X=[X; Xy -+ X,

be an orthogonal matrix whose columns are eigenvectors corresponding to the eigenvalue A\ (A4.(G)),
A2 (Aa (@), ..., M (An(@)). Let
Y=Y, - Y,]

be an orthogonal matrix whose columns are eigenvectors corresponding to the eigenvalue Ai(A,(H)),
AQ(AQ(H)% cre )‘m(Aoz(H)) Then

)\I(Aa<G))
. Xo(Aa (@)
(3.2) XTAu(G)X =
An(4a(G))
and
/\1 (Aa(H))
. Mo (Aa(H))
(3.3) YT Ao(H)Y =
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Note that X ® Y is an orthogonal matrix, and
(XoY) AL (GOH)X@Y)=(XY)TA(G) @ I, + 1, @ A (H)(X ®Y)
= (XTA, (X))o (YTY)+ (XTX) @ (YT AL(H)Y)
/\1 (Aa (G))
>\2 (Aa (G))
An(Aa(G))
>\2 (Aa (H))
+1I,®
Am(Aa(H))

Thus, we have our conclusion. 0

4. The spectrum of A,(G[H]). In this section, we will characterize the spectrum of A, (G[H]) for
arbitrary graph G and regular graph H.

Recall that A,(G) = aD(G) 4+ (1 — @)A(G). Then, we can see that for p-regular graph G, 4,(G) =
pal + (1 — a)A(G). Hence, the following lemma is obvious:

LEMMA 4.1. Let H be a p-regular graph with V(H) = {u1,u2,...,um}. If p > Xo(H) > -+ > A\p(H)
are the spectrum of A(H), then
Spec(Ao(H)) ={p,ap+ (1 — @) o(H),...,ap+ (1 — a)\n(H)}.

Furthermore, if Y = [jm Y2 -+ Y] is an orthogonal matriz whose columns jm,Ya, ..., Yy, are eigenvectors
corresponding to the eigenvalues p, \o(H), ..., Ap(H), respectively, then'Y is also an orthogonal matriz whose
columns are eigenvectors corresponding to the eigenvalues p,ap + (1 — a) a(H),...,ap+ (1 — @)\ (H) of
Ay (H), respectively.

THEOREM 4.2. Let G be a connected graph with V(G) = {v1,va,...,v,}, H be a p-reqular graph with
V(H) = {u1,uz, ..., um}, respectively. If p > Xo(H) > -+- > A\ (H) are the spectrum of A(H), then
Spec(An(G[H))) = U {ap+ (1 — a)A;(H) + amde(v;) } U Spec(C),

where C = pl, + A, (G).
Proof. Let A(G) = (ij)nxn be the adjacency matrix of G and dg(v;) be the degree of v; of G for
i =1,2,...,n. It is obvious that

A(H) alQJme aanme

a21Jmxm A(H) o aandmxm
A(GH]) = : : . : =1, A(H) + AG) ® Jmxm

anlJme anZJme A(H)
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and
(p+dg(vi)m)Im 0 0
D(G[H]) = . | |
0 0 o (p+da(ve)m)y,

Then we have that
Ao (G[H]) = oI, ® D(H) + mD(G) ® I,,) + (1 — &) (I, ® A(H) + A(G) ® Jyxem)
=1, A.(H)+amD(G) @ I, + (1 — a)A(G) @ Jmxm.-
Fori=1,2,...,nand j =2,3,...,m, we first prove that ap+ (1 — a)\;(H) + amdg(v;) is an eigenvalue of
Ao (G[H]).

Let Y = [jm Y2 -+ Y] be an orthogonal matrix whose columns j,,,Ya, - ,Y,, are eigenvectors
corresponding to the eigenvalues p, Ao(H), ..., A\ (H), respectively. By Lemma 4.1, for j = 2,3,...,m,
A (H)Y; = (aer(lfa))\ (H))Y and jLY; = 0. Let e; = (0,0,...,1,...,0)T for i =1,2,...,n. We have

——

that
Ao (GIH])(e; ®Y;) = (I, ® Aa(H) + amD(G) @ Iy, + (1 — ) A(G) ® Jinxm)(€e; ® Y)
=e; @A (H)Y; + amD(G)e; @ Y; 4+ (1 — a)A(G)e; @ (JmxmY;)
= (ap+ (1 —a)\;(H))(e; ®Y;) + amdg(v;)(e; ® Y;) + 0
= (ap+ (1 = )X (H) + amdg(vi)) (e; ® Y5).
Hence, e; ® Y; is an eigenvector of A,(G[H]) corresponding to ap + (1 — a)X;(H) + amdg(v;).
For i =1,2,...,n, let X; be the eigenvector of A,(G) corresponding to \;(A,(G)). Then
A(GIH))(Xi ® jm) = (In ® Aa(H) + amD(G) @ I, + (1 — @) A(G) ® Jysem ) (X @ jim)
=X; ® (Aa(H)jm) + amD(G)X; ® jm + (1 — @) A(G)X; @ (Jyxmim)
= p(Xi ® jm) + amD(G) X; ® jm +m(l — ) A(G)X; @ jim
p(Xi ®]m) + mAa(G)Xz ®jm
= (p+mX\(Aa(G)))(Xi ® jm).
Hence, X; ® jy, is an eigenvector of A,(G[H]) corresponding to p + mA;(A.(G).
Note that (e;, ® Y, )T (e;, ®Yj,) = 0if (i1, j1) # (i2,j2), and (&5, ®Y;)" (€5, ® jm) = 0 for any iy, is € [n]

and j € [m]\ {1}, i.e., all these eigenvectors are orthogonal, hence we have our conclusion. d

5. The spectrum of A,(G[H1, Hs, ..., H,]).

THEOREM b5.1. Let G be a connected graph with V(G) = {v1,va,...,v,} and fori=1,2,...,n, let H;
be a p;-reqular graph with order m;, respectively. Let A(G) = (a;;) be the adjacency matriz of G and for
i=1,2,...,n, 80 =3 e ng (o) M- I pi 2 Aa(Hi) = -+ = A, (H;) are the spectrum of A(H;), then

Spec(An(G[Hy, Hs, ..., Hy])) = U U {alpi + si) + (1 — a)A;(H;) } U Spec(C),

i=1j=2
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where
p1+ as; (1 —a)arzy/mimy - (1= a)ai,/mimy,
c (1 — a)agy/mamy D2 + asg o (1= a)agny/mamy
(]_ — Oé)anl mypmy (]- - a)an2 mamsz - Pn + Qsp
Proof. 1t is obvious that
A(Hl) a12Jm1><m2 aanmlxmn

a21Jm2><m1 A(H2) e a2nJm2><mn
A(G[Hy,Hs,...,H,)) = .

anidmxmy @n2dmaxm, 0 A(Hn)
and
(p1+ s1)1m, 0 0
DGl ity | R X
0 0 (Pn + én)fmn
Then we have that
A.(G|Hy,Ha, ..., H,)) = aD Hl,Hg,...,Hn])+(1—a)A(G[Hl,HQ,...,Hn])
Y+ asily,, (1—a)arodmixm, - (1 —a)arndm, xm,
a21Jm2><m1 Ao(Hy) + asglpyy, -+ (1= a)agnJmyxm,
(1-a anljmnx,nl (1- a)an-ng"XmQ . Aq(Hp) ;Fasnlmn

For i = 1,2,...,n and j = 2,3,...,m, we first prove that a(p; + s;) + (1 — a)\;(H) is an eigenvalue of
Ao (G[Hy, Ha, ..., Hy)).

Let Y; = [jm, Yiz -+ Yim,| be an orthogonal matrix whose columns j,,, Y, ..., Yy, are eigenvectors
corresponding to the eigenvalues p;, Ao (H;), . .. )‘m@ (H;), respectively. By Lemma 4.1, for j = 2,3,...,m,,
Aa(Hv)}/v] = (ozp, (1 — OZ)A (H )))/1] and ]m ij — = 0. Let )/z/j = (leml,()l)(m?,.. K?,...,lemn)T.
Note that

JTILj Xmly;j = Omj x1
and

(Aa(Hi) + asilmi)}/ij = (Oé(pi + Si) + (1 — a))\](Hl))Yw

So, we have that

AQ(G[Hl, ey Hn])Y;IJ S (Ck(pl + Si) + (]. - a))\j(Hl))Y'

)

Hence, Y}, is an eigenvector of A, (G[H1,..., Hy]) corresponding to a(p; + s;) + (1 — )\ (H;).
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Let X = [X; --- X,] be an orthogonal matrix whose column X; = (z;1,... ,xm)T is an eigenvector
corresponding to the eigenvalue \;(C). Then CX; = \;(C)X; and X X; =0 for i # j. Let

X!/ — ( Ti1 Ti1 Ti2 Ti2 Tin Tin )T
i e T g me mn,...7 e
mi meo Mnp
_ ( i1 . Zi2 .1 LTin .T )T

\/ﬁjml, \/m—Qjmz,..., m]m"
As

(Aa(Hr) + asr-[mr)%jmr = (pr + asr)%jmra
and for ¢ € [n] \ {r},
J Tt . Tt .
mexmy  —Jme — VMM ——Im,.-
X m] t \/TTT]
We have that

:n,l ((pl + OéSl)Iil + Zte[n]\{l}(l — Oé)alt mlmtxit)jml
1 ((p2 +as2)Tiz + D e (1—a)ag m2mt$it)jm
Ao(G[Hy, ... Hy))X] = 2 temn]\{2} >

? .

ﬁ

7

\/% ((pn + sn)win + 2 teppgny (1 — Q) At/ T i) i,

— \(O) X

)\i \/%]mn
Hence, X is an eigenvector of A, (G[H1, Ha, ..., H,]) corresponding to A;(C).
Note that (Y/ ; )TY,;, = 0 for (i1, j1) # (i2, j2) and (Y} ; )" X| = O for any i, i1 € [n] and ji € [m;,]\{1},

i.e., all these eigenvectors are orthogonal, thus we have our conclusion. 0

6. The spectral radii of A,(G x H) and A,(G® H). In this section, we will characterize the spectra
radii of Ay(G x H) and A, (G & H) for arbitrary graph G and regular graph H. It is obvious that

A(G x H) = A(G) ® A(H)

and
AGeH)=AGOH)+ AGx H)=AG) I, + 1, A(H) + A(G) ® A(H).
As
daxm((vi,uj)) = dg(vi) X dm(uj)
and

dean((vi,uj)) = da(vi) + du(u;) + da(vi) x d(uj),

we can see that
D(G® H) = D(G)® D(H)
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and
D(GeH)=DG)®I,+ 1,2 D(H)+ D(G)® D(H).

Thus, we have that

(6.4) Ao(Gx H)=aD(G)®@ D(H)+ (1 — a)A(G) ® A(H)
and
(6.5) A(Ge H)=Au(G) @1+ 1, @ Au(H) +aD(G) @ D(H) + (1 — a)A(G) ® A(H).

Recall that for p regular graph of order m, j,, is an eigenvector of G corresponding to the spectral radius

THEOREM 6.1. Let G be a connected graph with V(G) = {v1,va,...,v,}, H be a p-reqular graph with
V(H) = {u1,ua,...,umn}, respectively. Let A\1(Ao(G)) be the spectral radius of Ao(G). Then,

M (Aa(G x H)) = pAi(Aa(G)), M (Aa(G @ H)) = pAi(Aa(G)) + M (Aa(G)) + p.

Proof. Let X; = (x1,2,...,2,)7 be the Perron vector of A,(G), ie., ; > 0, X{X; = 1 and
An(G) X1 = M (An(G))X:. By (6.4), we have that

Au(GXx H) (X1 ® jm) = (aD(G)@ D(H)+ (1 — 0)A(G) @ A(H))(X1 ® jm)
= (aD(G)X1) ® (D(H)jm) + (1 — ) A(G)X1) @ (A(H ) jm)
= (apD(G)X1) & (jm) + (p(1 — @) A(G) X1) @ (jim)
= (pAa(G)X1) @ jim

= pA(Aa(G)X1)) X1 @ jfim.

Thus, we have that pA;(Aa(G)) is an eigenvalue of A,(G x H). Note that every entries of X7 ® j,,, are

positive, and hence, by the Perron-Frobenius theorem, we know that

/\1(Aa(G X H)) = pAl(Aoz<G))‘

Similarly, we can see that X; ® j,, is also an eigenvector of A,(G @ H) corresponding to pAi(A.(G)) +
M (Aa(G)) + p, and thus,

M(Aa(G @ H)) = pAi(Aa(G)) + M (Aa(G)) +p
as desired. 0

Note that the graphs Gx H = H x G and G® H = H &G, the following corollary is obvious by Theorem
6.1.

COROLLARY 6.2. Let H be a connected graph with V(H) = {uy,ua, ..., un},G be a p- regular graph with
V(G) = {v1,va,...,v,}, respectively. Let A1 (Aq(H)) be the spectral radius of Ao (H). Then,

Al(Aa(G X H)) = p)‘l(Aa(H))’)‘l(Aa(G D H)) :p)‘l(Aa(H)) + Al(Aa(H)) +p.
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