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MINIMAL ESTRADA INDEX OF THE TREES

WITHOUT PERFECT MATCHINGS∗

WEN-HUAN WANG† AND CHUN-XIANG ZHAI‡

Abstract. Trees possessing no Kekulé structures (i.e., perfect matching) with the minimal Estrada index are considered.

Let T n be the set of the trees having no perfect matchings with n vertices. When n is odd and n ≥ 5, the trees with the

smallest and the second smallest Estrada indices among T n are obtained. When n is even and n ≥ 6, the tree with the smallest

Estrada index in T n is deduced.
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1. Introduction. Let G be a simple graph with a vertex set V (G), where |V (G)| = n. Let A(G) be

the adjacency matrix of G and I the identity matrix of order n. Let Φ(G,λ) = det[λI − A(G)] be the

characteristic polynomial of G [3]. The n roots of Φ(G,λ) = 0 are denoted by λ1 ≥ · · · ≥ λn. Since A(G) is

a real symmetric matrix, λ1, . . . , λn are all real numbers. The Estrada index (EI) of G, is defined by [9]

(1.1) EE(G) =

n∑
i=1

eλi .

According to Estrada, the EI is useful to characterize the degree of folding of a protein chain, and to

account for the contribution of amino acids to folding [9, 13, 14]. Later, the EI was extended to measure the

centrality of complex network [10, 11], extended atomic branching [12], and the carbon-atom skeleton [18].

For a comprehensive survey of the index, one can refer to [16]. Since its inception in 2000, several analogous

graph invariants, such as the Laplacian and signless Laplacian Estrada indices [1, 20] based respectively

on the eigenvalues of Laplacian and signless Laplacian matrices, the resolvent Estrada indices [2, 17] based

on the resolvent of the adjacency matrix, and the skew Estrada index of oriented graphs [15], have been

considered.

A walk W of length k in G is any sequence of vertices and edges of G, namely W = v0, e1, v1, e2, . . . , vk−1,

ek, vk such that ei is the edge joining vertices vi−1 and vi for every i = 1, 2, . . . , k. If v0 = vk, then the walk

W is closed and is referred to as the (v0, v0)-walk of length k. For k ≥ 0, we denote Mk(G) =
∑n
i=1 λ

k
i and

refer to Mk(G) as the k-th spectral moment of G. It is well known that Mk(G) is equal to the number of

the closed walks of length k in G [3]. From the Taylor expansion of eλi , EE(G) in (1.1) can be rewritten as

(1.2) EE(G) =

∞∑
k=0

Mk(G)

k!
.
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In particular, if G is a bipartite graph, then M2k+1(G) = 0 for k ≥ 0. Hence, we have

(1.3) EE(G) =

∞∑
k=0

M2k(G)

(2k)!
.

Let G1 and G2 be bipartite graphs of order n. If M2k(G1) ≥ M2k(G2) holds for each positive integer

k, then EE(G1) ≥ EE(G2) and we write G1 � G2. If G1 � G2 and there is at least one positive integer

k0 such that M2k0(G1) > M2k0(G2), then EE(G1) > EE(G2) and we write G1 � G2. If G1 � G2 and

G2 � G1, then we write G1 ∼ G2.

Within groups of isomers, it was found that the EI increases with the rising extend of branching of the

carbon-atom skeleton [18, 21]. Therefore, the ordering of graphs with extremal Estrada indices (EIs) is of

practical importance and theoretical interest in the subject of graph theory. In graph theory, a connected

acyclic graph is called a tree. Therefore, the topological properties of acyclic molecules agree with those of

trees. Based on the above relationship obtained from (1.3), a number of results have been reached for the

graphs with the extremal EIs. For the general trees, and the trees with given parameters, such as the trees

with a given matching number, the trees with a fixed diameter, the trees with a given number of pendent

vertices, and the trees with a given maximum degree, ect., one can refer to [4, 5, 6, 8, 21, 27]. For the

characterization of the unicyclic graphs, the bicyclic graphs and the tricyclic graphs, ect., one can refer to

[7, 22, 23, 25, 28].

Recall that conjugated molecules in chemistry may be classified into two groups: Kekuléan and non-

Kekuléan molecules, depending on whether or not they possess the Kekulé structures, which are perfect

matchings in the molecular graph corresponding to the carbon atom skeleton of a conjugated unsaturated

hydrocarbon [19]. In the set of trees with perfect matchings, Wang [24] obtained the trees with the largest

and the second largest EIs, Zhai and Wang [26] deduced the trees with the smallest and the second smallest

EIs. However, the trees with the extremal EIs in the set of trees without perfect matchings remains unknown.

For simplicity, PM stands for “ perfect matching”. Let T n be the set of the trees with n vertices having

no PM. In this paper, for completeness, in T n, we will investigate the ordering of trees in terms of their

minimal EIs. Thus, we characterize the acyclic non-Kekuléan π-electron systems with the minimal EIs.

2. Transformations for studying the Estrada indices. Let v ∈ V (G), and dG(v) be the degree

of v of G. A pendent path at v of G is a path in G connecting vertex v and a pendent vertex such that

all internal vertices (if exist) in this path have degree two and dG(v) ≥ 3. Lemmas 2.1 and 2.2 are simply

quoted.

Lemma 2.1. [21] Let w be a vertex of the nontrivial connected graph G. For non-negative integers p

and q, let G(p, q) denote the graph obtained from G by attaching at w pendent paths P ∼= wv1v2 · · · vp and

Q ∼= wu1u2 · · ·uq of lengths p and q, respectively. If p ≥ q ≥ 1, then EE(G(p, q)) > EE(G(p+ 1, q − 1)).

Let the coalescence G(u) ·H(v) be the graph obtained from G and H by identifying u of G with v of

H. Let Pn be a path with n vertices.

Lemma 2.2. [6] Let u be a non-isolated vertex of a simple graph H. Let H1
∼= H(u) · Pn(v1) (as shown

in Figure 1(a)) and H2
∼= H(u) · Pn(vt) (as shown in Figure 1(b)), where Pn ∼= v1v2 · · · vn. As n ≥ 3 and

k ≥ 2, we have M2k(H2) > M2k(H1).

To obtain our results, Lemma 2.3 is introduced as follows.
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Figure 1. The transformation in Lemma 2.2.
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(a) G
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Pn︷ ︸︸ ︷
(b) G′

Figure 2. The transformation in Lemma 2.3.

Lemma 2.3. Let G1 be a connected graph, u ∈ V (G1) and |V (G1)| ≥ 2. Let G2 be a tree with n ≥ 3

vertices, G2 � Pn and v ∈ V (G2). Let G ∼= G1(u) ·G2(v) (as shown in Figure 2(a)) and G′ ∼= G1(u) · Pn(v)

(as shown in Figure 2(b)), where Pn ∼= vv2 · · · vn. We have EE(G) > EE(G′).

Proof. Let G be the graph as shown in Figure 2(a). Two cases are considered as follows.

Case (i). dG2(v) = 1.

In G, since G2 � Pn, we can choose one vertex (denoted by w) of G2 such that dG2
(w) ≥ 3 and there

are (dG2(w)− 1) pendent paths attached at w. By using Lemma 2.2 (dG2(w)− 2) times on w in G, we get

a new graph H satisfying dH(w) = 2 and G � H. By using the same procedure on all the vertices in G2

which have degrees three or more, we can obtain a graph G′ such that H � G′, where G′ is the graph as

shown in Figure 2(b). Thus, we get G � G′.

Case (ii). dG2
(v) ≥ 2.

Subcase (ii.i). dG2
(v) ≥ 2 and all the vertices in V (G2) \ {v} have degrees 2 or 1.

Obviously, G is the graph obtained from G1 by attaching dG2(v) pendent paths at u of G1. By using

Lemma 2.2 (dG2
(v)− 1) times on v in G, we have G � G′.

Subcase (ii.ii). dG2(v) ≥ 2 and there exist k ≥ 1 vertices in V (G2) \ {v} having degrees three or more.

In G, we can choose one vertex (denoted by s) of V (G2) \ {v} such that dG2(s) ≥ 3 and there are

(dG2(s)− 1) pendent paths attached at s. By using Lemma 2.2 (dG2(s)− 2) times on s of G, we get a new

graph H satisfying dH(s) = 2 and G � H. In G, by using the same procedure on all the vertices in G2 which

have degrees three or more (except for v), we can obtain a graph H ′ such that H � H ′, where H ′ is the

graph obtained from G1 by attaching dG2
(v) pendent paths at u in G1. By using Lemma 2.2 (dG2

(v) − 1)

times on v in H ′, we get H ′ � G′. Thus, G � G′.
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Figure 3. lT r
b with l + r + b+ 1 = n.

3. Ordering of the trees in T n according to their minimal Estrada indices for odd n. Let
lTrb be the tree obtained by attaching three pendent paths of length l, r and b at a common vertex u, where

l + r + b+ 1 = n. For example, lTrb is shown in Figure 3.

For a tree T with n vertices, if n is odd, then T has no PM, namely T ∈ T n. We have T 2 = ∅,
T 3 = {P3}, and T 4 = {1T1

1}. Next, in T n, when n is odd and n ≥ 5, we obtain the trees with the smallest

and the second smallest EIs in Theorem 3.1.

Theorem 3.1. Let T ∈ T n \{Pn,1 T1
n−3} and n be odd, where n ≥ 5. We have EE(T ) > EE(1T1

n−3) >

EE(Pn).

Proof. Let n be odd and n ≥ 5. By Lemma 2.1, we obtain 1T1
n−3 � Pn. Let T ∈ T n \ {Pn,1 T1

n−3}.
Next, we prove

(3.4) T �1 T1
n−3.

Since T � Pn, T has at least one vertex having a degree three or more. We consider two cases as follows.

Case (i). Only one vertex of T (denoted by u) has a degree three or more.

In this case, all the degrees of the vertices in V (T ) \ {u} are 2 or 1. Namely, T is the tree obtained by

attaching dT (u) pendent paths at a common vertex u. By using Lemma 2.2 (dT (u) − 3) times on u in T ,

we get T �l Trb , where T ∼l Trb holds if and only if T ∼=l Trb . Since lTrb has n ≥ 5 vertices, where n is odd,
lTrb ∈ T n.

Suppose r ≥ l ≥ 1. By applying Lemma 2.1 (l − 1) times, we obtain lTrb �l−1 Tr+1
b � · · · �1 Tl+r−1b .

Without loss of generality, let b ≥ l + r − 1. By using Lemma 2.1 (n − b − 3) times again, we have
1Tl+r−1b �1 Tl+r−2b+1 � · · · �1 T1

n−3. Therefore, we get lTrb �1 T1
n−3.

Case (ii). There exist k ≥ 2 vertices in T having degrees three or more.

In this case, we can choose one vertex (denoted by w) in T such that dT (w) ≥ 3 and there are (dT (w)−1)

pendent paths attached at w. By using Lemma 2.2 (dT (w) − 2) times on w in T , we obtain a new tree

T ′ ∈ T n (since n is odd) satisfying dT ′(w) = 2 and T � T ′. By using the same procedure, we can obtain a

tree T ′′ ∈ T n (since n is odd) such that T ′ � T ′′, where T ′′ has only one vertex having a degree three or

more and all the other vertices in T ′′ having degrees 2 or 1. Furthermore, by the proof of case (i), we have

T ′′ �1 T1
n−3. Therefore, we obtain T �1 T1

n−3.

By the combination of the proofs of cases (i) and (ii), we get (3.4).

Next, in Section 4, among T n, when n is even, we will deduce the tree with the minimal EI by using a

different method. The reason is given in the following remark.
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Remark 3.2. In Lemma 2.2, if H2 (as shown in Figure 1(b)) has even number of vertices and has no

PM, then H1 (as shown in Figure 1(a)) may have a PM. Therefore, in T n, if n is even, then Lemma 2.2

can not be used to obtain the ordering of the trees according to their minimal EIs.

4. Trees with the minimal Estrada index in T n for even n. In this section, among T n, when n

is even, we will investigate the tree with the minimal EI in T n. Since the trees in T n have no PM, we get

Pn /∈ T n. Let T n = T 1

n

⋃
T 2

n, where T 1

n is the subset of T n, in which each tree has only one vertex having

degree 3 and all the other vertices having degrees 2 or 1, and T 2

n is the subset of T n, in which each tree has

at least two vertices having degrees three or more or only one vertex having a degree four or more.

In lTrb , we have l + r + b+ 1 = n. If n is even, then only one of l, r and b is odd or all of l, r and b are

odd. Therefore, if lTrb ∈ T n and n is even, then l, r and b must be all odd. Otherwise, if only one of l, r

and b is odd, then lTrb has a PM. By the definition of T 1

n, we get that T 1

n = {lTrb | l, r and b are all positive

odd numbers}.

Let G in Lemma 2.1 be Pb+1. By using Lemma 2.1, we can obtain Corollary 4.1.

Corollary 4.1. lTrb �l−2 Tr+2
b � · · · �5 Tn−b−6b �3 Tn−b−4b �1 Tn−b−2b , where r ≥ l and l, r, b are

all positive odd numbers.

Let G in Lemma 2.1 be Pl+1. By using Lemma 2.1, we get Corollaries 4.2 and 4.3.

Corollary 4.2. lTrb �l Tr−2b+2 � · · · �l T5
n−l−6 �l T3

n−l−4 �l T1
n−l−2, where b ≥ r and l, r, b are all

positive odd numbers.

Corollary 4.3. lTrb �l Tr+2
b−2 � · · · �l Tn−l−65 �l Tn−l−43 �l Tn−l−21 , where r ≥ b and l, r, b are all

positive odd numbers.

By Corollaries 4.2 and 4.3, we get Corollary 4.4.

Corollary 4.4. lTrb �l T3
n−l−4 �l T1

n−l−2, with lTrb ∼l T3
n−l−4 if and only if r = 3 or b = 3, where

r, b ≥ 3 and l, r, b are all positive odd numbers.

Remark 4.5. By the definition of lTrb , if l, r, b are all positive odd numbers, then all the graphs in

Corollaries 4.1–4.4 have no PM.

For n is even, let T 1

n = T 1,1

n

⋃
T 1,2

n , where T 1,1

n = {lTrb | r ≥ 1, b ≥ l = 1} and T 1,2

n = {lTrb | b ≥ 3, r ≥
l ≥ 3}. Since l + r + b+ 1 = n, we get n ≥ 4 in T 1,1

n and n ≥ 10 in T 1,2

n .

From Corollary 4.2 (let l = 1), we obtain, in Theorem 4.6, the complete ordering of the trees in T 1,1

n in

terms of their minimal EIs.

Theorem 4.6. For 1Trb ∈ T
1,1

n , we have the ordering as follows.

(i) For n = 4t with t ≥ 1, 1T
n
2−1
n
2−1
�1 T

n
2−3
n
2 +1 � · · · �1 T3

n−5 �1 T1
n−3.

(ii) For n = 4t+ 2 with t ≥ 1, 1T
n
2−2
n
2
�1 T

n
2−4
n
2 +2 � · · · �1 T3

n−5 �1 T1
n−3.

From Corollaries 4.1 and 4.4, we get Theorem 4.7 as follows.
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Figure 4. T .

Theorem 4.7. Let lTrb ∈ T
1,2

n \{3T3
n−7}, n be even and n ≥ 10. We have

lTrb �3 T3
n−7 �1 T5

n−7 �1 T3
n−5 �1 T1

n−3,

with 1T5
n−7 ∼1 T3

n−5 if and only if n = 10.

Proof. Let n be even and n ≥ 10. It follows from Corollary 4.1 that 3T3
n−7 �1 T5

n−7. Since n − 7 ≥ 3,

by Corollary 4.4 (let l = 1), we obtain 1T5
n−7 �1 T3

n−5 with 1T5
n−7 ∼1 T3

n−5 if and only if n = 10. Since

n− 5 ≥ 5, by Corollary 4.4 (let l = 1) again, we get 1T3
n−5 �1 T1

n−3. Namely, we have 3T3
n−7 �1 T5

n−7 �1

T3
n−5 �1 T1

n−3.

Next, let lTrb ∈ T
1,2

n \{3T3
n−7}. We will prove

(4.5) lTrb �3 T3
n−7.

By the definition of T 1,2

n , in lTrb , we have b ≥ 3 and r ≥ l ≥ 3. By Corollary 4.1, we obtain lTrb �l−2
Tr+2
b � · · · �3 Tl+r−3b . Since l+r−3 ≥ 3 and b ≥ 3, by Corollary 4.4 (let l = 3), we get 3Tl+r−3b �3 T3

n−7 with
3Tl+r−3b ∼3 T3

n−7 if and only if 3Tl+r−3b
∼=3 T3

n−7. Therefore, if lTrb �3 T3
n−7, then we have lTrb �3 T3

n−7.

Namely, (4.5) holds. Theorem 4.7 is thus proved.

Next, we consider the tree with the minimal EI in T 2

n. By the definition of T 2

n, we have T 2

n = ∅ when

n = 4. In T 2

n, we assume that n is even and n ≥ 6. To obtain the tree with the minimal EI in T 2

n, we first

give some definitions and proposition and then introduce Lemma 4.9.

Let T ∈ T n. For two vertices u, v ∈ V (T ), let d(u, v) be the distance between u and v. Let Vp(T ) =

{v ∈ V (T ) | dT (v) = 1} and A(T ) = {w ∈ V (T ) | dT (w) ≥ 3}. For a given vertex w ∈ A(T ), let

Pw(T ) = {v ∈ Vp(T ) | d(v, w) < d(v, x), for any x ∈ A(T ) \ {w}}.

For example, let T be the tree as shown in Figure 4. We have A(T ) = {w1, w2, w3}, Pw1
(T ) = {v1, v2},

Pw2
(T ) = {v3, v4, v5}, and Pw3

(T ) = {v6, v7}. For any v ∈ Vp(T ), there exists a vertex w ∈ A(T ) such that

v ∈ Pw(T ). For any w ∈ A(T ), there exists at least one vertex v ∈ Pw(T ), namely |Pw(T )| ≥ 1.

For w ∈ A(T ), let Sw = {w} ∪ Pw(T ) ∪Qw(T ), where Qw(T ) is the set of vertices lying on the pendent

paths between v of Pw(T ) and w (other than v and w) for all v ∈ Pw(T ). For example, for T in Figure 4,

Sw1 = {w1, v1, v2}, Sw2 = {w2, s1, v3, v4, v5}, and Sw3 = {w3, s2, s3, v6, v7}. We denote by T [Sw] the induced

subtree of T , where the vertex set of T [Sw] is Sw, and the edge set of T [Sw] is the set of those edges of T

that have both ends in Sw. We say that the induced subtree T [Sw] is the pendent subtree attached at w.

For example, for T in Figure 4, T [Sw1
], T [Sw2

] and T [Sw3
] are the three pendent subtrees attached at w1,

w2 and w3, respectively. By the definition of T [Sw], we get that dT [Sw](w) ≥ 3 and all the degrees of the

vertices in V (T [Sw]) \ {w} are 2 or 1.
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{
Figure 5. Transformation α: T � T1.

{

{

Figure 6. Transformation β: T � T2. Transformation γ: T � T3.

Let |A(T )| be the number of vertices in A(T ). When |A(T )| ≥ 2, let A(T ) = {w1, w2, . . . , wt}, where

t ≥ 2. In A(T ), when t ≥ 2, we can choose two vertices (denoted by w1 and w2) such that

(4.6) d(w1, w2) = max {d(wi, wj)|wi, wj ∈ A(T ), 1 ≤ i < j ≤ t}.

Proposition 4.8. Let T ∈ T 2

n. For |A(T )| ≥ 2, let w1 and w2 be the two vertices as defined in (4.6).

(i) There exist two pendent subtrees T [Sw1
] and T [Sw2

] attached at w1 and w2, respectively.

(ii) |Pw1
(T )| ≥ 2 and |Pw2

(T )| ≥ 2.

Proof. (i) Let T ∈ T 2

n and w1 and w2 be the two vertices as defined in (4.6). We can choose one vertex

u ∈ V (T ) (u can be w2 ) such that u is adjacent to w1 and T − w1u = T ′1 ∪ T ′2, where T ′1 and T ′2 are the

two components of T − w1u which contain w1 and w2, respectively. Suppose that there exists a vertex (let

it be x, x 6= w1 ) in T ′1 which has a degree three or more. Then d(x,w2) = d(x,w1) + d(w1, w2) > d(w1, w2),

which contradicts the definition of w1 and w2. Thus, all the vertices of T ′1 (except for w1) have degrees 2

or 1. Namely, T ′1 is the pendent subtree attached at w1. Similarly, we can get that there exists a pendent

subtree attached at w2. Thus, we get Proposition 4.8(i).

(ii) Since dT (w1) ≥ 3, we get dT ′
1
(w1) ≥ 2. Furthermore, since T ′1 is the pendent subtree attached at w1,

we get |Pw1(T )| ≥ 2. Similarly, we can get |Pw2(T )| ≥ 2. Thus, we get Proposition 4.8(ii).

Lemma 4.9. Let T ∈ T 2

n, n be even, and n ≥ 6. We get that there exists a tree lTrb ∈ T
1

n such that

EE(T ) > EE(lTrb).

Proof. Let T ∈ T 2

n, n be even, and n ≥ 6. By the definition of T 2

n, we have |A(T )| ≥ 1. We prove

Lemma 4.9 by induction on |A(T )|.

(I). |A(T )| = 1.

Since T ∈ T 2

n and |A(T )| = 1, by the definition of T 2

n, in T , there is only one vertex (let it be w)

having a degree four or more and all the other vertices of T have degrees 2 or 1. Namely, T is a starlike
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tree obtained from w by attaching dT (w) ≥ 4 pendent paths at w. Let the lengths of the dT (w) pendent

paths be r1, r2, . . . , rdT (w), where
dT (w)∑
i=1

ri = n− 1. Let R = {ri| ri is odd, 1 ≤ i ≤ dT (w)}. Since n is even,

|R| must be odd number. Furthermore, since T has no PM, |R| ≥ 3. Otherwise, if |R| = 1, then T has

a PM. Therefore, we can choose rs, rt ∈ R, where 1 ≤ s, t ≤ dT (w). By employing Lemma 2.2 on w

in T (dT (w) − 3) times, we get T �rs Trtn−rs−rt−1 since dT (w) ≥ 4. Since rs and rt are odd numbers and

n is even, n − rs − rt − 1 is odd number. Therefore, rsTrtn−rs−rt−1 ∈ T
1

n. Thus, we get Lemma 4.9 when

|A(T )| = 1.

(II). When |A(T )| = k and k ≥ 1, we suppose there exists a tree lTrb ∈ T
1

n such that T �l Trb .

(III). When |A(T )| = k + 1 and k ≥ 1, next, we will prove that Lemma 4.9 holds.

Let A′(T ) = {wi ∈ A(T )||Pwi
(T )| ≥ 2, 1 ≤ i ≤ t}. Obviously, A′(T ) ⊆ A(T ). Let A′(T ) =

{w1, w2, . . . , wh}. By Proposition 4.8(ii), in A′(T ), h ≥ 2. For wi (1 ≤ i ≤ h) in A′(T ), let TS =

{T [Sw1 ], T [Sw2 ], . . . , T [Swh
]}.

Next, when |A(T )| = k + 1 with k ≥ 1, we consider two cases according to the trees in TS having PM
or not.

Case (i). There exists at least one pendent subtree in TS having PM.

Let T be the graph as shown in Figure 5(a). Let T [Sw] be the pendent subtree in TS having a PM.

Since T has no PM, we get that T0 has no PM. By employing Lemma 2.3 on T (namely, transformation

α in Figure 5), we can get a new tree T1 (as shown in Figure 5(b)) such that T � T1. Obviously, |A(T1)| =
|A(T )| − 1 = k and T1 has no PM since T0 has no PM. By the induction, we can get that there exists a

tree lTrb ∈ T
1

n such that T1 �l Trb . Therefore, we obtain T �l Trb .

Case (ii). All the pendent subtrees in TS do not have PM.

Let T be the tree as shown in Figure 6(a). Let w1 and w2 be the two vertices as defined in (4.6). By

Proposition 4.8, we get that there exist two pendent subtrees T [Sw1 ] and T [Sw2 ] attached at w1 and w2,

respectively, and |Pw1
(T )|, |Pw2

(T )| ≥ 2.

Subcase (ii.i). |V (T [Sw1 ])| ≡ 1 (mod 2) or |V (T [Sw2 ])| ≡ 1 (mod 2).

Without loss of generality, we assume |V (T [Sw1 ])| ≡ 1 (mod 2).

In T , if the induced graph T [V (T0
′)
⋃
V (T [Sw2

])
⋃
{w1}] has no PM, then by employing Lemma 2.3

on T (namely, transformation β in Figure 6), we can get a new tree T2 (as shown in Figure 6(b)) having

no PM such that T � T2. Since |A(T2)| = |A(T )| − 1 = k, by the induction, we get T2 �l Trb . Therefore,

T �l Trb , where lTrb ∈ T
1

n.

In T , if the induced graph T [V (T0
′)
⋃
V (T [Sw2

])
⋃
{w1}] has PM, then w1 (as shown in Figure 6(a)) is

saturated with another vertex in T [V (T0
′)
⋃
V (T [Sw2 ])

⋃
{w1}]. Since T has no PM, we can deduce that,

in T [Sw1 ], there exist at least one vertex (except for w1) which is unsaturated. By employing Lemma 2.3

on T (namely, transformation γ in Figure 6), we can get a new tree T3 (as shown in Figure 6(c)) such that

T � T3, where T3 has no PM. Since |A(T3)| = 1, by the proof for (I) with |A(T )| = 1, we get T3 �l Trb .

Thus, T �l Trb , where lTrb ∈ T
1

n.
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Subcase (ii.ii). |V (T [Sw1 ])| ≡ 0 (mod 2) and |V (T [Sw2 ])| ≡ 0 (mod 2).

By employing Lemma 2.3 on T (namely, transformation γ in Figure 6), we get a new tree T3 (as shown

in Figure 6(c)) such that T � T3, where T3 has no PM since T [Sw1
] has no PM. Obviously, |A(T3)| = 1.

By the proof for (I) with |A(T )| = 1, we have T3 �l Trb . Therefore, we get T �l Trb , where lTrb ∈ T
1

n.

By the combination of the proofs of cases (i) and (ii), we get that Lemma 4.9 holds when |A(T )| = k+1.

Therefore, by the proofs of (I)–(III) and the induction on |A(T )|, we obtain Lemma 4.9.

Remark 4.10. In the proof for case (ii) of Lemma 4.9, if u = w2 or u = v (u, w2 and v are shown in

Figure 6(a), then we can check that the technique used in case (ii) of Lemma 4.9 remains valid.

By Theorem 4.6, Theorem 4.7 and Lemma 4.9, we obtain the tree with the minimal EI in T n when n is

even.

Theorem 4.11. Let T ∈ T n, n be even and n ≥ 4. We have EE(T ) ≥ EE(1T1
n−3), with the equality if

and only if T ∼=1 T1
n−3.

Proof. Let T ∈ T n, n be even and n ≥ 4. For n = 4, T ∼=1 T 1
1 . Let n ≥ 6. For T ∈ T 1

n, obviously,

T ∼=l Trb . For T ∈ T 2

n, by Lemma 4.9, there exists a tree lTrb ∈ T
1

n such that T �l Trb . Furthermore, by

Theorems 4.6 and 4.7, we obtain Theorem 4.11.
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