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THE CONE OF Z-TRANSFORMATIONS ON THE LORENTZ CONE∗

SÁNDOR ZOLTÁN NÉMETH† AND MUDDAPPA SEETHARAMA GOWDA‡

Abstract. In this paper, the structural properties of the cone of Z-transformations on the Lorentz cone are described

in terms of the semidefinite cone and copositive/completely positive cones induced by the Lorentz cone and its boundary. In

particular, its dual is described as a slice of the semidefinite cone as well as a slice of the completely positive cone of the Lorentz

cone. This provides an example of an instance where a conic linear program on a completely positive cone is reduced to a

problem on the semidefinite cone.
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1. Introduction. Given a proper cone K in a finite dimensional real Hilbert space (H, 〈·, ·〉), a linear

transformation A : H → H is said to be a Z-transformation on K if

[x ∈ K, y ∈ K∗, and 〈x, y〉 = 0 ] ⇒ 〈Ax, y〉 ≤ 0,

where K∗ denotes the dual of K in H. Such transformations appear in various areas including economics,

dynamical systems, optimization, see e.g., [2, 3, 9, 12] and the references therein. When H is Rn and K is

the nonnegative orthant, Z-transformations become Z-matrices, which are square matrices with nonpositive

off-diagonal entries.

The set Z(K) of all Z-transformations on K is a closed convex cone in the space of all (bounded) linear

transformations on H. Given their appearance and importance in various areas, describing/characterizing

elements of Z(K) and its interior, boundary, dual, etc., is of interest. An early result of Schneider and

Vidyasagar [16] asserts that A is a Z-transformation on K if and only if e−tA(K) ⊆ K for all t ≥ 0;

consequently,

(1.1) Z(K) = R I − π(K),

where π(K) denotes the set of all linear transformations that leave K invariant, I denotes the identity

transformation, and overline denotes the closure. To see another description of Z(K), let LL(K) := Z(K) ∩
−Z(K) denote the lineality space of Z(K), the elements of which are called Lyapunov-like transformations.

Then the inclusions

R I − π(K) ⊆ LL(K)− π(K) ⊆ Z(K) = R I − π(K)

imply that

Z(K) = LL(K)− π(K).
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As the cones Z(K), π(K), and LL(K) are generally difficult to describe for an arbitrary proper cone K, we

consider special cases. When K is the nonnegative orthant, Z(K) consists of square matrices with nonpositive

off-diagonal entries, π(K) consists of nonnegative matrices, and LL(K) consists of diagonal matrices. In this

paper, we focus on the Lorentz cone (also called the ice-cream cone or the second-order cone as it is induced

by the 2-norm) in the Euclidean space Rn, n > 1, defined by:

(1.2) L :=
{

(t, u)> : t ∈ R, u ∈ Rn−1, t ≥ ||u||
}
.

This, being an example of a symmetric cone, appears prominently in conic optimization [1]. For this cone,

Stern and Wolkowicz [17] have shown that A ∈ Z(L) if and only if for some real number γ, the matrix

γ J − (JA+A>J) is positive semidefinite, where J is the diagonal matrix diag(1,−1,−1, . . . ,−1). Another

result of Stern and Wolkowicz ([18], Theorem 4.2) asserts that

(1.3) Z(L) = LL(L)− π(L).

(Going in the reverse direction, in a recent paper, Kuzma et al., [13] have shown that for an irreducible sym-

metric cone K, the equality Z(K) = LL(K)−π(K) holds only when K is isomorphic to L.) Characterizations

of π(L) and LL(L) appear, respectively, in [14] and [20].

In this paper, we describe Z(L) and its interior, boundary, and dual in terms of the semidefinite cone

and the so-called copositive and completely positive cones induced by L (or its boundary ∂(L)), see below

for the definitions. In particular, we describe the dual of Z(L) as a slice of the semidefinite cone and also of

the completely positive cone of L. This provides an example of an instance where a conic linear optimization

problem over a completely positive cone is reduced to a semidefinite problem. To elaborate, consider Rn, the

Euclidean n-space of (column) vectors with the usual inner product, Rn×n, the space of all real n×n matrices

with the inner product 〈X,Y 〉 = tr(X>Y ), and Sn, the subspace of all real n × n symmetric matrices in

Rn×n. Corresponding to a closed cone C (which is not necessarily convex) in Rn, let

EC := copos(C) :=
{
A ∈ Sn : x>Ax ≥ 0 for all x in C

}
denote the copositive cone of C and

KC := compos(C) :=

{∑
u∈U

uu> : U is a finite subset of C

}
denote the completely positive cone of C. When C = Rn, these two cones coincide with the semidefinite

cone Sn+ (consisting of all real n × n symmetric positive semidefinite matrices); when C = Rn
+, these re-

duce, respectively, to the (standard) copositive cone and completely positive cone. All these cones appear

prominently in conic optimization. A result of Burer [5] (see also, [4, 7]) says that any nonconvex quadratic

programming problem over a closed cone with additional linear and binary constraints can be reformulated

as a linear program over a suitable completely positive cone. For this and other reasons, there is a strong

interest in understanding copositive and completely positive cones. For the closed convex cones EC and KC ,
various structural properties (such as the interior, boundary) as well as duality, irreducibility, and homo-

geneity properties, have been investigated in the literature, see for example, [19, 6, 8, 11]. Taking C to be

one of Rn, L, or ∂(L), we show that

(1.4) Z(L)∗ =
{
B ∈ Rn×n : 〈B, I〉 = 0, −JB ∈ KC

}
and deduce the equality of slices

(1.5)
{
X ∈ Rn×n : 〈J,X〉 = 0, X ∈ Sn+

}
=
{
X ∈ Rn×n : 〈J,X〉 = 0, X ∈ KC

}
.
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2. Preliminaries. In a (finite dimensional real) Hilbert space (H, 〈·, ·〉), a nonempty set C is said to

be a closed cone if it closed and tx ∈ C whenever x ∈ C and t ≥ 0 in R. Throughout this paper, C denotes a

closed cone.

A nonempty set K is said to be a closed convex cone if it is a closed cone which is also convex. Such

a cone is said to be proper if K ∩ −K = {0} and has nonempty interior. Corresponding to a closed convex

cone K, we define its dual in H as the set

K∗ = {x ∈ H : 〈x, y〉 ≥ 0, ∀y ∈ K} .

We say that a linear transformation A : H → H is copositive on K if 〈Ax, x〉 ≥ 0 for all x ∈ K. We also let

π(K) = {A : A(K) ⊆ K}, where A denotes a linear transformation on H. For a set S in H, we denote the

closure, interior, and the boundary by S, S◦, and ∂(S), respectively.

We will be considering closed convex cones in the space H = Rn which carries the usual inner product

and in the space Rn×n which carries the inner product 〈X,Y 〉 := tr(X>Y ), where the trace of a square

matrix is the sum of its diagonal entries. In Rn×n, Sn denotes the subspace of all symmetric matrices and

An denotes the subspace of all skew-symmetric matrices. We note that Rn×n is the orthogonal direct sum

of Sn and An.

We recall some (easily verifiable) properties of the Lorentz cone L given by (1.2). L is a self-dual cone

in Rn, that is, L∗ = L; its interior and boundary are given, respectively, by

L◦ =
{

(t, u)> : t > ||u||
}
,

∂(L) =
{

(t, u)> : t = ||u||
}

=
{
α (1, u)> : α ≥ 0, ||u|| = 1

}
.

We also have

(2.1)
[0 6= x, y ∈ L, 〈x, y〉 = 0] ⇒ x = α (1, u)> and y = β (1,−u)>,

for some α, β > 0 and ||u|| = 1.

For a closed cone C in Rn, we consider the copositive cone EC and the completely positive cone KC
(defined in the introduction). Note that these are cones of symmetric matrices.

In the Hilbert space Sn (which carries the inner product from Rn×n), the following hold.

(1) KC is the dual cone of EC [19].

(2) When C −C = Rn, both EC and KC are proper cones ([10], Proposition 2.2). In particular, this holds

when C is one of Rn, L, or ∂(L).

(3) We have Sn+ = ERn ⊂ EL ⊂ E∂(L), or equivalently, K∂(L) ⊂ KL ⊂ KRn = Sn+.

3. Main results. In this section, we provide a closure-free description of Z(L) and, additionally,

describe the dual, interior, and the boundary of Z(L). We recall that J = diag(1,−1,−1, . . . ,−1) and An

denotes the set of all skew-symmetric matrices in Rn×n.

Theorem 3.1. Let C denote one of Rn, L, or ∂(L). Then,

(3.1) Z(L) = R I − J(EC +An).
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Proof. Let A ∈ Z(L). From the result of Stern and Wolkowicz [17] mentioned in the introduction, we

have

2γJ − (JA+A>J) = 2P

for some γ ∈ R and P ∈ Sn+. Hence, JA+ (JA)> = 2(γJ − P ), which implies

(3.2) 2JA = JA+ (JA)> −
[
(JA)> − JA

]
= 2(γJ − P )− 2Q,

where 2Q = (JA)> − JA is skew-symmetric. Since J2 = I, this leads to

A = γ I − J(P +Q),

where P ∈ Sn+ and Q ∈ An. As Sn+ ⊂ EL ⊂ E∂(L), this proves that

(3.3) Z(L) ⊆ R I − J(Sn+ +An) ⊆ R I − J(EL +An) ⊆ R I − J(E∂(L) +An).

Now, to see the reverse inclusions, suppose A = γ I − J(P + Q) for some γ ∈ R, P ∈ E∂(L), and Q skew-

symmetric. Let 0 6= x, y ∈ L with 〈x, y〉 = 0. By (2.1), x and y are in ∂(L), and Jy is a positive multiple of

x. Hence, 〈Px, Jy〉 ≥ 0 as P ∈ E∂(L) and 〈Qx, Jy〉 = 0 as Q is skew-symmetric. Thus,

〈Ax, y〉 = γ〈x, y〉 − 〈JPx, y〉+ 〈JQx, y〉 = −〈Px, Jy〉+ 〈Qx, Jy〉 ≤ 0.

This shows that A ∈ Z(L) and so, inclusions in (3.3) turn into equalities. Thus, we have (3.1).

Remarks. From the above theorem, we have

R I − J(Sn+ +An) = R I − J(EL +An) = R I − J(E∂(L) +An).

Multiplying throughout by J and noting −An = An, we get the equality of sets

(R J − Sn+) +An = (R J − EL) +An = (R J − E∂(L)) +An,

where each set is a sum of An and a subset of Sn. Since Rn×n = Sn + An is an (orthogonal) direct sum

decomposition, we see that

(3.4) R J − Sn+ = R J − EL = R J − E∂(L).

These equalities can also be established via different arguments. A result of Loewy and Schneider [14] asserts

that A symmetric matrix X is copositive on L if and only if there exists µ ≥ 0 such that X − µJ ∈ Sn+.

(This is essentially a consequence of the so-called S-Lemma [15]: If A and B are two symmetric matrices

with 〈Ax0, x0〉 > 0 for some x0 and 〈Ax, x〉 ≥ 0⇒ 〈Bx, x〉 ≥ 0, then there exists µ ≥ 0 such that B − µA is

positive semidefinite.) This result gives the equality

EL = Sn+ + R+ J,

and consequently, R J − Sn+ = R J − EL. The equality

E∂(L) = Sn+ + R J

can be seen via an application of Finsler’ theorem [15] that says that if A and B are two symmetric matrices

with [x 6= 0, 〈Ax, x〉 = 0] ⇒ 〈Bx, x〉 > 0, then there exists µ ∈ R such that B + µA is positive semidefinite.

(For M ∈ E∂(L) and vectors u, v ∈ L◦, one has 〈Jx, x〉 = 0 ⇒ 〈Mkx, x〉 > 0, where k is a natural number

and Mk := M + 1
kuv

>. When Mk + µk J is positive semidefinite for all k, it follows that the sequence µk is

bounded. One can then use a limiting argument.) From this equality, one gets R J − Sn+ = R J − E∂(L).

Our next result deals with the dual of Z(L).
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Theorem 3.2. Let C denote one of Rn, L, or ∂(L). Then,

Z(L)∗ =
{
B ∈ Rn×n : 〈B, I〉 = 0,−JB ∈ KC

}
.

In particular, (1.5) holds.

Proof. We fix C. From (3.1), we see that B ∈ Z(L)∗ if and only if

0 ≤ 〈B, γ I − J(P +Q)〉

for all γ real, P in EC , and Q in An. Clearly, this holds if and only if

〈B, I〉 = 0, 〈−JB, P 〉 ≥ 0, and 〈−JB,Q〉 = 0

for all γ, P , and Q specified above. Now, with the observation that a (real) matrix is orthogonal to all

skew-symmetric matrices in Rn×n if and only if it is symmetric, this further simplifies to

〈B, I〉 = 0 and − JB ∈ E∗C ,

where E∗C is the dual of EC computed in Sn. Since KC = E∗C in Sn, we see that B ∈ Z(L)∗ if and only if

〈B, I〉 = 0 and − JB ∈ KC . This completes the proof.

We remark that (1.5) can be deduced directly from (3.4) by taking the duals in Sn.

In our final result, we describe the interior and boundary of Z(L). First, we recall some definitions from

[9]. Let

Ω := {(x, y) ∈ L × L : ||x|| = 1 = ||y|| and 〈x, y〉 = 0} .

It is easy to see that Ω is compact and, from (2.1),

(3.5) Ω = {(x, Jx) : x ∈ ∂(L), ||x|| = 1} .

For any A ∈ Rn×n, let

γ(A) := max {〈Ax, y〉 : (x, y) ∈ Ω} .

Note that A ∈ Z(L) if and only if γ(A) ≤ 0. We say that A ∈ Rn×n is a strict-Z-transformation on L if

[0 6= x, y ∈ L, 〈x, y〉 = 0] ⇒ 〈Ax, y〉 < 0.

The set of all such transformations is denoted by str(Z(L)). For A ∈ Rn×n, the following statements are

shown in [9], Theorem 3.1:

γ(A) < 0⇐⇒ A ∈ Z(L)◦ ⇐⇒ A ∈ str(Z(L))

and

γ(A) = 0⇐⇒ A ∈ ∂(Z(L)).

Recall that EL consists of all symmetric matrices that are copositive on L. We say that a symmetric

matrix P is strictly copositive on L if 0 6= x ∈ L ⇒ 〈Px, x〉 > 0; the set of all such matrices is denoted by

str(EL). Similarly, one defines str(E∂(L)).
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Corollary 3.3. The following statements hold:

Z(L)◦ = str(Z(L)) = R I − J
(
str(E∂(L)) +An

)
and

∂(Z(L)) = R I − J
(
∂∗(E∂(L)) +An

)
,

where ∂∗(E∂(L)) denotes the boundary of E∂(L) in Sn.

Proof. We first deal with the interior of Z(L). The equality{
A ∈ Rn×n : γ(A) < 0

}
= Z(L)◦ = str(Z(L))

has already been observed in [9], Theorem 3.1. To see the first assertion, we show that γ(A) < 0 if and only

if A = θ I − J(P + Q) for some θ ∈ R, P (symmetric) strictly copositive on ∂(L), and Q skew-symmetric.

Suppose γ(A) < 0. Then, for any θ ∈ R,

max
{〈

(A− θ I)x, y
〉

: (x, y) ∈ Ω
}
< 0,

which, from (3.5) becomes

min
{〈
J(θ I −A)x, x

〉
: x ∈ ∂(L), ||x|| = 1

}
> 0.

Now, fix θ and let J(θ I − A) = P + Q, where P ∈ Sn and Q ∈ An. As 〈Qx, x〉 = 0 for any x, the above

inequality implies that min
{〈
Px, x

〉
: x ∈ ∂(L), ||x|| = 1

}
> 0. This proves that P is strictly copositive on

∂(L). Rewriting J(θ I −A) = P +Q, we see that A = θ I − J(P +Q) which is of the required form.

To see the converse, suppose A = θ I − J(P + Q), where θ ∈ R, P (symmetric) strictly copositive on

∂(L), and Q skew-symmetric. Using (3.5), we can easily verify that γ(A) < 0. Thus, A ∈ str(Z(L)).

An argument similar to the above will show that γ(A) = 0 if and only if A = θ I − J(P + Q) for some

θ ∈ R, P ∈ ∂∗(E∂(L)), and Q skew-symmetric. This gives the statement regarding the boundary of Z(L).

We end the paper with a remark dealing with conic linear programs. Motivated by the result of Burer

(mentioned in the introduction), we consider a conic linear program on a completely positive cone KC (where

C is a closed cone):

min {〈c, x〉 : Ax = b, x ∈ KC} .

While such a problem is generally hard to solve, we ask: (When) can we replace KC by Sn+, and thus, reduce

the above problem to the semidefinite programming problem min
{
〈c, x〉 : Ax = b, x ∈ Sn+

}
? Just replacing

KC by Sn+ without handling the constraint Ax = b is not viable as KC = Sn+ if and only if C ∪ −C = Rn

(which fails to hold when n > 1 and C is pointed), see [11]. While we do not answer this broad question, we

point out, as a consequence of (1.5), that for any C ∈ Sn,

min {〈C,X〉 : 〈X, J〉 = 0, X ∈ KL} = min
{
〈C,X〉 : 〈X, J〉 = 0, X ∈ Sn+

}
.
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