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α-ADJACENCY: A GENERALIZATION OF ADJACENCY MATRICES∗

M. HUDELSON† , J. MCDONALD† , AND E. WENDLER†

Abstract. B. Shader and W. So introduced the idea of the skew adjacency matrix. Their idea was to give an orientation

δ to a simple undirected graph G from which a skew adjacency matrix S(Gδ) is created. The α-adjacency matrix extends

this idea to an arbitrary field F. To study the underlying undirected graph, the average α-characteristic polynomial can be

created by averaging the characteristic polynomials over all the possible orientations. In particular, a Harary-Sachs theorem

for the average α-characteristic polynomial is derived and used to determine a few features of the graph from the average

α-characteristic polynomial.
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1. Introduction. Let G be a simple graph with a vertex set V = {1, 2, . . . , n}. The (standard)

adjacency matrix A is defined by aij = 1 if i is adjacent to j, (i.e., if ij is an edge) and aij = 0 if i is

not adjacent to j. The (standard) spectrum of a graph is the spectrum of its adjacency matrix. While the

adjacency matrix does depend on the labeling of the vertices, the spectrum does not.

As the spectrum of a graph is uniquely determined by the characteristic polynomial of its adjacency ma-

trix, we will often only focus on the characteristic polynomial. A useful result in calculating the characteristic

polynomial is the Harary-Sachs Theorem.

We let Uk denote the collection of edges and cycles no two on which share a vertex that cover exactly k

vertices. We will say
−→
U is a routing of U ∈ Uk and denote this

−→
U ∼ U if

−→
U can be obtained by directing

the cycles in U .

Theorem 1.1 ([2], Theorem 1.3). The characteristic polynomial for (the standard adjacency matrix) of

a undirected graph G is given by

(1.1) p(x) = xn + a1x
n−1 + · · ·+ an−1x+ an

in which the coefficients are

ak =
∑
−→
U∈
−→
U k

(−1)#
−→
U =

∑
U∈Uk

(−1)#U2c(U),(1.2)

where #U denotes the number of connected components in U and c(U) denotes the number of cycles (not

including edges) in U .

This can be generalized to a weighted directed graph, in which the ij entry in the adjacency matrix is

the weight of the arc from i to j or 0 if there is no arc. The Harary-Sachs theorem can be extended in this

case.
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Theorem 1.2 ([2], Theorem 1.3 with equation (1.35)’). The characteristic polynomial of a weighted

digraph D(A) is given by

(1.3) p(x) = xn + a1x
n−1 + · · ·+ an−1x+ an

in which the coefficients are given by

(1.4) ak =
∑
−→
U∈
−→
U k

(−1)#
−→
U Π−→

U
(A),

where
−→
Uk is the collection of all sets of vertex disjoint dicycles on exactly k vertices, #(

−→
U ) is the number of

cycles in
−→
U and Π−→

U
(A) is the product of the weights of the edges in U .

2. α-Characteristic polynomials and spectra. The notion of skew spectra was introduced by B.

Shader and W. So in [5] and was used to distinguish co-spectral graphs in [1]. The idea is to introduce an

orientation δ : E → {−1, 1} to a simple undirected graph G = (V,E). We replace each edge with two directed

arcs, one with weight 1 and the other with weight −1, and we denote the new digraph by Gδ = (V,Eδ). The

skew adjacency matrix S(Gδ) is a {−1, 0, 1} matrix which is the weighted adjacency matrix of Gδ.

The weight Π−→
U

of a routing
−→
U in a skew symmetric graph could be either±1 depending on the orientation

δ. Thus, for a given graph G, there may be multiple skew spectra depending on the orientation. In [1] it is

shown that the skew adjacency matrices S of a graph G are all cospectral if and only if G contains no even

cycles.

Similar to skew adjacency, we will use an orientation δ : E → {−1, 1} to define the α-adjacency matrix

Hα(Gδ) = [hij ]. Let F represent an arbitrary field, let α be an indeterminate or a non-zero field element,

and define the α-adjacency matrix by

hij =

{
αδ(ij) if (ij) ∈ E,
0 otherwise.

We will often use a directed graph to denote the orientation of an oriented graph by only showing the

edges ij such that δ(ij) = 1. Figure 1 shows the construction of an α-oriented graph from a simple graph

G. Figure 2 shows the simplified drawing of the oriented graph and the α-adjacency matrix of the graph in

Figure 1.

1 2 3

456

1 2 3

456

α α

α

αα

α α

α−1 α−1

α−1

α−1α−1

α−1 α−1

Figure 1. Example of an α-orientation of G.
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1 2 3

456

Hα(Gδ) =



0 α 0 0 0 α

α−1 0 α 0 α−1 0

0 α−1 0 α 0 0

0 0 α−1 0 α 0

0 α 0 α−1 0 α

α−1 0 0 0 α−1 0


Figure 2. Simplified drawing of the orientation in Figure 1 and the α-δ-adjacency matrix.

Often it is convenient to use the field of complex numbers and let α ∈ C be such that |α| = 1. Notice

that H1(Gδ) = A(G) and so when α = 1 we recover the standard adjacency matrix. Note that this is

independent of the choice of the orientation δ. We can also recover the skew-adjacency matrix Sδ by setting

α = i and scaling the resulting matrix by −i, that is, −iHi(G
δ) = S(Gδ). Also notice that if |α| = 1, then

α−1 = ᾱ, and thus, these α-adjacency matrices are Hermitian matrices.

For a routing,
−→
U , let δ(

−→
U ) =

∑
ij∈
−→
U

δ(ij). Then we have that

(2.5) Π−→
U

(Hδ
α) = Π

(ij)∈
−→
U
αδ(ij) = αδ(

−→
U ).

This is different than is typically used for skew spectra where a product is used instead of a sum.

Given a cycle C in G, there are two routings of C,
−→
C and

←−
C . Note that δ(

−→
C ) = −δ(

←−
C ). We will use

the notation δ(C) = |δ(
−→
C )|.

Our first result is to extend the Harary-Sachs theorem for α-adjacency matrices.

Theorem 2.1. Given a graph G and an orientation δ on G, the characteristic polynomial of Hδ
α(G) is

given by

(2.6) pH(x) = xn + h1x
n−1 + · · ·+ hn−1x+ hn

in which the coefficients are given by

hk =
∑
−→
U∈
−→
U k

(−1)#
−→
U

(
αδ(
−→
U ) + α−δ(

−→
U )

2

)
(2.7)

=
∑
U∈Uk

(−1)#U
∏
C∈U
|C|≥3

(αδ(C) + α−δ(C)),(2.8)

where #U is the number of components in U .

Proof. From (1.4) and (2.5) we obtain

hk =
∑
−→
U∈
−→
U k

(−1)#
−→
U αδ(

−→
U ).
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Further notice that
−→
U ∈

−→
U k if and only if

←−
U ∈

−→
U k, where

←−
U is obtained by reversing the directions of all

the cycles in
−→
U . Also note that #

−→
U = #

←−
U . Thus,

∑
−→
U∈
−→
U k

(−1)#
−→
U αδ(

−→
U ) =

1

2

∑
−→
U∈
−→
U k

(
(−1)#

−→
U αδ(

−→
U ) + (−1)#

←−
U αδ(

←−
U )
)

=
1

2

∑
−→
U∈
−→
U k

(−1)#
−→
U
(
αδ(
−→
U ) + αδ(

←−
U )
)

=
∑
−→
U∈
−→
U k

(−1)#
−→
U

(
αδ(
−→
U ) + α−δ(

−→
U )

2

)
.

This shows (2.7). Next, we note that to sum over all
−→
U ∈

−→
U k we can first fix a U ∈ Uk and sum over all

routings of U and then sum over all U ∈ Uk. Thus,

hk =
∑
−→
U∈
−→
U k

(−1)#
−→
U αδ(

−→
U )(2.9)

=
∑
U∈Uk

(−1)#U
∑
−→
U∼U

αδ(
−→
U ).(2.10)

Focusing on a fixed U ∈ Uk, let U = C1 ∪ C2 · · · ∪ Cp, where C1, C2, . . . , Cp are the connected components

of U . Note
−→
U ∼ U if and only if

−→
U =

−→
C1 ∪

−→
C2 · · · ∪

−→
Cp, where

−→
Ci ∼ Ci. Further note that δ(

−→
U ) =

p∑
i=1

δ(
−→
Ci).

Thus,

∑
−→
U∼U

αδ(
−→
U ) =

∑
−→
C1∼C1

∑
−→
C2∼C2

· · ·
∑
−→
Cp∼Cp

α

p∑
i=1

δ(
−→
Ci)

=
∑
−→
C1∼C1

∑
−→
C2∼C2

· · ·
∑
−→
Cp∼Cp

p∏
i=1

αδ(
−→
Ci)

=
∑
−→
C1∼C1

αδ(
−→
C1)

∑
−→
C2∼C2

αδ(
−→
C2) · · ·

∑
−→
Cp∼Cp

αδ(
−→
Cp)

=

p∏
i=1

∑
−→
Ci∼Ci

αδ(
−→
Ci).

If Ci is an edge, then there is only one
−→
Ci ∼ Ci and δ(Ci) = 0, hence

∑
−→
Ci∼Ci

αδ(
−→
Ci) = 1.

If Ci is a cycle of length 3 or more, then there exist two routings of Ci. We will denote these routings as−→
Ci and

←−
Ci. Since δ(

−→
Ci) = −δ(

←−
Ci), we get that

∑
−→
Ci∼Ci

αδ(
−→
Ci) = αδ(

−→
Ci) + αδ(

←−
Ci) = αδ(Ci) + α−δ(Ci). It follows
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that

∑
−→
U∼U

αδ(
−→
U ) =

p∏
i=1

∑
−→
Ci∼Ci

αδ(
−→
Ci)

=

p∏
i=1
|Ci|≥3

(αδ(Ci) + α−δ(Ci))

=
∏
C∈U
|C|≥3

(αδ(C) + α−δ(C)).

Substituting this into (2.10), we have the desired result.

Remark 2.2. In the special case with F = C and |α| = 1, we have that αδ(C) + α−δ(C) = 2 Re(αδ(C)).

Lemma 2.3. The α-spectrum of a tree is independent of both α and of the orientation δ.

Proof. Let G be a tree. Note that each U ∈ Uk must be a matching. That is, U only contains edges,

and thus, there are no cycles C ∈ U . Hence,

hk =
∑
U∈Uk

(−1)#U ,

which is independent of both δ and α.

Proposition 2.4. Let F be a field of characteristic 0 and G be a graph with at least one odd cycle. For

any orientation δ of G, the α-δ-characteristic polynomial depends on α.

Proof. Let s be the length of the shortest odd cycle in G. Since the only routes in Us must be cycles of

length s, the coefficient hs in the α-characteristic polynomial is given by

hs =
∑
U∈Us

−(αδ(U) + α−δ(U)).

Further, δ(U) must be an odd number. Thus, if α = 1, we have hs =
∑
U∈Us

−2 < 0, and if α = −1, then

hs =
∑
U∈Us

2 > 0. Thus, hs depends on α for any orientation δ.

Example 2.5. Notice that over characteristic p, if there are exactly p cycles all of the same length then

there may be an orientation δ such that the α-δ-characteristic polynomial does not depend on α. A concrete

example of this is given in Figure 3.

Given a graph G and an orientation δ, we say a route U ∈ Uk is contributing if there exists a routing−→
U ∼ U such that δ(

−→
U ) = k.

Lemma 2.6. If U ∈ Uk is contributing, then U does not have a component consisting of a single edge.

Proof. Suppose U ∈ Uk contains a component consisting of a single edge e and
−→
U ∼ U . Further let−→

U = e ∪
−→
U 0. Then δ(

−→
U ) = δ(e) + δ(

−→
U 0) = δ(

−→
U 0) ≤ k − 2.

Theorem 2.7. Given a graph G, there exists an orientation δ such that αk + α−k appears in the coef-

ficient hk in the α-characteristic polynomial if and only if there exists a route U ∈ Uk such that U does not

contain a component consisting of a single edge.
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23
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7

Figure 3. The characteristic polynomial in F3 is x7 + 2x.

Proof. Suppose that αk + α−k appears in the coefficient hk in the α-characteristic polynomial. Then

there must be a contributing route U ∈ Uk, hence U must not contain a component consisting of a single

edge by Lemma 2.6.

To show that if there exists a route U ∈ Uk such that U contains no edges then there exists an orientation

δ such that αk+α−k appears in hk, we will construct an orientation δ such that there is only one contributing

cycle in Uk. Choose U ∈ Uk that contains no edges and label the cycles C1, C2, . . . , Cp. Let
−→
U =

−→
C1 ∪

−→
C2 ∪

· · ·∪
−→
Cp be a routing of U . Then label the vertices in

−→
C1 as 1, 2, . . . , |C1|, the vertices in

−→
C2 as |C1|+1, |C1|+

2, . . . , |C1|+ |C2|, and so on until we label the vertices in
−→
Cp as

∑p−1
i=1 |Ci|+ 1,

∑p−1
i=1 |Ci|+ 2, . . . ,

∑p
i=1 |Ci|.

Let δ be defined by

δ(ij) =


−1 if i > j except if j =

∑s
k=1 |Ck|+ 1 and i =

∑s+1
k=1 |Ck| for some s ∈ {0, 1, . . . , p− 1},

−1 if i =
∑s
k=1 |Ck|+ 1 and j =

∑s+1
k=1 |Ck| for some s ∈ {0, 1, . . . , p− 1},

1 otherwise.

Then δ(
−→
U ) = k and δ(

←−
U ) = −k but for any other routings

−→
U1 ∈ Uk, |δ(

−→
U1)| < k, and thus, cancellation does

not occur.

Lemma 2.8. Let F be a field and α be an indeterminate. If the α-spectrum of a graph G is independent

of α for all orientations δ, then G is acyclic.

Proof. Let s be the length of the shortest cycle. Then Us contains a cycle, and hence, by Theorem 2.7,

there exists an orientation such that αs + α−s appears in hs.

Theorem 2.9. Let F be a field and α be an indeterminate. Given a graph G, the following statements

are equivalent:

(a) G is acyclic;

(b) G has only one α-spectrum, which is independent of both α and the orientation δ.

Proof. If G contains no cycles, then each connected component is a tree, and thus, by Lemma 2.3, the

α-spectrum of G is independent of α. The converse is Lemma 2.8.

Example 2.10. If we require α to be a non-zero element in F then Theorem 2.9 no longer holds. For

example, consider the finite field Z3 and let G be a 4 cycle. In general, for a 4 cycle, there are 3 orientations

that give rise to different α-δ-characteristic polynomials. However, if we require α to be a non-zero element in

Z3, then α must be 1 or 2. In either of these cases, α2 = 1, and hence, α4 = 1. Thus, all three characteristic

polynomials reduce to P (x) = x4 − 4x2.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 35, pp. 365-375, August 2019.

371 α-Adjacency: A Generalization of Adjacency Matrices

1 2

34

P1(x) = x4 − 4x2 + 2− α4 − α−4

1 2

34

P2(x) = x4 − 4x2 + 2− α2 − α−2

1 2

34

P3(x) = x4 − 4x2

Figure 4. Characteristic polynomials for a 4 cycle.

Proposition 2.11. Given a graph G, there is an orientation δ such that the α-δ-spectrum is independent

of α if and only if G does not contain any odd cycles.

Proof. If G contains an odd cycle, then by Lemma 2.4, the α-spectrum of G depends on α for all

orientations δ.

If G does not contain any odd cycles, then G is bipartite. Let U1, U2 be the parts of G. Let δ(ij) = 1 if

i ∈ U1, j ∈ U2. Note for any dicycle
−→
C in

−→
G , there must be the same number of edges from U1 to U2 as from

U2 to U1, and hence, δ(C) = 0. Thus, by equation (2.8), the coefficients in the characteristic polynomial are

independent of α, and hence, the α-spectrum is independent of α.

Remark 2.12. There are α-cospectral graphs. In fact, A. Schwenk shows that almost all trees have a

cospectral mate which is also a tree (under the standard adjacency matrix) [4]. Further, by Theorem 2.9,

trees that are cospectral under the standard adjacency matrix are also α-cospectral.

1

2

3

4 5

6

7 8

910

11

12

1

2

3

4 5

6

7 8

910

11

12

Figure 5. An example of cospectral trees.

Similar to [4], we can extend the cospectral tree in Figure 5 by attaching any graph G to vertex 12 to

produce a pair of α-cospectral graphs.
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3. The average α-characteristic polynomial. In this section, we will consider averaging the α-

δ-characteristic polynomials over all the possible orientations of a graph. It is often convenient to use

α̂ = 1
2 (α + α−1). Again if F = C and |α| = 1, then α̂ = Re(α). We will begin by looking at the average

α-characteristic for a cycle.

Theorem 3.1. The average α-characteristic polynomial for a cycle of length n is given by

Cαn (x) = Cn(x) + 2− 2α̂n,

where Cn(x) is the standard characteristic polynomial for a cycle of length n and α̂ = 1
2 (α+ α−1).

Proof. Using Theorem 2.1, the only term that does not come from a collection of disjoint edges is the

contribution from the entire cycle. The contribution in the α-characteristic polynomial is the same as in the

standard characteristic polynomial for edges. Thus, the only difference between the average α-characteristic

polynomial and the standard characteristic polynomial comes from the contribution of the entire cycle. That

is

Cαn (x) = Cn(x) + d,

where d is the difference between the contribution of the entire cycle in the standard characteristic polynomial

and in the α-characteristic polynomial.

In the standard characteristic polynomial, the entire cycle contributes a −2 to the characteristic poly-

nomial.

For the contribution in the α-characteristic polynomial, let us fix a forward direction (e.g. clockwise).

Notice that for an orientation, it only matters the number of edges oriented in the forward direction. If

the cycle has r edges oriented in the forward direction, then the contribution for that orientation will be

−α2r−n − α−(2r−n). For a given r there are
(
n
r

)
orientations with r edges oriented in the forward direction.

Thus, the average contribution from the entire cycle will be

− 1

2n

n∑
r=0

(
n

r

)
(α2r−n + α−(2r−n)) = − 1

2n

n∑
r=0

(
n

r

)
α2r−n − 1

2n

n∑
r=0

(
n

r

)
α−(2r−n)

= − 2

2n

n∑
r=0

(
n

r

)
α2r−n

= −2α−n

2n

n∑
r=0

(
n

r

)
(α2)r

= −2α−n

2n
(1 + α2)n

= −2(
α−1 + α

2
)n

= −2α̂n.

The second line follows from changing the dummy variable r to n− r in the second sum and using the fact

that
(
n
n−r
)

=
(
n
r

)
. The fourth line follows from the binomial formula. All other lines are basic algebraic

manipulation.

Using this we can now get a Harary-Sachs result for the average α-characteristic polynomial.



Electronic Journal of Linear Algebra, ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 35, pp. 365-375, August 2019.

373 α-Adjacency: A Generalization of Adjacency Matrices

Theorem 3.2. Let α̂ = 1
2 (α+ α−1) and G be a graph. The average α-characteristic polynomial of G is

given by

(3.11) P (x) = xn + havg1 xn−1 + · · ·+ havgn−1x+ havgn

in which the coefficients are given by

(3.12) havgk =
∑
U∈Uk

(−1)#(U)
∏
Ci∈U
|Ci|≥3

2α̂|Ci|,

where #(U) is the number of components in U .

Proof. Averaging (2.8) over all orientations, we have that

havgk =
1

2|E|

∑
δ

∑
U∈Uk

(−1)#U
∏
C∈U
|C|≥3

(αδ(C) + α−δ(C)),

where |E| is the number of edges in G. As these sums are finite we can switch the order, thus

(3.13) havgk =
1

2|E|

∑
U∈Uk

(−1)#U
∑
δ

∏
C∈U
|C|≥3

(αδ(C) + α−δ(C)).

For a fixed U ∈ Uk, the orientation of edges not in U does not affect the inner sum. To simplify further,

we fix a U = {C1, C2, . . . , Cp, e1, e2, . . . , es}, where each Ci is a cycle (of length at least 3) and each ei is

a pairing of two vertices. Such a U contains k − s edges, thus there are |E| − k + s edges which do not

contribute. So for such a U ,

∑
δ

∏
C∈U
|C|≥3

(αδ(C) + α−δ(C)) = 2|E|−k+s
∑
δ|U

p∏
i=1

(αδ|U (Ci) + α−δ|U (Ci)),

where δ|U represents δ restricted to U . Then we can break up the sum over all orientations of U into sums

over its components. Thus,∑
δ|U

p∏
i=1

(
αδ|U (Ci) + α−δ|U (Ci)

)
=
∑
δ|e1

∑
δ|e2

· · ·
∑
δ|es

∑
δ|C1

∑
δ|C2

· · ·
∑
δ|Cp

∏
Ci∈U

(αδ|U (Ci) + α−δ|U (Ci))

= 2s
∏
Ci∈U

∑
δ|Ci

(αδ|Ci
(Ci) + α−δ|Ci

(Ci))

= 2k−s
∏
Ci∈U

∑
δ|Ci

1

2|Ci|
(αδ|Ci

(Ci) + α−δ|Ci
(Ci)).

The innermost sum is the exact contribution of the cycle ci which is 2α̂|Ci|. Thus,∑
δ

∏
C∈U
|C|≥3

(αδ(C) + α−δ(C)) = 2|E|
∏
Ci∈U

2α̂|Ci|.

Substituting into equation (3.13), we have

havgk =
∑
U∈Uk

(−1)#U
∏
C∈U
|C|≥3

2α̂|C|.
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Theorem 3.2 can be used to establish the following corollaries.

Corollary 3.3. The average α-characteristic polynomial uniquely determines the number of cycles of

length 3, 4 and 5.

Proof. By Theorem 3.2, the coefficients of the average α-characteristic polynomials are polynomials in

α̂. Let

(3.14) havgk =

k∑
i=0

h
(k)
i α̂i.

The only cycles that contribute to h
(3)
3 are cycles of length 3, each which contributes a factor of −2, thus the

number of cycles of length 3 in G is given by − 1
2h

(3)
3 . Similarly, the number of cycles of length 4 is − 1

2h
(4)
4

and the number of cycles of length 5 is − 1
2h

(5)
5 .

Example 3.4. Notice that the coefficient h
(k)
k in equation (3.14) does not determine the number of

cycles of length k ≥ 6. For example, let G = C3 ∪C3 ∪C6 ∪C6 be the collection of two disjoint 3 cycles with

two disjoint 6 cycles. Notice that each of the the 6 cycles contribute a −2 to h
(6)
6 and the collection of the

two 3 cycles contribute a +4. Thus, h
(6)
6 = 0 even though G contains two 6 cycles.

While there is no easy way to determine the number of cycles of length greater than 5, it is easy to

determine the parity of that number.

Corollary 3.5. Let ck be the number of cycles of length k ≥ 3 in a graph G and the coefficients in the

average α-characteristic polynomial be given by havgk =
k∑
i=0

h
(k)
i α̂i. Then

ck ≡
h
(k)
k

2
mod 2.

Proof. Notice that for U ∈ Uk to contribute to h
(k)
k , there are not any pairings of vertices in U . Further if

U contains s cycles, the contribution of U to h
(k)
k is (−2)s. Hence,

h
(k)
k

2 mod 2 will only have contributions

from cycles of length exactly k.

Corollary 3.6. The average α-characteristic polynomial uniquely determines the number of matchings

on k vertices.

Proof. Again, let

havgk =

k∑
i=0

h
(k)
i α̂i.

The matching polynomial

MG(x) =
∑
k≥0

(−1)kmkx
n−2k

is given by

MG(x) =
∑
k≥0

h
(k)
0 xn−k,

where mk is the number of matchings on k vertices. This can be obtained by setting α̂ = 0 in the average

α characteristic polynomial.
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