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ON THE BLOCK STRUCTURE AND FROBENIUS NORMAL FORM

OF POWERS OF MATRICES∗
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Abstract. The Frobenius normal form of a matrix is an important tool in analyzing its properties. When a matrix is

powered up, the Frobenius normal form of the original matrix and that of its powers need not be the same. In this article,

conditions on a matrix A and the power q are provided so that for any invertible matrix S, if S−1AqS is block upper triangular,

then so is S−1AS when partitioned conformably. The result is established for general matrices over any field. It is also observed

that the contributions of the index of cyclicity to the spectral properties of a matrix hold over any field. The article concludes by

applying the block upper triangular powers result to the cone Frobenius normal form of powers of a eventually cone nonnegative

matrix.
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1. Introduction. Many interesting properties of matrices, particularly nonnegative matrices, can be

gleaned from looking at their irreducible classes and Frobenius normal form. In particular, the Perron-

Frobenius theorem identifies several spectral properties tied to the combinatorial structure of a nonnegative

irreducible matrix. The study of spectral properties of reducible nonnegative matrices is summarized by

Schneider in [17]. Properties of the Jordan form of the entire peripheral spectrum are presented in [12].

Extending ideas from Perron-Fronbenius theory to matrices whose powers become and remain nonneg-

ative (eventually nonnegative matrices) was first discussed by Friedland in [7]. In [23] and [22], Zaslavsky

develops properties of irreducible eventually nonnegative matrices with Tam and then expands on the re-

ducible case with McDonald. In Section 3 of this paper, we generalize the results in [5] by showing that for

an arbitrary matrix A over an arbitrary field F, if A is nonsingular or all the Jordan blocks for zero are 1×1,

then whenever q is chosen so that for all distinct eigenvalues µ and λ it follows that λq 6= µq, then for any

invertible matrix S, if S−1AqS is block upper triangular, so is S−1AS when partitioned conformably, and

the transitive closure of the (generalized) reduced graphs of S−1AqS and S−1AS are equal. We also observe

that the influence of the index of cyclicity on the spectrum of matrices is true over any field.

Additional work has been done on extending ideas from nonnegative matrix theory to more general

contexts. See for example [6], [8], [9], [10], [11], [13], [14], [15], [16], [18], [19], [20], and [21]. In this paper,

we consider cone nonnegative matrices (see Chapter 1 in [4]), taking a matrix theoretic approach similar to

Barker [1], [2], [3]. In Section 4 of this paper, we provide a nonpolyhedral cone counter-example to Theorem

7 in [2], and use our results from Section 3 to expand upon the combinatorial structure of eventually cone

nonnegative matrices.
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2. Definitions and notation. Throughout Section 3, we will work over an arbitrary field F with

algebraic closure E. For Section 4, we will restrict our fields to R with algebraic closure C. We begin with

some standard definitions and notation that are appropriate for working over an arbitrary field.

Let Mn(F) represent the set of n× n matrices with entries in F.

We will write 〈n〉 for {1, . . . , n}.

The multiset

σ(A) = {λ | λ is an eigenvalue of A },

where each eigenvalue is listed the number of times it occurs as a root of the characteristic polynomial, is

referred to as the spectrum of A. An eigenvalue λ ∈ σ(A) is called simple if its algebraic multiplicity is one

and we will use the indexλ(A) to denote the degree of λ as a root of the minimal polynomial of A. The

indexλ(A) can also be thought of as the size of the largest Jordan block corresponding to A with eigenvalue

λ.

Let α, β ⊆ 〈n〉. We will write Aαβ to represent the submatrix of A whose rows are indexed from α and

whose columns are indexed from β. If α = (α1, α2, . . . , αk) is an ordered partition of 〈n〉, we write

Aα =


Aα1α1 Aα1α2 · · · Aα1αk

Aα2α1
Aα2α2

· · · Aα2αk

...
...

...

Aαkα1 Aαkα2 · · · Aαkαk

 .
We say Aα is block upper triangular if Aαiαj

= 0 whenever i > j. A matrix A is said to be reducible if there

is a nontrivial partition α of 〈n〉 so that Aα is block upper triangular. We say it is irreducible otherwise.

If Aα is block upper triangular and each Aαiαi is irreducible, we say that Aα is in Frobenius normal form.

For any matrix A ∈ Mn(R), it is well known that there is an ordered partition α of 〈n〉 so that Aα is in

Frobenius normal form. The same proof works over any field.

We write Jk(λ) to represent a k× k upper triangular matrix whose diagonal elements are λ, whose first

superdiagonal elements are 1, and all other elements are zero. We will refer to such a matrix as a Jordan

block with eigenvalue λ.

A nonzero vector x is a generalized eigenvector of A corresponding to the eigenvalue λ provided (λI −
A)mx = 0 for some positive integer m. Note that when A ∈ Mn(F), we may need to consider generalized

eigenvectors in En. The generalized eigenspace of the matrix A corresponding to the eigenvalue λ, denoted

Eλ(A), is the nullspace of (A − λI)r, where r = indexλ(A). A Jordan chain corresponding to Eλ(A) is

a set of nonzero vectors {x, (λI − A)x, . . . , (λI − A)r−1x}, where (λI − A)rx = 0. A Jordan basis for the

generalized eigenspace of A is a basis of Eλ(A) consisting of the union of Jordan chains.

Let G = (V,E) be a graph. We say p = (j1, j2), . . . , (jk−1, jk) is a path in G provided each ordered pair

(ji, ji+1) ∈ E. If in addition, jk = j1, we say the path is a cycle. The index of cyclicity of a graph is the great-

est common divisor of the lengths of the cycles in G. We say a vertex l has access to a vertex j if there is a path

from l to j in G. We define the transitive closure of G by G = (V,E) where E = {(j, l)|j has access to l in G}.
If l has access to j and j has access to l, we say j and l communicate. The communication relation defines

an equivalence relation on G that partitions the vertices of G into irreducible classes.
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For A ∈Mn(F), we define D(A) = (V,E) to be the digraph of A, where V = 〈n〉 and (l, j) ∈ E whenever

alj 6= 0. The matrix A is irreducible precisely when D(A) has exactly one irreducible class. The index of

cyclicity of A is defined to be the index of cyclicity of D(A). We define the notion of the reduced graph of

A to include partitions α = (α1, . . . , αk) of 〈n〉 where Aα is upper triangular, but the diagonal blocks Aαiαi

need not be irreducible as is the case in earlier papers. Thus, Rα(A) = (Vα, Eα), where Vα = {α1, . . . , αk}
and Eα = {(αj , αl)| there is an edge in D(A) from a vertex in αj to a vertex in αl}.

The following definitions require the field to have additional properties such as an ordering, an absolute

value, and a topology, hence, we will define these properties over R with algebraic closure C.

For A ∈ Mn(R), we call ρ(A) = maxλ∈σ(A) |λ|, the spectral radius of A, and the multiset π(A) = {λ ∈
σ(A)| |λ| = ρ(A)}, the peripheral spectrum of A.

Let K be a nonempty subset of Rn. The set K is a cone provided for every x ∈ K and for every α > 0,

the element αx ∈ K. A cone K is said to be convex proviced αx + βy ∈ K for all x, y ∈ K and for all

nonnegative α and β in R. For S ⊂ Rn, we denote the convex cone generated by S as SG. Note that SG

consists of all finite nonnegative linear combinations of elements from S. If K ∩ (−K) = {0}, then the cone

K is said to be pointed. A cone K is said to solid if its topological interior is nonempty. A topologically

closed, solid, pointed, convex cone is referred to as a proper cone.

Let K and F ⊆ K be pointed closed cones. Then F is a face of K provided x ∈ F , y ∈ K, and x− y ∈ K
implies y ∈ F . A face F of K is a trivial face if F = {0} or F = K.

Let K be proper cone in Rn and A ∈Mn(R). We say A is nonnegative if ajk ≥ 0 for all j, k ∈< n > . We

say A is K-nonnegative provided AK ⊆ K. The matrix A is said to be eventually nonnegative if there exists

a positive integer N such that for all integers m ≥ N , Am ≥ 0 and A is said to be K-eventually nonnegative

if there exists a positive integer N such that for all integers m ≥ N , AmK ⊆ K.

If A is K-nonnegative, then a face F of K is said to be A-invariant if AF ⊆ F . If A is K-nonnegative

with the only A-invariant faces being the trivial faces, we say A is K-irreducible.

Next we formalize the idea of cone Frobenius normal form discussed by Barker in [2]. Let α = (α1, . . . , αk)

be an ordered partition of 〈n〉. Let nj represent the number of elements in αj . Set Ĩj = Iαj〈n〉, which are

the rows of the identity corresponding to αj .

Definition 1. Let A ∈Mn(R) and K a proper cone in Rn. We say A is in Frobenius normal form with

respect to K provided A is K-nonnegative and

A =


A11 A12 · · · A1k

0 A22 · · · A2k

...
. . .

. . .
...

0 · · · 0 Akk

 ,

where for 1 ≤ j ≤ k, Ajj is Kj-irreducible, with Kj = ĨjK.
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3. The combinatorial structure of general matrices. We provide a proof for the following ob-

servation for completeness and to illustrate that it is not dependent on the structure of the chosen field

F.

Observation 2. Let A ∈ Mn(F). Let x be a generalized eigenvector of A with eigenvalue λ. Build the

chain x0 = x, and xj = (A−λI)xj−1, as well as the chain y0 = x, and yj = (Aq −λqI)yj−1. Choose h such

that xh = 0, but xh−1 6= 0. Then for 0 ≤ j ≤ h− 1,

span{xj , xj+1, . . . , xh−1} = span{yj , yj+1, . . . , yh−1}

Proof. Since by construction, xh = 0, for ease of notation we consider xl = 0 for all integers l ≥ h. First

notice that for j = 0, . . . , h− 1, Axj = λxj + xj+1, thus

Aqxj =

q∑
i=0

(
q

i

)
λq−ixj+i,

and hence, for 0 ≤ j ≤ h− 1,

(Aq − λqI)xj =

q∑
i=1

(
q

i

)
λq−ixj+i.

Thus,

y1 = (Aq − λqI)y0 = (Aq − λqI)x0 =

q∑
i=1

(
q

i

)
λq−ixi =

q−1∑
i=0

ci1x1+i

for scalars ci1 with i = 1, . . . , q − 1. Once it is established that there are scalars c0j , . . . , cmjj , where mj =

j(q − 1) such that

yj =

j(q−1)∑
i=0

cijxj+i,

then

yj+1 = (Aq − λqI)yj = (Aq − λqI)

j(q−1)∑
i=0

cijxj+i

 =

j(q−1)∑
i=0

cij(A
q − λqI)xj+i

=

j(q−1)∑
i=0

cij

q∑
l=1

(
q

l

)
λq−lxj+i+l =

(j+1)(q−1)∑
i=0

ci(j+1)xj+1+i

for scalars c0(j+1), . . . , cmj+1(j+1), where mj+1 = (j+1)(q−1). Since xl = 0 for l ≥ h, span{yj , yj+1, . . . , yh−1}

⊆ span{xj , xj+1, . . . , xh−1}. Moreover, both sets are linearly independent with the same number of vectors,

thus span{yj , yj+1, . . . , yh−1} = span {xj , xj+1, . . . , xh−1}.

Let A ∈ Mn(F) be a matrix that is either nonsingular or for which the Jordan blocks corresponding to

the eigenvalue zero are all 1×1. Choose q to be a positive integer such that for all distinct eigenvalues λ and

µ in σ(A), it follows that λq 6= µq. Choose an invertible matrix S so that S−1AqS is block upper triangular.

Applying the above observation repeatedly to the generalized eigenvectors generated from the generalized

eigenvectors of each diagonal block of S−1AqS, we establish that S−1AS is also block upper triangular with

the same partitioning. This generalizes Theorem 3.4 of [5] in several ways. First the matrices need not be

nonnegative real matrices - the result holds for any matrix over any field. Second, we do not require that the
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diagonal blocks be irreducible in the traditional sense. Example 10 shows why this second generalization is

important when we move to viewing matrices that leave a cone invariant.

Before proceeding with our theorem, we provide two examples that show that if either of the two

conditions on the spectral properties of A are removed, Theorem 5 is no longer true.

Example 3. Consider

A =


1 1 1 1

1 1 1 1

−1 1 1 1

1 −1 1 1

 .
Notice that index0(A) = 2 and although A is irreducible, Aq is reducible for all q > 1, and hence, there are

partitions for which Aq is block upper triangular when A is not. For example,

A2 =


2 2 4 4

2 2 4 4

0 0 2 2

0 0 2 2

 .
Example 4. Next, consider the matrix

B =


0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

 ,
which has distinct eigenvalues 1, −1, i, and −i. For any even number q, notice (−1)q = 1q, (−i)q = iq and

Bq is reducible, even though B is irreducible. For example,

B2 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


is block upper triangular with the indicated partition, whereas B is not.

Theorem 5. Let A ∈ Mn(F) with index0(A) ≤ 1. Choose q to a be positive integer such that for all

distinct eigenvalues λ and µ in σ(A), it follows that λq 6= µq. Then for any invertible matrix S and any

partition that makes S−1AqS block upper triangular, the matrix S−1AS is block upper triangular with the

same partition.

Proof. Write

S−1AqS = B =


B11 B12 · · · B1k

0 B22 · · · B2k

...
. . .

. . .
...

0 · · · 0 Bkk

 ,
where each diagonal block Bjj is square. We proceed by induction on k.
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If k = 1, then B and A are square, and thus, S−1AS and B are in block upper triangular with the same

partitioning. If k > 1, then B is reducible. Set

C12 =
[
B12 B13 · · · B1k

]
and C22 =


B22 B23 · · · B2k

0 B32 · · · B3k

...
. . .

. . .
...

0
. . . 0 Bkk


so B =

[
B11 C12

0 C22

]
. Partition A and S conformably so A =

[
A11 A12

A21 A22

]
and S =

[
S11 S12

S21 S22

]
, and write

S−1AS =

[
D11 D12

D21 D22

]
.

Assume B11 is s× s. Choose a basis in En of Jordan chains for B11,

β = {x10, x11, . . . , x1k1 , x20, x21, . . . , x2k2 , . . . , xm0, xm1, . . . , xmkm}.

Then,

γ =

{[
x10
0

]
,

[
x11
0

]
, . . . ,

[
xmkm

0

]}
is a set of Jordan chains for B. By Observation 2,

S−1AS

[
xjl
0

]
∈ span

{[
xjl
0

]
, . . . ,

[
xjkj

0

]}
,

and thus,

S−1AS

[
xjl
0

]
=

[
D11xjl
D21xjl

]
=

[
y

0

]
for some y ∈ span{xjl, . . . , xjkj}.

In particular, D21xjl = 0. Since β is a basis for Em and D21xjl = 0 on β, it follows that D21 = 0. So,

S−1AS =

[
D11 D12

0 D22

]
and S−1AqS =

[
(D11)q F12

0 (D22)q

]
=

[
B11 C12

0 C22

]
.

Since C22 = (D22)q is a block upper triangular matrix with k − 1 blocks, by the induction hypothesis,

D22 is also in block upper triangular form with the same partition. Thus, S−1AS and S−1AqS are both in

block upper triangular form with the same partition.

The following corollary of Theorem 5 is a generalization of Theorem 3.4 in [5].

Corollary 6. Let A ∈ Mn(F) with index0(A) ≤ 1. Choose a positive integer q so that for all distinct

eigenvalues λ and µ, it follows that λq 6= µq. Then there is a permutation matrix P such that P−1AP and

P−1AqP are in Frobenius normal form with the same partition.

Proof. Choose a permutation matrix P so that P−1AqP is in Frobenius normal form. By Theorem

5, P−1AqP and P−1AP are block upper triangular with the same partition. Since the diagonal blocks

of P−1AqP are irreducible, the diagonal blocks in P−1AP must also be irreducible. Hence, P−1AP is in

Frobenius normal form with the same partition.
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Theorem 7. Let A ∈ Mn(F) with index0(A) ≤ 1. Choose q to be a positive integer such that for all

distinct eigenvalues λ and µ it follows that λq 6= µq and let α be any partition of 〈n〉 for which (S−1AqS)α
is block upper triangular. Then Rα(S−1AS) = Rα(S−1AqS).

Proof. Let α = (α1, α2, . . . , αk) be a partition of 〈n〉 such that (S−1AqS)α is block upper triangular. By

Theorem 5 the matrix (S−1AS)α is also in block upper triangular form.

Let j ∈ 〈n〉 and l ∈ 〈n〉. If j > l, since both matrices are block upper triangular, there is no path from

αj to αl in either graph. Assume j < l and that αj has access to αl in Rα(S−1AqS). Then there must

be a path from some vertex αj to some vertex αl in D(S−1AS), and hence, αj must have access to αl in

Rα(S−1AS). If αj does not have access to αl in Rα(S−1AqS), then let

T = {t|αt has access to αl but not αj in Rα(S−1AqS)},

and

P = {p|αp is accessed byαj in Rα(S−1AqS), but not by αt for any t ∈ T}.

Notice αl ∈ T and αj ∈ P . Let p ∈ P and t ∈ T . Suppose there is a path from αp to αt in Rα(S−1AqS).

Then there are paths from αj to αp, from αp to αt, and from αt to αl that together form a path from

αj to αl, contradicting that αj does not have access to αl in Rα(S−1AqS). Thus (S−1AqS)PT = 0 and

(S−1AqS)TP = 0. It follows then that there is an ordering of the {α1, . . . , αk} such that αl appears in the

list before αj , and for which S−1AqS is in block upper triangular form. By Theorem 5, S−1AS would also

be in block upper triangular form with respect to the reordering of the partition, establishing that αj does

not have access to αl in Rα(S−1AS). Since the access relationships in the two graphs are the same, their

transitive closures are equal.

Finally, we observe that a well know theorem in the context of matrices in Mn(C) is true over any field.

Observation 8. Let A ∈ Mn(F). If the index of cyclicity of A is k, then λ ∈ σ(A) implies λω ∈ σ(A)

for all ω ∈ E such that ωk = 1.

Proof. Since A has index of cyclicity k we can assume without loss of generality that

A =


0 A12 0 0 · · · 0

0 0 A13 0 . . . 0
...

...
. . .

. . .
. . .

...

0 0 0 · · · 0 Ak−1k
Ak1 0 · · · 0 0 0

 .

Let λ ∈ σ(A) with eigenvector


x1
x2
...

xk

. Choose ω ∈ E such that ω satisfies ωk = 1. If y =


x1
ωx2

...

ωk−2xk−1
ωk−1xk

, then

Ay =


ωA12x2
ω2A13x3

...

ωk−1Ak−1kxk
ωkAk1x1

 =


ωλx1
ω2λx2

...

ωk−1λxk−1
ωkλxk

 = λω


x1
ωx2

...

ωk−2xk−1
ωk−1λxk

 . Hence, λω ∈ σ(A).
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Corollary 9. Let A ∈ Mn(Fp) for some prime p. If the index of cyclicity of A is pk, then λ ∈ σ(A)

implies λω ∈ σ(A) for all nonzero ω ∈ Fpk .

4. Frobenius normal form for cones. In this section, we will restrict our fields to R and C. Since

we will be considering matrices that leave a cone invariant, we need the base field to be ordered, have an

absolute value, and have a topology. We begin this section with two interesting examples. The first example

shows that a matrix A ∈Mn(R) may be K-irreducible for a proper cone K, even though it is reducible with

respect to the traditional definition of matrix reducibility. The second example shows that even though a

K-nonnegative matrix A may not be K-irreducible, there is no invertible matrix S which puts A in cone

Frobenius normal form with respect to the cone S−1K, presenting a counterexample to Theorem 7 in [2].

Example 10. Let

A =

[
−1 1

0 1

]
and K =

{[
1

1

]
,

[
0

1

]}G
.

It is easy to verify that A is K-irreducible for the proper cone K, but A is clearly a reducible matrix in the

traditional sense.

Example 11. Let

A =

 1 1 0

0 1
2 0

0 0 − 2
3

 , L =


 x

y

z

 | 0 ≤ x, 0 ≤ y, and z2 ≤ xy

 and F =


 a

0

0

 | a > 0

 .

Notice that even though A is L-nonnegative for the Lorenz cone L, it is not L-irreducible since F is an

invariant face. Moreover, for any invertible matrix S, notice S−1AS leaves S−1F invariant. The eigenvalue

of A associated with F is 1, however the remaining eigenvalues of A are 1
2 and − 2

3 , which cannot be the

eigenvalues of a cone nonnegative matrix by Theorem 3.2 in [4] since the spectral radius of the lower 2× 2

principal submatrix A22 is not an eigenvalue of A22.

Theorem 12. Let K be a proper cone and A ∈ Mn(R) a matrix that is eventually K-nonnegative with

index0(A) ≤ 1. Let q be an odd positive integer such that Aq is K-nonnegative and for all distinct eigenvalues

λ and µ in σ(A), it follows that λq 6= µq. If there exists an invertible matrix S such that S−1AqS is in cone

Frobenius normal form with respect to L = S−1K, then

(i) The matrix S−1AS is block upper triangular when partitioned conformally with the cone Frobenius normal

form of S−1AqS.

(ii) For any positive integer r, the matrix S−1ArS is block upper triangular when partitioned conformably

with the cone Frobenius normal form of S−1AqS.

(iii) For any diagonal block Bjj of B = S−1AS, partitioned conformably with the Frobenius normal form of

C=S−1AqS,

(a) The matrix Bjj does not leave any nontrivial face of ĨjL invariant.

(b) If ρ(Bjj) > 0, then ρ(Bjj) ∈ σ(Bjj) is a simple eigenvalue and for each λ ∈ π(Bjj), the

indexλ(Bjj) ≤ 1.

(c) If S−1Aq+1S is also K-nonnegative and in cone Frobenius normal form with respect to L with

the same partition, then each Bjj is eventually ĨjL-nonnegative.

Proof. Let B = S−1AS and C = S−1AqS = (S−1AS)q.

(i) That B is block upper triangular when partitioned conformably with the cone Frobenius normal form

of C follows directly from Theorem 5.
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(ii) Result (ii) follows easily from result (i).

(iii) Using (i) write

B =


B11 B12 · · · B1k

0 B22 · · · B2k

...
. . .

. . .
...

0 · · · 0 Bkk


and

C =


C11 C12 · · · C1k

0 C22 · · · C2k

...
. . .

. . .
...

0 · · · 0 Ckk

 ,
where with this partition, C = S−1AqS is in Frobenius normal form with respect to L.
(a) Suppose for some j there is a nontrivial face F of ĨjL left invariant by Bjj . Then CjjF =

(Bjj)
qF ⊆ F contradicting that Cjj is ĨjL-irreducible.

(b) Recall that if a J is an r × r Jordan block with nonzero eigenvalue λ, then the Jordan form

associated with Jq is a single r×r Jordan block with eigenvalue λq. Since Cjj is ĨjL-irreducible,

for each µ ∈ π(Cjj), the indexµ(Cjj) ≤ 1 by Theorem 3.23 in [4]. Note that π(Cjj) consists of

the elements of π(Bjj) each raised to the q-th power, and thus, for any λ ∈ π(Bjj), the Jordan

blocks associated with λ in Bjj are the same size as the Jordan blocks associated with λq in

Cjj , thus the indexλ(Bjj) ≤ 1.

Choose η ∈ σ(Bjj) such that ηq = ρ(Cjj) > 0. We claim that η is a positive real number, and

hence, η = ρ(Bjj). Suppose not. If η is not real, then η ∈ σ(Bjj) and ηq = ηq = ρ(Cjj) =

ρ(Cjj) = ηq, contradicting our choice of q. Since q is odd, if η was a negative real number,

then ηq would be a negative real number, which again would be a contradiction. Thus, η > 0,

and hence, η = ρ(Bjj) is a simple eigenvalue of Bjj .

(c) For g > q2, there are nonnegative integers s and r such that g = sq + r where s ≥ q and

0 ≤ r < q. But then g = sq + r(q + 1 − q) = (s − r)q + r(q + 1). If (Bjj)
q and (Bjj)

q+1 are

both ĨjL invariant then (Bjj)
g ĨjL = ((Bjj)

q)s−r((Bjj)
q+1)r ĨjL ⊆ ĨjL

Note that in Theorem 12 we have not claimed that the diagonal blocks of S−1AS are ĨjS
−1K-nonnegative

without adding some additional condition. The following example shows that the situation may be more

complicated than it first appears.

Example 13. Let

A =

 1 0 0

0 1
2

√
3
2

0 −
√
3
2

1
2

 , x1 =

 1

−1

−
√

3

 , x2 =

 1

−1√
3

 , x3 =

 1

2

0

 .
Set K = {x1, x2, x3}G. Notice that A2 is K-irreducible, but A and A3 are not even K-nonnegative.
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