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GENERALIZATION OF REAL INTERVAL MATRICES TO OTHER FIELDS∗

ELENA RUBEI†

Abstract. An interval matrix is a matrix whose entries are intervals in R. This concept, which has been broadly studied,

is generalized to other fields. Precisely, a rational interval matrix is defined to be a matrix whose entries are intervals in Q. It

is proved that a (real) interval p× q matrix with the endpoints of all its entries in Q contains a rank-one matrix if and only if it

contains a rational rank-one matrix, and contains a matrix with rank smaller than min{p, q} if and only if it contains a rational

matrix with rank smaller than min{p, q}; from these results and from the analogous criterions for (real) inerval matrices, a

criterion to see when a rational interval matrix contains a rank-one matrix and a criterion to see when it is full-rank, that is,

all the matrices it contains are full-rank, are deduced immediately. Moreover, given a field K and a matrix ααα whose entries are

subsets of K, a criterion to find the maximal rank of a matrix contained in ααα is described.
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1. Introduction. Let p, q ∈ N \ {0}; a p × q interval matrix ααα is a p × q matrix whose entries are

intervals in R; we usually denote the entry i, j, αααi,j , by [αi,j , αi,j ] with αi,j ≤ αi,j . A p × q matrix A with

entries in R is said contained in a p× q interval matrix ααα if ai,j ∈ αααi,j for any i, j. There is a wide literature

about interval matrices and the rank of the matrices they contain. In this paper, we generalize the concept

of interval matrix to other fields and we start the study of the range of the rank of the contained matrices.

Before sketching our results, we illustrate shortly some of the literature on interval matrices and the rank

of the contained matrices and we say also some words on partial matrices and on the matrices with a given

sign pattern; these research fields are connected with the theory of interval matrices.

Two of the most famous theorems on interval matrices are Rohn’s theorems on full-rank interval matrices.

We say that a p× q interval matrix ααα has full rank if and only if all the matrices contained in ααα have rank

equal to min{p, q}. For any p× q interval matrix ααα = ([αi,j , αi,j ])i,j with αi,j ≤ αi,j , let mid(ααα), rad(ααα) and

|ααα| be respectively the midpoint, the radius and the modulus of ααα, that is, the p× q matrices such that

mid(ααα)i,j =
αi,j + αi,j

2
, rad(ααα)i,j =

αi,j − αi,j
2

and |ααα|i,j = max{|αi,j |, |αi,j |}

for any i, j. The following theorem characterizes full-rank square interval matrices.

Theorem 1. (Rohn, [14]) Let ααα = ([αi,j , αi,j ])i,j be a p × p interval matrix, where αi,j ≤ αi,j for any

i, j. Let Yp = {−1, 1}p and, for any x ∈ Yp, denote by Tx the diagonal matrix whose diagonal is x. Then ααα

is a full-rank interval matrix if and only if, for each x, y ∈ Yp,

det
(

mid(ααα)
)

det
(

mid(ααα)− Tx rad(ααα)Ty

)
> 0.
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See [14] and [15] for other characterizations. The following theorem characterizes full-rank p× q interval

matrices; see [16], [17] and [20].

Theorem 2. (Rohn) A p × q interval matrix ααα with p ≥ q has full rank if and only if the system of

inequalities

|mid(ααα)x| ≤ rad(ααα) |x|, x ∈ Rq

has only the trivial solution x = 0.

A research area which can be connected with the theory of interval matrices is the one of the partial

matrices: let K be a field; a partial matrix over K is a matrix where only some of the entries are given and

they are elements of K; a completion of a partial matrix is a specification of the unspecified entries. The

problem of determining the maximal and the minimal rank of the completions of a partial matrix has been

widely studied. In particular, in [5], Cohen, Johnson, Rodman and Woerdeman determined the maximal

rank of the completions of a partial matrix in terms of the ranks and the sizes of its maximal specified

submatrices; see also [4] for the proof. The problem of a theoretical characterization of the minimal rank

of the completions of a partial matrix seems more difficult and it has been solved only in some particular

cases. We quote also the paper [8], where a criterion to say if a partial matrix has a completion of rank 1 is

established.

In [19], we generalized Theorem 1 to general closed interval matrices, that is, matrices whose entries are

closed connected nonempty subsets of R; obviously, the notion of general closed interval matrices generalizes

the one of partial matrices and the one of interval matrices.

Also for interval matrices, the problem of determining the miminal rank of the matrices contained in

a given interval matrix seems much more difficult than the problem of determining the maximal rank. We

recall that in [18], we determined the maximum rank of the matrices contained in a given interval matrix and

we gave a theoretical characterization of interval matrices containing at least a matrix of rank 1. Precisely

the last result is the following (where the word “reduced” means that every column and every row has at

least one entry not containing 0).

Theorem 3. Let ααα = ([αi,j , αi,j ])i,j be a p× q reduced interval matrix with p, q ≥ 2 and 0 ≤ αi,j ≤ αi,j
for any i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. There exists A ∈ ααα with rk(A) = 1 if and only if, for any

h ∈ N with 2 ≤ h ≤ 2min{p,q}−1, for any i1, . . . , ih ∈ {1, . . . , p}, for any j1, . . . , jh ∈ {1, . . . , q} and for any

permutation σ on h elements, we have that

(1.1) αi1,j1 · · · αih,jh ≤ αi1,jσ(1) · · · αih,jσ(h) .

In the previous paper [6], the authors studied the complexity of an algorithm to decide if an interval

matrix contains a rank-one matrix and proved that the problem is NP-complete.

Finally, we quote another research area which can be related to partial matrices, to interval matrices

and, more generally, to general interval matrices: the one of the matrices with a given sign pattern; let Q

be a p× q matrix with entries in {+,−, 0}; we say that A ∈M(p× q,R) has sign pattern Q if, for any i, j,

we have that ai,j is positive (respectively, negative or zero) if and only if Qi,j is + (respectively, − or 0).

Obviously, the set of the matrices with a given sign pattern can be thought as a general interval matrices

whose entries are from {(0,+∞), (−∞, 0), [0]}. There are several papers studying the minimal and maximal

rank of the matrices with a given sign pattern, see for instance [1], [2], [10] and [21]. In particular, in [1] and
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[2], the authors proved that the minimum rank of the real matrices with a given sign pattern is realizable

by a rational matrix in case this minumum is at most 2 or at least min{p, q} − 2.

As we have already said, in this paper, we generalize the concept of interval matrices to other fields.

We define a rational interval matrix to be a matrix whose entries are intervals in Q; we prove that a (real)

interval p × q matrix with the endpoints of all its entries in Q contains a rank-one matrix if and only if

contains a rational rank-one matrix and contains a matrix with rank smaller than min{p, q} if and only if

it contains a rational matrix with rank smaller than min{p, q}; from these results and from Theorem 1 and

Theorem 3 we deduce immediately a criterion to see when a rational interval matrix contains a rank-one

matrix and a criterion to see when it is full-rank, that is, all the matrices it contains are full-rank, see Section

3. Moreover, in Remark 13, we observe that from the papers [3] and [9] we can deduce that it is not true

that, for any r, if an interval matrix with the endpoints of all its entries in Q contains a rank-r real matrix,

then it contains a rank-r rational matrix. Finally, given a field K, we define a subset matrix over K to be a

matrix whose entries are nonempty subsets of K and we describe a criterion to find the maximal rank of a

matrix contained in a subset matrix (see Section 4).

2. Notation and first remarks.

• Let R>0 be the set {x ∈ R| x > 0} and let R≥0 be the set {x ∈ R| x ≥ 0}; we define analogously R<0

and R≤0. We denote by I the set R−Q.

• Throughout the paper let p, q ∈ N \ {0}.

• Let Σp be the set of the permutations on {1, . . . , p}. For any σ ∈ Σp, we denote the sign of the

permutation σ by ε(σ).

• For any ordered multiset J = (j1, . . . , jr), a multiset permutation σ(J) of J is an ordered arrangement

of the multiset {j1, . . . , jr}, where each element appears as often as it does in J .

• For any field K, let M(p × q,K) denote the set of the p × q matrices with entries in K. For any

A ∈M(p× q,K), let rk(A) denote the rank of A and let A(j) be the j-th column of A.

• For any vector space V over a field K and any v1, . . . , vk ∈ V , let 〈v1, . . . , vk〉 be the span of v1, . . . , vk.

• Let ααα be a p× q subset matrix over a field K. Given a matrix A ∈M(p× q,K), we say that A ∈ ααα if

and only if ai,j ∈ αααi,j for any i, j. We define

mrk(ααα) = min{rk(A)| A ∈ ααα},

Mrk(ααα) = max{rk(A)| A ∈ ααα}.

We call them respectively minimal rank and maximal rank of ααα. Moreover, we define

rkRange(ααα) = {rk(A)| A ∈ ααα};

we call it the rank range of ααα.

We say that an entry of ααα is degenerate if its cardinality is 1.

Remark 4. Let ααα be a subset matrix over a field K. Observe that

rkRange(ααα) = [mrk(ααα),Mrk(ααα)] ∩ N.
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The proof is identical to the one of the case of interval matrices in [18] (Remark 3).

We refer to some classical books on interval analysis, such as [11], [12] and [13] for the definition of sum

and multiplication of two intervals. In particular, for any interval α in R and any interval β either in R>0

or in R<0, we define α
β to be the set

{
a
b | a ∈ α, b ∈ β

}
. Obviously, we can give analogous definitions for

intervals in Q.

Definition 5. Letααα be an interval matrix (respectively, a rational interval matrix). We say that another

interval matrix (respectively, rational interval matrix) ααα′ is obtained from ααα by an elementary row operation

if it is obtained from ααα by one of the following operations (where we are considering interval arithmetic):

I) interchanging two rows,

II) multiplying a row by a nonzero real number (respectively, rational number),

III) adding to a row the multiple of another row by a real number (respectively, rational number).

In an analogous way, we may define elementary column operations.

Remark 6.

• Obviously, the operations of the first two kinds give an equivalence relation, but if we consider also

the third kind we do not get an equivalence relation.

• Let ααα and ααα′ be two interval matrices (respectively, two rational interval matrices), such that ααα′ is

obtained from ααα by elementary row (or column) operations. Then, obviously,

(2.2) rkRange(ααα) ⊆ rkRange(ααα′).

Moreover, if ααα′ is obtained from ααα only by elementary row (or column) operations of kind I or II, we have

the equality in (2.2).

Remark 7. Let ααα be a (rational) interval matrix. If ααα′ is the (rational) interval matrix obtained from ααα

by deleting the columns and the rows such that all their entries contain 0, we have that mrk(ααα) = mrk(ααα′).

Obviously, the analogous statement for Mrk does not hold.

3. Some results on rational interval matrices.

Theorem 8. Let p ≥ q and let ααα = ([αi,j , αi,j ])i,j be a p × q interval matrix with αi,j ≤ αi,j and

αi,j , αi,j ∈ Q for any i, j. If there exists A ∈ α with rk(A) < q, then there exists B ∈ α ∩M(p× q,Q) with

rk(B) < q.

Proof. We can suppose that A(q) ∈ 〈A(1), . . . , A(q−1)〉; let A(q) be equal to

c1A
(1) + · · ·+ cq−1A

(q−1)

for some c1, . . . , cq−1 ∈ R \ {0}. Up to swapping rows and columns, we can also suppose c1, . . . , cr ∈ Q,

cr+1, . . . , cq−1 ∈ I, a1,q, . . . , ak,q ∈ I and ak+1,q, . . . , ap,q ∈ Q.

Finally, we can easily suppose that ai,j ∈ Q for any i = 1, . . . , k and j = 1, . . . , q − 1; in fact: for any

i ∈ {1, . . . , k}, let Z(i) = {j ∈ {1, . . . , q − 1}| ai,j ∈ I}; if for some i ∈ {1, . . . , k} the set Z(i) is nonempty,

we have that for any j ∈ Z(i) the entry αααi,j is nondegenerate (since has rational endpoints and contains ai,j ,
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which is irrational); so there exist neighbourhoods Ui,j of ai,j contained in αααi,j for any j ∈ Z(i) such that∑
j∈{1,...,q−1}\Z(i)

cjai,j +
∑
j∈Z(i)

cjUi,j ⊂ αααi,q

(observe that, for i = 1, . . . , k, the entry αααi,q is nondegenerate, since it has rational endpoints and contains

ai,q which is irrational); hence, for any j ∈ Z(i), we can change the entry ai,j into an element ãi,j of Ui,j ∩Q
and the entry ai,q into ∑

j∈{1,...,q−1}\Z(i)

cjai,j +
∑
j∈Z(i)

cj ãi,j ;

in this way, we get again a matrix with the last column in the span of the first q − 1 columns; moreover,

each of the first k rows of the matrix we have obtained has the first q−1 entries rational. So we can suppose

that ai,j ∈ Q for any i = 1, . . . , k and j = 1, . . . , q − 1.

For any i = k + 1, . . . , p, we define:

Ri = {j ∈ {1, . . . , r}| ai,j ∈ Q},

Ni = {j ∈ {1, . . . , r}| ai,j ∈ I},

R̃i = {j ∈ {r + 1, . . . , q − 1}| ai,j ∈ Q},

Ñi = {j ∈ {r + 1, . . . , q − 1}| ai,j ∈ I}.

Moreover, define

X =
{
i ∈ {k + 1, . . . , p}| Ni ∪ Ñi = ∅

}
.

• Let i ∈ {1, . . . , k}. For any j = r + 1, . . . , q − 1, there exists a neighbourhood V ij of cj such that

(3.3)
∑

j=1,...,r

cjai,j +
∑

j=r+1,...,q−1

V ij ai,j ⊂ αααi,q.

• Let i ∈ {k + 1, . . . , p} \ X. By definition of the set X, there exists (i) ∈ Ni ∪ Ñi. We consider

neighbourhoods V ij of cj contained either in R<0 or in R>0 for any j ∈ {r+1, . . . , q−1} and neighbourhoods

Ui,j of ai,j contained in αααi,j for any j ∈ Ni ∪ Ñi \ {(i)} such that

(3.4) − 1

c(i)

 ∑
j∈Ni\{(i)}

cjUi,j +
∑
j∈Ñi

V ij Ui,j +
∑
j∈R̃i

V ij ai,j +
∑
j∈Ri

cjai,j − ai,q

 ⊂ αααi,(i)
if c(i) ∈ Q (i.e., (i) ∈ {1, . . . , r}) and

(3.5) − 1

V i(i)

∑
j∈Ni

cjUi,j +
∑

j∈Ñi\{(i)}

V ij Ui,j +
∑
j∈R̃i

V ij ai,j +
∑
j∈Ri

cjai,j − ai,q

 ⊂ αααi,(i)
if c(i) ∈ I (i.e., (i) ∈ {r + 1, . . . , q − 1}).

Choice of the c̃j for j = r + 1, . . . , q − 1. If X = ∅, for any j = r + 1, . . . , q − 1, choose c̃j in the set(
∩i∈{1,...,p}V ij

)
∩Q.
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If X 6= ∅, consider the submatrix of A given by the rows indicized by X and the columns r+ 1, . . . , q−1 and

reduce it in row echelon form by elementary row operations; let T be the set of the j ∈ {r + 1, . . . , q − 1}
corresponding to some pivot, and let S be the set {r + 1, . . . , q − 1} \ T . For any j ∈ S, choose c̃j ∈(
∩i∈{1,...,p}\XV ij

)
∩Q in such a way that, called c̃j for j ∈ T the solutions of the linear systems given by the

equations

(3.6)
∑
j∈Ri

cjai,j +
∑
j∈R̃i

c̃jai,j = ai,q,

for i ∈ X, we have that c̃j ∈ ∩i∈{1,...,p}\XV ij for any j ∈ T .

Choice of the ãi,j for i ∈ {k + 1, . . . , p} \X, j ∈ Ni ∪ Ñi. Now, for any i ∈ {k + 1, . . . , p} \ X, choose

ãi,j ∈ Ui,j ∩Q for any j ∈ Ni ∪ Ñi \ {(i)} and define ãi,(i) to be

(3.7) − 1

c(i)

 ∑
j∈Ni\{(i)}

cj ãi,j +
∑
j∈Ñi

c̃j ãi,j +
∑
j∈R̃i

c̃jai,j +
∑
j∈Ri

cjai,j − ai,q


if c(i) ∈ Q (i.e., (i) ∈ Ni),

(3.8) − 1

c̃(i)

∑
j∈Ni

cj ãi,j +
∑

j∈Ñi\{(i)}

c̃j ãi,j +
∑
j∈R̃i

c̃jai,j +
∑
j∈Ri

cjai,j − ai,q


if c(i) ∈ I (i.e., (i) ∈ Ñi). By (3.4) and (3.5), we have that ãi,(i) ∈ Q ∩αααi,(i).

Let B be the p× q matrix such that, for every i = 1, . . . , p and j = 1, . . . , q − 1,

Bi,j =

{
ãi,j if ai,j ∈ I
ai,j if ai,j ∈ Q

and such that

B(q) =
∑

j=1,...,r

cjB
(j) +

∑
j=r+1,...,q−1

c̃jB
(j).

By the choice of c̃j for j = r + 1, . . . , q − 1 (see (3.6)) and the choice of ãi,j for i ∈ {k + 1, . . . , p} \X,

j ∈ Ni ∪ Ñi (see (3.7) and (3.8)), we have that bi,q = ai,q for i = k + 1, . . . , p. By the choice of c̃j for

j = r + 1, . . . , q − 1 such that c̃j ∈ ∩i∈{1,...,p}\XV ij and by (3.3), we get that bi,q ∈ αααi,q for i = 1, . . . , k. So

the matrix B is contained in ααα ∩M(p× q,Q).

From Theorem 1 and Theorem 8, we get immediately the following corollary.

Corollary 9. Let ααα = ([αi,j , αi,j ])i,j be a p× p rational interval matrix, where αi,j ≤ αi,j for any i, j.

Let Yp = {−1, 1}p and, for any x ∈ Yp, denote by Tx the diagonal matrix whose diagonal is x.

Then ααα is a full-rank rational interval matrix if and only if, for each x, y ∈ Yp,

det
(

mid(ααα)
)

det
(

mid(ααα)− Tx rad(ααα)Ty

)
> 0.

Before stating the second theorem, we enunciate a lemma that will be useful in the proof of the theorem.
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Lemma 10. Let A ∈M(m×n,Q) for some m,n ∈ N\{0}. Let c ∈ Rn \{0} be such that Ac = 0. Then,

for every V neighbourhood of c, we can find c̃ ∈ V ∩Qn such that Ac̃ = 0. If, in addition, c ∈ (R \ {0})n, we

can find c̃ in V ∩ (Q \ {0})n such that Ac̃ = 0.

Proof. Let A be a matrix in row echelon form obtained from A by elementary row operations. We can

suppose that the columns containing the pivots are the first k. Since c is nonzero and Ac = 0, we have that

k < n. Write c =

(
c′

c′′

)
with c′ given by the first k entries of c and c′′ given by the last n− k entries and

let V ′ and V ′′ be respectively neighbourhood of c′ and c′′ such that V ′×V ′′ is contained in V . There exists a

neighbourhood U of c′′ contained in V ′′ such that, if b′′ ∈ U and

(
b′

b′′

)
is the solution of the linear system

Ax = 0 with vector of the last n− k entries equal to b′′, we have that b′ ∈ V ′. So, if we take c̃′′ ∈ U ∩Qn−k

and

(
c̃′

c̃′′

)
is the solution of the linear system Ax = 0 with vector of the last n− k entries equal to c̃′′, we

have that

(
c̃′

c̃′′

)
∈ V ∩Qn.

Finally, the last statement is obvious, because, if c ∈ (R \ {0})n, we can find a neighbourhood W of c

contained in V ∩ (R \ {0})n and, by applying the previous statement to W , we get c̃ ∈ W ∩ Qn such that

Ac̃ = 0, thus c̃ ∈ V ∩ (Q \ {0})n and Ac̃ = 0.

Theorem 11. Let p ≥ q and let ααα = ([αi,j , αi,j ])i,j be a p × q interval matrix with αi,j ≤ αi,j and

αi,j , αi,j ∈ Q for any i, j. If there exists A ∈ α with rk(A) = 1, then there exists B ∈ α ∩M(p× q,Q) with

rk(B) = 1.

Proof. We can suppose that every entry of A(1) is nonzero and, for j = 2, . . . , q, we have that A(j) =

cjA
(1) for some cj ∈ R \ {0}. For any i ∈ {1, . . . , p} such that αααi,1 is nondegenerate, let α̃ααi,1 be a closed

nondegenerate interval neighbourhood of ai,1, contained either in αααi,1 ∩ R>0 or in αααi,1 ∩ R<0.

We can suppose also that c2, . . . , ck ∈ I and ck+1, . . . , cq ∈ Q.

For any j = 2, . . . , q, let Ij = {i ∈ {1, . . . , p}| ai,j ∈ I} and let Qj = {i ∈ {1, . . . , p}| ai,j ∈ Q}.

Let j ∈ {2, . . . , q} and i ∈ Ij ; obviously, αααi,j is nondegenerate, because it has rational endpoints and

contains ai,j which is irrational;

if ai,1 ∈ I, we define Aji to be a neighbourhood of ai,1 contained either in αααi,1 ∩ R>0 or in αααi,1 ∩ R<0,

and, if cj ∈ I (i.e., j ∈ {2, . . . , k}), we define V ji to be a neighbourhood of cj , such that:

V ji ai,1 ⊂ αααi,j if ai,1 ∈ Q and cj ∈ I,
cjA

j
i ⊂ αααi,j if ai,1 ∈ I and cj ∈ Q,

V ji A
j
i ⊂ αααi,j if ai,1 ∈ I and cj ∈ I.

For any j = 2, . . . , k, let c̃j be such that

(1) c̃j ∈
(
∩i∈IjV

j
i

)
∩
(
∩i∈Qj

ai,j
α̃ααi,1

)
∩ (Q \ {0}) (observe that, if i ∈ Qj , then, since ai,j ∈ Q and cj ∈ I,

we have that ai,1 ∈ I, so αααi,1 is nondegenerate),

(2)
ai,j
c̃j

=
ai,j′

c̃j′
for any i ∈ {1, . . . , p} and j, j′ ∈ {2, . . . , k} such that i ∈ Qj ∩Qj′ ,
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(3) c̃j ∈ ai,j

Aj
′
i

for any i ∈ {1, . . . , p}, j ∈ {2, . . . , k}, j′ ∈ {2, . . . , q} such that i ∈ Qj ∩ Ij′ .

By Lemma 10, we can find c̃j satisfying (1),(2),(3) because V ji for i ∈ Ij , ai,j
α̃ααi,1

for i ∈ Qj and
ai,j

Aj
′
i

for

i ∈ Qj ∩ Ij′ are neighbourhoods of cj and the equations in (2) give a homogeneous linear system in the

variables c̃j satisfied by the cj .

We define B to be the matrix such that, for any i = 1, . . . , p,

bi,1 =


ai,j
c̃j

if ai,1 ∈ I and i ∈ Qj for some j ∈ {2, . . . , k}, (1st case)

an element of ∩j=2,...,q A
j
i ∩Q if ai,1 ∈ I and i ∈ Ij ∀j ∈ {2, . . . , q}, (2nd case)

ai,1 if ai,1 ∈ Q (3rd case)

and such that

B(j) =

{
c̃jB

(1) for j = 2, . . . , k,

cjB
(1) for j = k + 1, . . . , q.

Observe that in the definition of bi,1, the 1st case and the 2nd case cover all the case ai,1 ∈ I, because,

if ai,1 ∈ I and i ∈ Qj for some j ∈ {2, . . . , q}, then cj ∈ I, so j ∈ {2, . . . , k}.

Observe also that the definition of bi,1 in the 1st case is good by condition (2). Moreover bi,1 ∈ Q for

any i ∈ {1, . . . , p} and, finally, bi,1 is an element of αααi,1: in the 1st case, this follows from condition (1), in

the other cases it is obvious.

Now we want to prove that c̃jB
(1) ∈ ααα(j) for j = 2, . . . , k and that cjB

(1) ∈ ααα(j) for j = k + 1, . . . , q.

• First, let us prove that c̃jbi,1 ∈ αααi,j for j = 2, . . . , k, i = 1, . . . , p. Let us fix i ∈ {1, . . . , p}.

1st Case. In this case, ai,1 ∈ I, i ∈ Ql for some l ∈ {2, . . . , k} and bi,1 is defined to be
ai,l
c̃l

; therefore, for

j = 2, . . . , k,

c̃jbi,1 = c̃j
ai,l
c̃l

= ai,j ∈ αααi,j

if i ∈ Qj (where the second equality holds by condition (2)), and

c̃jbi,1 = c̃j
ai,l
c̃l
∈ V ji A

j
i ⊂ αααi,j

if i ∈ Ij (where the first inclusion holds by conditions (1) and (3) and the second by the definition of V ji and

Aji ).

2nd Case. In this case, ai,1 ∈ I, i ∈ Ij for any j ∈ {2, . . . , q} and bi,1 is defined to be a rational element

of ∩j=2,...,qA
j
i ; hence, for j = 2, . . . , k,

c̃jbi,1 ∈ V ji A
j
i ⊂ αααi,j .

3rd Case. In this case, ai,1 ∈ Q and bi,1 is defined to be ai,1; so, for any j ∈ {2, . . . , k}, we get:

c̃jbi,1 = c̃jai,1 ∈ V ji ai,1 ⊂ αααi,j ,

where the first inclusion holds by condition (1) (observe that, since cj ∈ I and ai,1 ∈ Q, we have that ai,j ∈ I,
thus i ∈ Ij) and the second by the definition of V ji .

• Finally, let us prove that cjbi,1 ∈ αααi,j for j = k + 1, . . . , q, i = 1, . . . , p. Fix i ∈ {1, . . . , p}.
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1st Case. In this case, ai,1 ∈ I, i ∈ Ql for some l ∈ {2, . . . , k} and bi,1 is defined to be
ai,l
c̃l

; so, for

j = k + 1, . . . , q,

cjbi,1 = cj
ai,l
c̃l
∈ cjAji ⊂ αααi,j ,

where the first inclusion holds by condition (3) since i ∈ Ql ∩ Ij and the last inclusion holds by definition of

Aji .

2nd Case. In this case, ai,1 ∈ I, i ∈ Ij for any j ∈ {2, . . . , q} and bi,1 is defined to be a rational element

of ∩j=2,...,qA
j
i ; hence, for j = k + 1, . . . , q,

cjbi,1 ∈ cjAji ⊂ αααi,j ,

where the last inclusion holds by definition of Aji .

3rd Case. In this case, ai,1 ∈ Q and bi,1 is defined to be ai,1; hence,

cjbi,1 = cjai,1 = ai,j ∈ αααi,j

for any j = k + 1, . . . , q.

Theorem 3 and Theorem 11 imply obviously the following corollary.

Corollary 12. Let ααα = ([αi,j , αi,j ])i,j be a p × q reduced rational interval matrix with p, q ≥ 2 and

0 ≤ αi,j ≤ αi,j for any i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. There exists A ∈ ααα with rk(A) = 1 if and only if,

for any h ∈ N with 2 ≤ h ≤ 2min{p,q}−1, for any i1, . . . , ih ∈ {1, . . . , p}, for any j1, . . . , jh ∈ {1, . . . , q} and

for any σ ∈ Σh, we have:

αi1,j1 · · ·αih,jh ≤ αi1,jσ(1) · · ·αih,jσ(h) .

Observe that, as for (real) interval matrices (see Remarks 8 and 9 in [18]), to study when a reduced

rational interval matrix contains a rank-one matrix it is sufficient to study the problem for a reduced rational

interval matrix ααα, with αααi,j ⊆ R≥0 for every i, j.

In fact, let ααα be a p × q reduced rational interval matrix. Let i ∈ {1, . . . , p} and j ∈ {1, . . . , q} be

such that αi,j ≤ 0 ≤ αi,j . Define ααα′ and ααα′′ to be the rational interval matrices such that ααα′i,j = [αi,j , 0],

ααα′′i,j = [0, αi,j ] and ααα′t,s = ααα′′t,s = αααt,s for any (t, s) 6= (i, j) (observe that obviously the definition of ααα′ and

ααα′′ do depend on i, j we have fixed). Then

{A ∈ ααα} = {A ∈ ααα′} ∪ {A ∈ ααα′′};

hence, there exists A ∈ ααα with rk(A) = r, for any r ∈ N, if and only if either there exists A ∈ ααα′ with

rk(A) = r or there exists A ∈ ααα′′ with rk(A) = r. In particular, to study whether a rational interval matrix

ααα contains a rank-r matrix, it is sufficient to consider the case where, for any i, j, either αααi,j ⊆ R≥0 or

αααi,j ⊆ R≤0. Observe that splitting every entry of ααα into the nonnegative part and the nonpositive part can

give 2pq matrices in the worst case.

Moreover, by Remark 6, we can suppose αααi,j ⊆ R≥0 for every (i, j) such that either i or j is equal to 1.

Finally for such a matrix ααα, if there exists (i, j) such that αααi,j ⊆ R<0, then ααα does not contain a rank-one

matrix. Otherwise, that is αi,j ≥ 0 for any i, j, define α̂αα to be the rational interval matrix such that

α̂ααi,j = [max{0, αi,j}, αi,j ]

for any i, j. Obviously, ααα contains a rank-one matrix if and only if α̂αα contains a rank-one matrix.
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Remark 13. In [3] and [9], the authors showed that there exists a sign pattern Q such that the minimal

rank rRQ of the real matrices with sign pattern Q is strictly smaller than the minimal rank rQQ of the rational

matrices with sign pattern Q. Let A be a real matrix with sign pattern Q and rank rRQ. Let ααα be an interval

matrix containing A and such that, for any i, j, we have:

αααi,j = {0} if and only if ai,j = 0,

αααi,j ⊂ R>0 if and only if ai,j > 0,

αααi,j ⊂ R<0 if and only if ai,j < 0.

Obviously, mrk(ααα) = rRQ and, since there does not exist a rational matrix with sign pattern Q and

rank rRQ, there does not exist a rational matrix in ααα with rank rRQ. So Theorem 8 and Theorem 11 are not

generalizable to any rank, that is, it is not true for any r, that, if an interval matrix contains a rank-r real

matrix, then it contains a rank-r rational matrix.

4. Maximal rank of matrices contained in a subset matrix over any field.

Definition 14. Given a p × p subset matrix over e a field K, ααα, a partial generalized diagonal (pg-

diagonal for short) of length k of ααα is a k-uple of the kind

(αααi1,j1 , . . . ,αααik,jk)

for some {i1, . . . ik} and {j1, . . . , jk} subsets of {1, . . . , p}.

Its complementary matrix is defined to be the submatrix of ααα given by the rows and columns whose

indices are respectively in {1, . . . , p} \ {i1, . . . , ik} and in {1, . . . , p} \ {j1, . . . , jk}.

We say that a pg-diagonal is totally nondegenerate if and only if all its entries are not degenerate.

We define detc(ααα) to be ∑
σ∈Σp s.t. ααα1,σ(1),...,αααp,σ(p) are degenerate

ε(σ)ααα1,σ(1) · · ·αααp,σ(p)

if there exists σ ∈ Σp such that ααα1,σ(1), . . . ,αααp,σ(p) are degenerate; we define detc(ααα) to be equal to 0

otherwise.

For every pg-diagonal of length p, say ααα1,σ(1), . . . ,αααp,σ(p) for some σ ∈ Σp, we call ε(σ) also the sign of

the pg-diagonal.

In [7], Hlad́ık introduced the notion of strongly singular interval matrix. We generalize it to subset

matrices over any field.

Definition 15. (Hlad́ık) Let ααα be a p × p subset matrix over a field K. We say that it is strongly

singular if Mrk(ααα) < p, that is, if every A ∈ ααα is singular.

Theorem 16. Let ααα be a p× p subset matrix over a field K. Then ααα is strongly singular if and only if

the following conditions hold:

(1) in ααα there is no totally nondegenerate pg-diagonal of length p,

(2) the complementary matrix of every totally nondegenerate pg-diagonal of length between 0 and p− 1

has detc equal to 0 (in particular, detc(ααα) = 0).
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The proof is quite similar to the one of Theorem 13 in [18]; for the convenience of the reader, we sketch

the proof here.

Proof. (=⇒) We argue by induction on p. For p = 1 the statement is obvious. Suppose p ≥ 2 and

that the statement is true for (p − 1) × (p − 1) subset matrices. Let ααα be a p × p subset matrix such that

Mrk(ααα) < p; so det(A) = 0 for every A ∈ ααα.

If ααα contained a totally nondegenerate pg-diagonal of length p, say αααi1,j1 , . . . ,αααip,jp , then αααî1,ĵ1 would

have obviously a totally nondegenerate pg-diagonal of length p − 1; hence, by induction assumption, there

would exist B ∈ αααî1,ĵ1 with det(B) 6= 0. Hence, for any choice of elements xi1,j ∈ αααi1,j for j 6= j1 and

xi,j1 ∈ αααi,j1 for i 6= i1, we could find x ∈ αααi1,j1 such that the determinant of the matrix X defined by

Xî1,ĵ1
= B, Xi1,j1 = x, Xi,j1 = xi,j1 for any i 6= i1 and Xi1,j = xi1,j for any j 6= j1 is nonzero, which is

absurd. So (1) holds.

Now, by contradiction, suppose (2) does not hold. Thus in ααα there exists a totally nondegenerate pg-

diagonal of length k with 0 ≤ k ≤ p − 1 whose complementary matrix has detc nonzero. If there exists

such a diagonal with k ≥ 1, say αααi1,j1 , . . . ,αααik,jk , then also αααî1,ĵ1 does not satisfy (2), so, by induction

assumption, there exists B ∈ αααî1,ĵ1 with det(B) 6= 0 and, as before, we can get a contradiction. On the other

hand, suppose that detc(ααα) 6= 0 and the complementary matrix of every totally nondegenerate pg-diagonal

of length k with 1 ≤ k ≤ p− 1 has detc equal to zero; we call this assumption (∗).

Let A ∈ ααα. By (1), we can write det(A) as the sum of:

- the sum (with sign) of the product of the entries of the pg-diagonals of A of length p such the

corresponding entries of ααα are all degenerate,

- the sum (with sign) of the product of the entries of the pg-diagonals of A of length p such all the

corresponding entries of ααα apart from one are degenerate,

...

- the sum (with sign) of the product of the entries of the pg-diagonals of A of length p such all the

corresponding entries of ααα apart from p− 1 are degenerate.

We call (?) this way to write det(A).

The first sum coincides with detc(ααα), so it is nonzero by the assumption (∗); we can write the second

sum by collecting the terms containing the same entry corresponding to the nondegenerate entry of ααα; so, by

assumption (∗), we get that this sum is zero; we argue analogously for the other sums. So we can conclude

that det(A) is nonzero, a contradiction.

(⇐=) Let ααα be a matrix satisfying (1) and (2) and let A ∈ ααα. By (1), we can write det(A) as in (?).

The first sum is zero by assumption; we can write the second sum by collecting the terms containing

the same entry corresponding to the nondegenerate entry of ααα; so by assumption we get that also this sum

is zero. We argue analogously for the other sums.

Corollary 17. Let ααα be a subset matrix over a field K. Then Mrk(ααα) is the maximum of the natural

numbers t such that there is a t× t submatrix of ααα either with a totally nondegenerate pg-diagonal of length

t or with a totally nondegenerate pg-diagonal of length between 0 and t− 1 whose complementary matrix has

detc 6= 0.
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