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MATRIX SHANKS TRANSFORMATIONS∗

CLAUDE BREZINSKI† AND MICHELA REDIVO-ZAGLIA‡

Abstract. Shanks’ transformation is a well know sequence transformation for accelerating the convergence of scalar

sequences. It has been extended to the case of sequences of vectors and sequences of square matrices satisfying a linear

difference equation with scalar coefficients. In this paper, a more general extension to the matrix case where the matrices

can be rectangular and satisfy a difference equation with matrix coefficients is proposed and studied. In the particular case

of square matrices, the new transformation can be recursively implemented by the matrix ε-algorithm of Wynn. Then, the

transformation is related to matrix Padé-type and Padé approximants. Numerical experiments showing the interest of this

transformation end the paper.
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1. Introduction to Shanks transformations. Let (sn) be a sequence of elements of a vector space

E which converges to s. If the convergence is slow, it is possible to transform it into a new sequence of

elements of E (or a set of new sequences) which, under some assumptions, converges faster to the same

limit. Such sequence transformations, also known as extrapolation methods, have been widely studied and

have a bunch of applications: Systems of linear and nonlinear equations [8], matrix equations [7,20], matrix

functions [8], block linear systems [23], nonlinear Fredholm integral equations [9], . . .

Among these transformations for accelerating the convergence of scalar sequences, an important one

is due to Shanks [36, 37]. It can be recursively implemented by the scalar ε-algorithm of Wynn [39] who

also extended it to sequences of vectors and matrices [40]. Due to its complicated algebraic theory, which

involved Clifford algebra, another extension of the transformation to sequences of elements of a general

vector space was proposed and studied in [2]. This transformation can be implemented by the topological

ε-algorithm (TEA) which was recently greatly simplified [7], and whose software and applications were also

published [8, 9, 12]. An extension of the theory was then proposed in [10]. Let us give an account of it,

sufficient for understanding the case of matrix sequences treated in this paper.

We make use of the forward difference operator ∆ defined by ∆un = un+1 − un where (un) is any

sequence. When applied to sequences with two indexes, ∆ operates on the lower index. Powers of ∆ are

recursively given by ∆k = ∆(∆k−1) where ∆0 is the identity.

The idea behind Shanks transformation is to construct a set of sequence transformations (sn) 7−→ {(t(k)n )}
such that, for a fixed value of k and for all n, t

(k)
n = s if, for all n,

(1.1) α0(sn − s) + · · ·+ αk(sn+k − s) = 0 ∈ E,
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where the scalars α0 and αk are such that α0αk 6= 0. It does not restrict the generality to assume that

α0 + · · ·+ αk = 1, thus leading to the transformation

(1.2) t(k)n = α0sn + · · ·+ αksn+k, n = 0, 1, . . . ,

which, if the coefficients αi can be computed, possesses the property that, ∀n, t(k)n = s for sequences satisfying

(1.1). The set of these sequences is called the kernel of the transformation. This can be achieved if a sequence

(tn) of elements of E satisfying, ∀n,

(1.3) α0tn + · · ·+ αktn+k = 0 ∈ E,

is known. In order to compute the αi’s, this relation in the vector space E has to be transformed into k

scalar equations. This is obtained by considering its duality product with an element y of E∗, the algebraic

dual space of E, that is the space of linear functionals on it, which gives

(1.4) α0〈y, tn〉+ · · ·+ αk〈y, tn+k〉 = 0 ∈ R.

Together with the condition that the αi’s sum up to 1, k such equations have to be considered in order to

obtain a system of k+1 equations whose solution is α0, . . . , αk. Then, t
(k)
n can be computed by (1.2), and we

obtain ∀n, t(k)n = s. This linear system can be written and solved even if the sequence (sn) does not satisfy

(1.1), thus producing the sequence transformation defined by (1.2). Let us mention that (1.2) and (1.3) can

be respectively written as

t(k)n = sn − β1∆sn − · · · − βk∆sn+k−1

0 = tn − β1∆tn − · · · − βk∆tn+k−1

with βi = −(αi + · · ·+αk) for i = 1, . . . , k. Notice that this new formulation implicitly assumes that the αis

sum up to one. In the particular case where E is Rp, the duality product becomes the usual inner product

that is 〈y, tn〉 = yT tn.

Remark 1.1. It can also be of interest to fix the index n, and to consider the sequence (t
(k)
n )k. In

Example 4, we consider such a sequence. We see that the gain brought is not sufficient to justify the large

increase in the computational and storage costs. However, the contrary can also occurs in certain cases.

There are three strategies for writing the linear system giving the αi’s thus leading to the transformations

called Coupled Topological Shanks Transformations. A complete framework is provided in [10]. In all the

strategies, t
(k)
n can be written as a ratio of two determinants. The determinants in the numerators of these

expressions are elements of E. They are the linear combinations of the elements of E of their first rows

which are obtained by computing them by the classical rule for expanding a determinant with respect to a

row. Thus, so is t
(k)
n since the denominators are scalars (see below). Moreover, using the extended Schur

determinantal formula [10], t
(k)
n can be expressed as an extended Schur complement.

We are considering here only the first two strategies since, in the matrix case, the third one can be

recovered as a particular case of the first one.

Remark 1.2. Many sequence transformations are defined as a ratio of determinants, and/or as the

solution of a linear system of equations, and/or by a recursive algorithm. A common assumption is to

assume that the determinants in the denominators are different from zero, and/or that the linear systems

are nonsingular, and/or that there is no division by zero in the recursive algorithms. These assumptions are

made in the sequel.
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These strategies for determining the αi’s are:

• Polynomial extrapolation strategy.

In (1.4), n is fixed, and we write it for k linearly independent linear functionals yi ∈ E∗ which can

depend on n. We have

t(k)n =

∣∣∣∣∣∣∣∣∣
sn · · · sn+k

〈y1, tn〉 · · · 〈y1, tn+k〉
...

...

〈yk, tn〉 · · · 〈yk, tn+k〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 · · · 1

〈y1, tn〉 · · · 〈y1, tn+k〉
...

...

〈yk, tn〉 · · · 〈yk, tn+k〉

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
sn ∆sn · · · ∆sn+k−1

〈y1, tn〉 〈y1,∆tn〉 · · · 〈y1,∆tn+k−1〉
...

...
...

〈yk, tn〉 〈yk,∆tn〉 · · · 〈yk,∆tn+k−1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈y1,∆tn〉 · · · 〈y1,∆tn+k−1〉

...
...

〈yk,∆tn〉 · · · 〈yk,∆tn+k−1〉

∣∣∣∣∣∣∣

= sn − [∆sn, . . . , sn+k−1]

 〈y1,∆tn〉 · · · 〈y1,∆tn+k−1〉
...

...

〈yk,∆tn〉 · · · 〈yk,∆tn+k−1〉


−1 〈y1, tn〉...

〈yk, tn〉

 .(1.5)

• Shanks strategy.

In (1.4), y ∈ E∗ is fixed, and we write it for the indexes n, . . . , n+ k − 1. We have

t(k)n =

∣∣∣∣∣∣∣∣∣
sn · · · sn+k

〈y, tn〉 · · · 〈y, tn+k〉
...

...

〈y, tn+k−1〉 · · · 〈y, tn+2k−1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 · · · 1

〈y, tn〉 · · · 〈y, tn+k〉
...

...

〈y, tn+k−1〉 · · · 〈y, tn+2k−1〉

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
sn ∆sn · · · ∆sn+k−1
〈y, tn〉 〈y,∆tn〉 · · · 〈y,∆tn+k−1〉

...
...

...

〈y, tn+k−1〉 〈y,∆tn+k−1〉 · · · 〈y,∆tn+2k−2〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈y,∆tn〉 · · · 〈y,∆tn+k−1〉

...
...

〈y,∆tn+k−1〉 · · · 〈y,∆tn+2k−2〉

∣∣∣∣∣∣∣

= sn − [∆sn, . . . , sn+k−1]

 〈y,∆tn〉 · · · 〈y,∆tn+k−1〉
...

...

〈y,∆tn+k−1〉 · · · 〈yk,∆tn+2k−2〉


−1 〈y, tn〉

...

〈y, tn+k−1〉

 .(1.6)

2. Rectangular matrix Shanks transformations. We will now show how to construct Shanks

transformations for sequences of rectangular matrices. The interest of our approach is mostly theoretical. It

allows to compare the expressions of Shanks transformations with others that are of interest and have been

recently studied (see, for example, [10]). Their implementation by the formulæ given below or by those of [29]

requires the solution of block linear systems or the inversion of block matrices, and they can only be used

on examples of relatively small dimensions. However, they show their effectiveness. In the case of square

matrices, treated in Section 3, the matrix ε-algorithm presented in Section 4 is used in the applications given

in Section 6.
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Matrices are either in bold or denoted by capital letters. The square identity and the zero matrices of

dimension m are denoted by Im and 0m respectively, and the rectangular ones of dimension m× q by Im×q
and 0m×q. The products between matrices have to be understood as multiplications by blocks.

In these generalizations, the αi’s and the βi’s are real square matrices instead of scalars, and the sn’s

and the tn’s are real rectangular matrices (the extension to the complex case is obvious). Our approach is

related, but different, to those presented in [24], [25] and [26].

Our starting point is to assume that the sequence (sn) satisfies a recurrence relation of a form similar

to (1.1), and that a coupled relation of a form similar to (1.3) holds for the sequence (tn). Then, strategies

similar to those used above for sequences of elements of a vector space E are used but the duality product

between the matrices y and tn is replaced by the matrix product yT tn. However, according to the side of

the matrix products, we have left and right transformations.

2.1. Left transformations. We consider the matrix difference equation of order k where sn, s ∈ Rp×s

(2.7) (sn − s)α0 + · · ·+ (sn+k − s)αk = 0p×s, ∀n,

with αi ∈ Rs×s, and where the matrices α0 and αk are nonsingular. This relation can be equivalently

written as

sn − s = ∆snβ1 + · · ·+ ∆sn+k−1βk, ∀n,

with βi = −(αi + · · ·+αk) for i = 1, . . . , k.

Obviously the matrix α0 + · · ·+αk has to be nonsingular, and, as in the scalar case, since all the αi’s

can be multiplied by a common nonsingular matrix, it does not restrict the generality if we assume that

(2.8) α0 + · · ·+αk = Is ∈ Rs×s.

Finally, assume that there exists a known sequence (tn) of matrices in Rp×s such that,

(2.9) tnα0 + · · ·+ tn+kαk = 0p×s, ∀n.

For defining a matrix generalization of Shanks transformation, we have to write down a system of k+ 1

matrix equations of dimension s× s for computing the matrices α0, . . . ,αk. Then, the left matrix sequence

transformation (sn) 7−→ (t
(k)
n ) is defined by

(2.10) t(k)n = snα0 + · · ·+ sn+kαk ∈ Rp×s.

The transformation can also be written as

(2.11) t(k)n = sn −
k∑

i=1

∆sn+i−1βi,

where βi = −(αi + · · ·+αk) ∈ Rs×s, i = 1, . . . , k. Similarly, (2.9) can also be written as

(2.12) tn − (∆tnβ1 + · · ·+ ∆tn+k−1βk) = 0p×s.
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The definition of the transformation either by (2.10) or by (2.11) needs the knowledge of the s × s

matrices αi’s or βi’s. If p 6= s it is not possible to compute them directly since the number of unknowns and

the number of equations that can be written is different. Thus, a different procedure has to be used. As in

the case of a general vector space E, the linear system for the matrix coefficients αi and βi can be obtained

by the two following strategies

• Polynomial extrapolation strategy.

We write (2.9) only for the index n, and multiply it on the left by k linearly independent matrices

yT
1 , . . . ,y

T
k ∈ Rs×p, which leads to

yT
i tnα0 + · · ·+ yT

i tn+kαk = 0s, i = 1, . . . , k.

Adding the normalization condition (2.8), we obtain the αi’s as the solution of a matrix system of

linear equations, and the following formula follows from (2.10)

(2.13) t(k)n = [sn, . . . , sn+k]


Is · · · Is

yT
1 tn · · · yT

1 tn+k

...
...

yT
k tn · · · yT

k tn+k


−1

Is
0s

...

0s

 .

Similarly, from (2.12), the system giving the βi’s is

yT
i ∆tnβ1 + · · ·+ yT

i ∆tn+k−1βk = yT
i tn, i = 1, . . . , k.

Let Y = [y1, . . . ,yk] ∈ Rp×ks, T
(k)
n = [tn, . . . , tn+k−1] ∈ Rp×ks, and t

(k)
n,1 be the first block of the

matrix T
(k)
n , that is t

(k)
n,1 = tn ∈ Rp×s. Then βT = (βT

1 , . . . ,β
T
k )T = (Y T ∆T

(k)
n )−1Y T t

(k)
n,1, and we

get from (2.11)

(2.14) t(k)n = sn − [∆sn, . . . ,∆sn+k−1](Y T ∆T (k)
n )−1Y T t

(k)
n,1,

Our notation means that (Y T ∆T
(k)
n ) ∈ Rks×ks is the block matrix whose elements are yT

i ∆tn+j−1

for i, j = 1, . . . , k. Also Y T t
(k)
n,1 ∈ Rks×s with elements yT

i tn for i = 1, . . . , k, and it follows that

(Y T ∆T
(k)
n )−1Y T t

(k)
n,1 is a ks× s matrix, and t

(k)
n ∈ Rp×s.

This transformation is a particular case of the so-called Matrix Generalized Recursive Projection

Algorithm (MGRPA) defined and studied by Messaoudi [29]. It can be recursively implemented

by his Algorithm A6, a generalization to the matrix case of an algorithm given in [28] which itself

generalizes the Recursive Projection Algorithm (RPA) proposed in [4]. Related algorithms are also

given in [23] and [25] where new Schur complement identities are proved. Let us mention that

determinants of block matrices, whose blocks are square and have the same dimension, can be

computed by block Gaussian elimination (see, for example, [32]).

When tn = ∆sn, and according to the choice of the matrices yi, we obtain matrix generalizations

of well-known vector sequence transformations:

– the Modified Minimal Polynomial Extrapolation (MMPE) [2, 33] for matrices yi which do not

depend on n,

– the Minimal Polynomial Extrapolation (MPE) [11] for yi = ∆sn+i−1,

– the Reduced Rank Extrapolation (RRE) [16, 27] for yi = ∆2sn+i−1.
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• Shanks strategy.

We write (2.9) for the indexes n, . . . , n+ k− 1, and multiply each of these relations on the left by a

matrix yT ∈ Rs×p. We thus obtain

yT tn+iα0 + · · ·+ yT tn+k+iαk = 0s, i = 0, . . . , k − 1,

which, together with the normalization condition (2.8) furnishes a matrix linear system for the αi’s.

Thus, again from (2.10), we have

(2.15) t(k)n = [sn, . . . , sn+k]


Is · · · Is

yT tn · · · yT tn+k

...
...

yT tn+k−1 · · · yT tn+2k−1


−1

Is
0s

...

0s

 .

For the βi’s, we have the system

yT ∆tn+iβ1 + · · ·+ yT ∆tn+k+i−1βk = yT tn+i, i = 0, . . . , k − 1.

Thus, βT = (βT
1 , . . . ,β

T
k )T = (Y T ∆T

(k)
n )−1Y T t

(k)
n,1, and, from (2.11),

(2.16) t(k)n = sn − [∆sn, . . . ,∆sn+k−1](Y T ∆T (k)
n )−1Y T t

(k)
n,1,

with now

(2.17)

Y =


y 0p×s · · · 0p×s

0p×s y · · · 0p×s
...

...
...

0p×s 0p×s · · · y

∈ Rkp×ks and T (k)
n =


tn tn+1 · · · tn+k−1

tn+1 tn+2 · · · tn+k

...
...

...

tn+k−1 tn+k · · · tn+2k−2

∈ Rkp×ks,

y ∈ Rp×s on the diagonal of Y , and where tkn,1 ∈ Rkp×s is the first column of the matrix T
(k)
n defined

in (2.17). Thus, (Y T ∆T
(k)
n ) ∈ Rks×ks, Y T t

(k)
n,1 ∈ Rks×s, and it follows that (Y T ∆T

(k)
n )−1Y T t

(k)
n,1 ∈

Rks×s, and t
(k)
n ∈ Rp×s.

When tn = ∆sn, this transformation generalizes to the matrix case the topological Shanks trans-

formation (also known as the Topological Epsilon Algorithm (TEA)) introduced in [2]. This trans-

formation is also a particular case of the so-called Matrix E-Algorithm defined and studied by

Messaoudi [29], and which can be recursively implemented by his Algorithm A4, a generalization of

the scalar and vector E-algorithm [3].

Thus, for these two left matrix transformations, we have, by construction:

Theorem 2.1. If the sequence (sn) satisfies (2.7), then, for all n, t
(k)
n = s.

These left matrix Shanks transformations were also studied by Jbilou and Messaoudi [24] where quite

similar results can be found but by a different approach. These authors also gave an efficient way for

implementing the matrix MMPE. Techniques similar to those used by Sidi [38] can also be extended to the

matrix case.
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2.2. Right transformations. We now start from the matrix difference equation

(2.18) α0(sn − s) + · · ·+αk(sn+k − s) = 0q×r, ∀n,

where sn, s ∈ Rq×r and αi ∈ Rq×q, and where the matrices α0 and αk are nonsingular. Equivalently, this

relation can be written as

sn − s = β1∆sn + · · ·+ βk∆sn+k−1,

with βi = −(αi + · · ·+αk) for i = 1, . . . , k.

Without any restriction to the generality, we assume again the normalization condition

(2.19) α0 + · · ·+αk = Iq.

We also assume that the sequence (tn) of matrices in Rq×r satisfies,

(2.20) α0tn + · · ·+αktn+k = 0q×r, ∀n.

We have to write down a system of k+ 1 matrix equations of dimension q× q for obtaining the matrices

α0, . . . ,αk. Then, the right matrix sequence transformation (sn) 7−→ (t
(k)
n ) is defined by

(2.21) t(k)n = α0sn + · · ·+αksn+k.

As in the left case, the transformation can also be written as

t(k)n = sn −
k∑

i=1

βi∆sn+i−1,

where βi = −(αi + · · ·+αk) ∈ Rq×q, i = 1, . . . , k. Similarly, for (2.20), we have

tn − (β1∆tn + · · ·+ βk∆tn+k−1) = 0q×r.

As in the left case, if p 6= s, it is impossible to obtain directly a number of equations equal to the number

of unknowns for computing the matrix coefficients αi and βi. Again, such a system can be obtained by two

different ways

• Polynomial extrapolation strategy.

We write (2.20) only for the index n, and multiply it on the right by yT
1 , . . . ,y

T
k ∈ Rr×q, which leads

to

α0tnyT
i + · · ·+αktn+kyT

i = 0q, i = 1, . . . , k.

Adding the normalization condition (2.19), we obtain the αi’s as the solution of the matrix system

of linear equations,

[α0, . . . ,αk]

 Iq tnyT
1 · · · tnyT

k
...

...
...

Iq tn+kyT
1 · · · tn+kyT

k

 = [Iq,0q, . . . ,0q],
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and it holds

(2.22) t(k)n = [Iq,0q, . . . ,0q]

 Iq tnyT
1 · · · tnyT

k
...

...
...

Iq tn+kyT
1 · · · tn+kyT

k


−1 sn

...

sn+k

 .

The system giving the βi’s is now

β1∆tnyT
i + · · ·+ βk∆tn+k−1y

T
i = tnyT

i , i = 1, . . . , k.

Therefore, we have the following extended Schur complement formula

(2.23) t(k)n = sn − tn[yT
1 , . . . ,y

T
k ]


 ∆tn

...

∆tn+k−1

 [yT
1 , . . . ,y

T
k ]


−1 ∆sn

...

∆sn+k−1

 .

This formula has a structure quite similar to that of (2.14). Indeed, set

Ỹ =

 y1

...

yk

 ∈ Rkq×r, T̃ (k)
n =

 tn
...

tn+k−1

 ∈ Rkq×r,

that is, Ỹ T = [yT
1 , . . . ,y

T
k ] ∈ Rr×kq and (T̃

(k)
n )T = [tTn , . . . , t

T
n+k−1] ∈ Rr×kq, and let t

(k)
n,1 be the block

matrix in the first row of the matrix T̃
(k)
n , that is t

(k)
n,1 = tn ∈ Rq×r. Then βT = (βT

1 , . . . ,β
T
k )T =

t
(k)
n,1Ỹ

T (∆T̃
(k)
n Ỹ T )−1 ∈ Rq×kq. Therefore, we have the following extended Schur complement formula

t(k)n = sn − t
(k)
n,1Ỹ

T (∆T̃ (k)
n Ỹ T )−1

 ∆sn
...

∆sn+k−1

 .

According to the choice of the matrices yi, we obtain the following particular cases of the right

matrix Shanks transformation when tn = ∆sn:

– the Modified Minimal Polynomial Extrapolation (MMPE) [2, 33] for matrices yi which do not

depend on n,

– the Minimal Polynomial Extrapolation (MPE) [11] for yi = ∆sn+i−1,

– the Reduced Rank Extrapolation (RRE) [16, 27] for yi = ∆2sn+i−1.

• Shanks strategy.

We write (2.20) for the indexes n, . . . , n + k − 1, and multiply each of these relations on the right

by a matrix yT ∈ Rr×q. We thus obtain

α0tn+iy
T + · · ·+αktn+k+iy

T = 0p, i = 0, . . . , k − 1,

which, together with the normalization condition furnishes a matrix linear system for the αi’s. Thus,

we have the system

[α0, . . . ,αk]

 Iq tnyT · · · tn+k−1y
T

...
...

...

Iq tn+kyT · · · tn+2k−1y
T

 = [Iq,0q, . . . ,0q],
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and it follows

(2.24) t(k)n = [Iq,0q, . . . ,0q]

 Iq tnyT · · · tn+k−1y
T

...
...

...

Iq tn+kyT · · · tn+2k−1y
T


−1 sn

...

sn+k

 .

This transformation is another generalization of the topological Shanks transformation when tn =

∆sn.

For this strategy, the system for the βi’s is

β1∆tn+iy
T + · · ·+ βk∆tn+k+i−1y

T = tn+iy
T , i = 0, . . . , k − 1,

and the extended Schur complement formula follows

(2.25) t(k)n = sn − [tn, . . . , tn+k−1]yT
(

∆T (k)
n Y T

)−1 ∆sn
...

∆sn+k−1

 ,

where Y and T
(k)
n have the same structure as in (2.17).

Thus, for these two right matrix transformations, we have, by construction:

Theorem 2.2. If the sequence (sn) satisfies (2.18), then, for all n, t
(k)
n = s.

2.3. Transposition left-right. If p = r and s = q, the left and right cases are transposed one from

each other. Indeed, transposing the expression (2.7) of the kernel of the left transformation gives

αT
0 (sTn − sT ) + · · ·+αT

k (sTn+k − sT ) = 0q×r.

Similarly, transposing (2.9), we get

αT
0 tTn + · · ·+αT

k tTn+k = 0q×r,

and the transformation becomes

(t(k)n )T = αT
0 sTn + · · ·+αT

k sTn+k

= sTn −
k∑

i=1

βT
i ∆sTn+i−1.

If we transpose (2.13) and (2.14), we obtain respectively, after also transposing the yi’s,

(t(k)n )T = [Iq,0q, . . . ,0q]

 Iq tTny1 · · · tTnyk

...
...

...

Iq tTn+ky1 · · · tTn+kyk


−1 sTn

...

sTn+k



= sTn − tTn [y1, . . . ,yk]


 ∆tTn

...

∆tTn+k−1

 [y1, . . . ,yk]


−1 ∆sTn

...

∆sTn+k−1

 ,
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which shows that (2.22) and (2.23) are recovered.

Similar results are obtained by transposing the formulae of the right Shanks strategy. Thus, the right

transformations can be obtained by applying the left ones to (sTn ) and (tTn ), after replacing the matrices yi’s

and y by their transposes, and transposing the results t
(k)
n , and conversely.

3. Square matrix Shanks transformations. Let us now consider the case where the matrices sn
and tn are square, that is p = s. It is now possible to directly write down a system with the same number of

unknowns and equations, and the matrix Y appearing in the polynomial extrapolation strategy and in the

Shanks strategy is no longer needed.

In the left case, the matrices αi are solution of the system

α0 + · · · + αk = Ip
tnα0 + · · · + tn+kαk = 0p

...
...

...

tn+k−1α0 + · · · + tn+2k−1αk = 0p,

and the left matrix Shanks transformation defined by (2.10) becomes

t(k)n = [sn, . . . , sn+k]


Ip · · · Ip
tn · · · tn+k

...
...

tn+k−1 · · · tn+2k−1


−1

Ip
0p

...

0p

 .

In the right case, it similarly holds from (2.21)

t(k)n = [Ip,0p, · · · ,0p]

 Ip tn · · · tn+k−1
...

...
...

Ip tn+k · · · tn+2k−1


−1 sn

...

sn+k

 .

These formulae correspond respectively to (2.15) and (2.24) with y = I of the corresponding dimension.

Similarly, (2.16) and (2.25) lead to

t(k)n = sn − [∆sn, . . . ,∆sn+k−1](∆T (k)
n )−1

 tn
...

tn+k−1

 ,

and to

t(k)n = sn − [tn, . . . , tn+k−1]
(

∆T (k)
n

)−1 ∆sn
...

∆sn+k−1

 ,

with T
(k)
n defined as in (2.17).

We immediately see that these two formulae coincide when tn = ∆sn. In this case, following the original

notation used by Shanks [37], we set ek(sn) = t
(k)
n , and we can express the transformation as a Schur
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complement

ek(sn) = (M (k+1)(sn)/∆2S(k)
n ),

where

M (k+1)(sn) =


sn ∆sn · · · ∆sn+k−1

∆sn ∆2sn · · · ∆2sn+k−1
...

...
...

∆sn+k−1 ∆2sn+k−1 · · · ∆2sn+2k−2

 , S(k)
n =

 sn · · · sn+k−1
...

...

sn+k−1 · · · sn+2k−2

 .

Moreover, in this case, since our approach follows the same lines as that of Salam [35], his results apply

and ek(sn) can be expressed using designants, a generalization of determinants in a noncommutative algebra.

Thus, as a consequence, these matrix transformations can be recursively implemented as we will see in the

next Section 4.

4. The matrix ε-algorithm. The ε-algorithm of Wynn [39] is a recursive algorithm for implementing

Shanks transformation in the scalar case. It was extended to the square matrix case by Wynn [40], and it’s

rule is

ε
(n)
k+1 = ε

(n+1)
k−1 + (ε

(n+1)
k − ε(n)k )−1, k, n = 0, 1, . . . ,

with ε
(n)
−1 = 0p and ε

(n)
0 = sn ∈ Rp×p, for n = 0, 1, . . .

The following result was proved by Salam [35].

Theorem 4.1. If, for all n, (sn) satisfies

α0(sn − s) + · · ·+αk(sn+k − s) = 0p,

or

(sn − s)α0 + · · ·+ (sn+k − s)αk = 0p,

where s, the sn’s, and the αi’s are square matrices of the same dimension and such that α0,αk and α0 +

· · ·+αk are nonsingular, then, for all n, ε
(n)
2k = ek(sn) = s.

This result does not hold true in general for rectangular matrices αi, sn and s when using the pseudo-

inverse instead of the inverse in the matrix ε-algorithm. This is a conjecture which was discussed by Wynn

in [42], and we verified numerically that it was wrong. However, the conjecture is satisfied in some special

cases [18, 34]. Nevertheless, as we will see below, replacing the inverse by the pseudo-inverse can lead to

interesting numerical results for square matrices (see, in particular, Example 1, Figure 1, right).

As can be seen from Theorem 4.1, only the ε’s with an even lower index are related to the transformation.

The other ones are intermediate computations. Thus, for saving memory, only the matrices with a lower

index of the same parity can be kept and the other ones can be eliminated thus leading to the cross-rule

first proved by Wynn in the scalar case [41]

[ε
(n)
k+2 − ε

(n+1)
k ]−1 + [ε

(n+2)
k−2 − ε

(n+1)
k ]−1 = [ε

(n)
k − ε(n+1)

k ]−1 + [ε
(n+2)
k − ε(n+1)

k ]−1,

with ε
(n)
−2 = ∞p. However, this formula is much too costly in terms of matrix inversions while the formula

of the matrix ε-algorithm only requires one inversion each time.
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The ε’s are displayed in a two dimensional array. The lower index k represents a column, while the

upper index n designates a descending diagonal (see, for example, Table 1 in [8]). The computation of ε
(n)
2k

needs the knowledge of s0, . . . , sn+2k. Keeping all the intermediate terms of this array requires the storage

of (k+ 1)(2k+ 1) elements. Each term of the sequence to be transformed is computed and added one by one

to the array which is then computed as far as possible. When k is fixed, adding the new element sn+2k+1,

allows to compute ε
(n+1)
2k by 2k matrix inversions. When n is fixed and k is increased by one, two new

elements sn+2k+1 and sn+2k+2 are necessary to obtain ε
(n)
2k+2 which requires 2k + 2 matrix inversions. In

order to save storage, the algorithm is usually implemented using a technique described, for example, in [8].

It requires to store only 2k + 1 elements plus two additional working elements.

The numerical stability of the matrix ε-algorithm is an important issue which has never been studied.

This algorithm needs the inversion of the difference of two matrices whose elements can be close or be large.

Thus, in both cases, the matrix to be inverted can be ill-conditioned. This is illustrated by the Example 1

below.

5. Matrix Padé approximation. Let t be a complex variable. We consider the matrix series

f(t) =

∞∑
i=0

cit
i,

where ci ∈ Rp×s. A Padé approximant is the product of a polynomial with matrix coefficients (the numerator

polynomial) by the inverse of another matrix polynomial (the denominator polynomial), and whose expansion

in ascending powers of t agrees with that of f as far as possible. We will distinguish between matrix Padé-type

approximants where the denominator polynomial can be arbitrarily chosen, and matrix Padé approximants

where no choice is left but achieves a better order of approximation. As in the case of Shanks transformation,

we will also distinguish between left and right approximants. For an extensive study of these approximants,

see [13–15,43], and also [31], [6] and [19].

5.1. Padé-type approximants. Let Pk be a polynomial of degree k with matrix coefficients Bi ∈ Rs×s

and Qk+m−1 be a matrix polynomial in Rp×s. If

Qk+m−1(t)− f(t)Pk(t) = O(tk+m),

then Qk+m−1(t)(Pk(t))−1 is called the right matrix Padé-type approximant, and it is denoted by (k + m −
1/k)R.

Now, let Pk be a polynomial of degree k with matrix coefficients Bi ∈ Rp×p and Qk+m−1 be again a

matrix polynomial in Rp×s. If

Qk+m−1(t)− Pk(t)f(t) = O(tk+m),

then (Pk(t))−1Qk+m−1(t) is called the left matrix Padé-type approximant, and it is denoted by (k+m−1/k)L.

Usually, left and right matrix Padé-type approximants are not identical (their dimensions are not the

same if p 6= s) but they both use the same number of coefficients of f , namely c0, . . . , ck+m−1 [6].

5.2. Padé approximants. Let us now choose Pk to improve the order of approximation. We set

Pk(t) = B0 + · · ·+Bk−1t
k−1 +Bkt

k, Bk = Is.
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In the left case, if the matrices Bi ∈ Rs×s are chosen so that, for some r,

ck+m+iB0 + · · ·+ cm+iBk = 0, i = 0, . . . , r − 1,

the order of approximation becomes k +m+ r. Each of these equations is equivalent to ps scalar equations

with ps2 unknowns. For having the same number of equations and unknowns, we must have rp = ks. The

approximants obtained are called right matrix Padé approximants, they are denoted by [k+m− 1/k]R, and

they need the knowledge of c0, . . . , ck+m+r−1, and it holds [1, pp. 429–466]

Qk+m−1(t)− f(t)Pk(t) = O(tk+m+r).

A similar treatment applies to the right case, and we have:

Theorem 5.1. If p = s and r = k, the left and the right matrix Padé approximants are identical.

Applying the matrix ε-algorithm to the partial sums of the series f leads to:

Theorem 5.2. Let p = s. Applying the matrix ε-algorithm to sn = c0 + · · · + cnt
n produces ε

(n)
2k =

[n+ k/k]L = [n+ k/k]R.

6. Applications. Let us now show some applications of the matrix ε-algorithm to sequences of matri-

ces. Its main drawback is the need of a matrix inversion for the computation of a new ε; see Section 4. Thus,

the application of the algorithm is interesting only if the gain brought by the algorithm is quite substantial.

Matrices are in bold. The matrices whose names are given in italics are taken from [22]. The dashed

line represents the Euclidean norm of the error of the sequence (sn) (for Example 5, the Frobenius norm

was used), the plain line refers to the ε-algorithm. Errors are in log scale. In the examples where the exact

solution was not mathematically known, we computed it with the corresponding matlabr function. The

numerical results were obtained with matlab, version R2017a.

6.1. Example 1. The binomial iteration for computing the square root of I−C consists of the iterations

sn+1 =
1

2
(C + s2n), k = 0, 1, . . . ,

with s0 = 0. The sequence (sn) converges linearly to s = I− (I−C)1/2 if ρ(C) < 1, and (sn) is the sequence

of the partial sums of the series

(I−C)1/2 =

∞∑
i=0

(
1/2

i

)
(−C)i = I−

∞∑
i=1

γiC
i, γi > 0,

up to and including the term Cn [21, pp. 154–157].

For C, we took the matrix moler of dimension 100 divided by its spectral radius and multiplied by 0.9.

The errors of the sequences (sn) and (ε
(n)
4 ) are plotted in Figure 1 (left) in a log scale. These results were

obtained by the matrix ε-algorithm as defined by Wynn in his paper [40]. On the right of Figure 1 we show

the results given by replacing, in our matlab code of the matrix ε-algorithm, the inverse (based on the lu

decomposition) by the pseudo-inverse (which uses the svd). We see that they are much better and that the

error suddenly drops down. The spectral radius of the matrix C is equal to 0.9, and its condition number is

2.7796× 1016. After 40 iterations (that is when the maximum precision is achieved), the spectral radius of
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C40 is 0.0148, and its condition number is equal to 3.8558×1019. Inverting it by lu decomposition produces

a matrix with a condition number equal to 3.7175× 1023, while, with the svd it is 1.2640× 1020. Thus, in

the ε-algorithm, computing the inverses by using the pseudo-inverses based on the svd is more stable than

lu decompositions since singular values smaller than a fixed tolerance are treated as zeros. However, it must

be noticed that computing the svd is more expensive than computing a lu decomposition. The results with

the sequences (ε
(n)
2k ) for various values of k are quite similar.

0 10 20 30 40 50 60 70
10-15

10-10

10-5

100

0 10 20 30 40 50 60 70
10-15

10-10

10-5

100

Figure 1. Example 1: (sn) (dashed line), (ε
(n)
4 ) (plain line), with the inverse (left) and the pseudo-inverse (right).

6.2. Example 2. We consider the matrix equation

f(s) = s + A∗s−1A−Q = 0,

where A,Q ∈ Cm×m with Q Hermitian positive definite. We are looking for its maximal Hermitian positive

definite solution s+, that is the matrix s+ such that s+−s is positive semidefinite for any Hermitian solution

s of f . For Q = I + A∗A, this solution is s+ = I if and only if ρ(A) < 1, a result proved in [20]. Thus, an

easy way to construct a numerical example is to take A = rS/ρ(S) where S is any arbitrary matrix.

We use the following iterative method due to Guo [20]:

s0 = Q,

sn+1 = Q−A∗s−1n A, n = 0, 1, . . .

This method converges slowly if the spectral radius of A is close to 1. For S we took the prolate matrix of

dimension m = 20 and r = 0.8. The error of (ε
(n)
4 ) is given in Figure 2 (left) in log scale. In this Example, we

used the inverse based on the lu decomposition since it is cheaper than the svd, and no stability problems

were detected.

6.3. Example 3. We consider the computation of the exponential function s = eAt. We take A =

UDU−1 so that s = UeDtU−1, where D is the frank matrix, U is the orthog matrix, both of dimension 50,

and t = −0.01. The errors corresponding to (ε
(n)
6 ) are given in Figure 2 (right). Then, the error degrades.

We again used the inverse based on the lu decomposition since nothing is gained by using the pseudo-inverse.

6.4. Example 4. We consider now the partial sums sn of the series log(I+A) = A−A2/2+A3/3−· · · ,
where A is the ris matrix of dimension 100 from the matrix toolbox [22] divided by its spectral radius and
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Figure 2. Example 2 (left): (sn) (dashed line), (ε
(n)
4 ) (plain line). Example 3 (right): (sn) (dashed line), (ε

(n)
6 ) (plain

line).

multiplied by 0.6. The results are given by Figure 3. The dashed line represents the error, in log scale, of

the partial sums of the series. The plain one corresponds to the matrix ε-algorithm. We did not show the

sequence (ε
(n)
6 ) which is highly oscillating and brings no improvement on (ε

(n)
4 ). Similarly, the error curve

of (ε
(n)
2 ) almost follows that of the partial sums of the series. On Figure 3, we also see that the diagonal

sequence (ε
(0)
2k ), which requires many matrix inversions, has no special interest. Finally, if we raise the

spectral radius of A above 1, the matrix ε-algorithm diverges as the partial sums of the series, contrarily to

the Simplified Topological Epsilon Algorithm which transforms a divergent series into a convergent one [8].

0 10 20 30 40 50 60 70
10-15

10-10

10-5

100

0 10 20 30 40 50 60 70
10-15

10-10

10-5

100

Figure 3. Example 4: Left (sn) (dashed line), (ε
(n)
4 )n (plain line). Right (sn) (dashed line), (ε

(0)
2k )k (plain line).

6.5. Example 5. Let us end with a numerical example concerning rectangular matrices. We consider

the Sylvester equation AX−XB = C where A ∈ Rp×p,B ∈ Rm×m,C,X ∈ Rp×m. For solving this equation

we used the Algorithm 1 given in [30]

Choose X0 ∈ Rnp×m.

Compute Z0 = C + X0B

for n = 0, 1, . . . , until convergence

Solve AXn+1 = Zn

Zn+1 = C + Xn+1B

end for
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The sequence (Xn) converges q-linearly to the unique solution of the equation if ‖A−1‖ ·‖B‖ < 1. Thus,

the convergence is quite fast, and it cannot be accelerated. Since the preceding condition is only sufficient,

we took a matrix B such that ‖A−1‖ · ‖B‖ = 4.5. A was the clement matrix of dimension 10 of the matrix

toolbox [22], B was the condex matrix of dimension 30. The solution X was taken as the chebvand matrix

of dimension 10 × 30 (Figure on the left) and 10 × 10000 (Figure on the right), and the C was computed

accordingly. We started from X0 = 0, and compute A−1 with inv. The results are given in Figure 4.

The norms are the Frobenius ones. The computation of each member of the sequence (ε
(n)
2 ) needs two

pseudo-inverses obtained with pinv.

0 10 20 30 40 50 60 70
10-15

10-10

10-5

100

105

0 10 20 30 40 50 60 70
10-10

10-8

10-6

10-4

10-2

100

102

104

Figure 4. Example 5: (Xn) (dashed line), (ε
(n)
2 ) (plain line).

Going to (ε
(n)
2k ) for k > 1 does not bring any further improvement, and needs the computation of two

additional pseudo-inverses each time k is increased by 1.

7. Coda. In this paper, we present a complete algebraic theory of a transformation for accelerating

sequences of rectangular matrices, and we relate it to Padé-type and Padé approximants for power series

with matrix coefficients. This transformation is inspired by the scalar sequence transformation due to

Shanks [36, 37]. In the case of square matrices, the transformation can be recursively implemented by

the matrix ε-algorithm of Wynn [40]. This algorithm can be used for accelerating sequences or for solving

nonlinear matrix equations. However, since it requires a matrix inversion at each step, it is really effective only

for problems where it brings a sufficiently valid improvement. Despite this drawback, the theory presented

in this paper is an addition to the literature on convergence acceleration and extrapolation methods.
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